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We study some properties of (§-pre, s)-continuous functions. Basic characterizations and
several properties concerning (§-pre, s)-continuous functions are studied. The general
cases for the composition of functions under specific conditions which yield (8-pre, s)-
continuous functions are also studied and we obtained some results.
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1. Introduction

One of the important and basic topics in general topology and several branches of math-
ematics which have been researched by many authors is the continuity of functions. In
this paper, we study (J-pre, s)-continuous functions as a new weaker form of continu-
ity. In 1996, Dontchev [3] introduced contra-continuous functions, and Jafari and Noiri
[10] introduced contra-precontinuous functions (in 2002). Ekici [8] studied the notion
of almost contra-precontinuous functions. Recently, Ekici [7] introduced and studied
the notion of (§-pre, s)-continuous functions as a new weaker form of almost contra-
precontinuous functions. The aim of this paper is to study some properties of (J-pre,
s)-continuous functions and modification of the results due to Ekici [7]. Basic charac-
terizations concerning (d-pre, s)-continuous functions are investigated and some results
are obtained. Moreover, we obtain some properties in general cases concerning composi-
tion of functions under specific conditions, where the composition would yield a (§-pre,
s)-continuous function. Finally, if given a composition of functions, which are (§-pre,
s)-continuous, we obtain the first function in the composition, which will be (§-pre, s)-
continuous.

2. Preliminaries

Throughout this paper, all spaces X and Y (or (X,7) and (Y,v)) are always mean topo-
logical spaces. Let A be a subset of a space X. For a subset A of (X,7), Cl(A) and Int(A)
represent the closure and interior of A with respect to 7, respectively.
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2 Some results on (J-pre, s)-continuous functions

A subset A of a space X is said to be regular open (resp., regular closed) if A =
Int(CI(A)) (resp., A = Cl(Int(A))). The family of all regular open (resp., regular closed)
sets of X is denoted by RO(X) (resp., RC(X)). We put RO(X,x) = {U € RO(X):x € U}
and RC(X,x) = {F € RC(X):x € F}.

The §-interior [17] of a subset A of X is the union of all regular open sets of X con-
tained in A and is denoted by § — Int(A).

Definition 2.1. A subset A of a space X is called
(1) §-open [17] if A = § — Int(A),
(2) preopen [13] if A < Int(CI(A)),
(3) §-preopen [16] if A < Int(é — Cl(A)),
(4) semi-open [12] if A = Cl(Int(A)).

The semiinterior [7] (resp., §-preinterior [16]) of A is defined by the union of all
semiopen (resp., §-preopen) sets contained in A and is denoted by s — Int(A) (resp., § —
pInt(A)). Note that § — pInt(A) = A nInt(é — CI(A)) [7].

The complement of a §-open (resp., preopen, -preopen, and semiopen) set is said to
be §-closed [17] (resp., preclosed [9], & -preclosed [7], and semiclosed [2]). Alternatively,
a subset A of (X, 7) is called §-closed if A =6 — CI(A) [17], where § — ClI(A) = {x € X :
ANInt(Cl(U)) # @, U € T and x € U}, and semiclosed if Int(Cl(A)) < A [6]. The inter-
section of all semiclosed (resp., § -preclosed) sets containing A is called the semiclosure
[2] (resp., 8-preclosure [16]) of A and is denoted by s — CI(A) (resp., § — pCl(A)). Note
that § — pCl(A) = AU CI(§ — Int(A)) [7].

The family of all §-open (resp., preopen, §-preopen, § -preclosed, semiopen, and semi-
closed) sets of X is denoted by §O(X) (resp., PO(X), 6PO(X), 6PC(X), SO(X), SC(X)).

The family of all §-open (resp., preopen, §-preopen, & -preclosed, semiopen, and
semiclosed) sets of X containing a point x € X is denoted by §O(X,x) (resp., PO(X,
x), 6PO(X,x), 6PC(X,x), SO(X,x), SC(X,x)), that is, O(X,x) = {U € §O(X) : x € U}
(resp., PO(X,x) = {U € PO(X) : x € U}, 6PO(X,x) = {U € 6PO(X) : x € U}, PC(X,
x)={F € §PC(X):x € F}, SOX,x) ={U e SOX):xe U}, PC(X,x) ={F € PC(X) :
x € F}).

Definition 2.2. A function f : X — Y is said to be

1) perfectly continuous [14] if f~1(V) is clopen in X for every open set V of Y;

2) contra-continuous [3] if f~}(V) is closed in X for every open set V of Y;

3) regular set-connected [4] if f~!(V) is clopen in X for every V € RO(Y);

4) s-continuous [1] if for each x € X and each V' € SO(Y, f(x)), there exists an open
set U in X containing x such that f(U) € V;

(5) almost s-continuous [15] if for each x € X and each V € SO(Y,, f(x)), there exists
an open set U in X containing x such that f(U) ¢ s — Cl(V);

(6) contra-precontinuous [10] if f~!(V) € PC(X) for each open set V of Y;

(7) almost contra-precontinuous [8] if f~1(V) € PC(X) for each V € RO(Y).

(
(
(
(

Definition 2.3. A function f : X — Y is called (8-pre, s)-continuous [7] if for each x € X
and each V € SO(Y, f(x)), there exists a §-preopen set U in X containing x such that

f(U) < ClV).
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Remark 2.4. The following diagram holds:

Perfectly continuous => Contra-continuous == Contra-precontinuous

ﬂ

Regular set-connected Almost contra-precontinuous
Almost s-continuous (8-pre, s)-continuous

s-continuous
(2.1)

None of these implications is reversible as shown in [4-7, 10, 14].

3. Some results

In this section, the modification of results due to Ekici [7] is investigated. Basic charac-
terizations and some properties of (§-pre, s)-continuous functions are also investigated.

Lemma 3.1. Let {Ay}aen be a collection of 8-preopen sets in topological space X. Then
Uaea Ay is 8-preopen in X.

Proof. For each a € A, since A, is §-preopen in X, we have A, < Int(§ — Cl(A4)). Then
JAwc JInt(6-Cl(Aq)) < Int( U 6—C1(Aa)) =Int (8—C1( U Aa>). (3.1)
acA acA acA acA

Therefore, ycp Ag is 8-preopen in X. O

The following theorem is obtained by modification and extending the results from [7,
Theorem 1].

TueOREM 3.2. The following are equivalent for a function f : X — Y:
(1) f is (0-pre, s)-continuous;
(2) for each x € X and each F € SC(Y) noncontaining f(x), there exists a §-preclosed
set K in X noncontaining x such that f~!(Int(F)) < K;

(3) f~Y(V) € 8PO(X) for every V € RC(Y);

(4) f~Y(V) € 8PC(X) for every V € RO(Y);

(5) f~ 1(Cl(V)) € SPO(X) for every V € SO(Y);

(6) f1(Int(V)) € 8PC(X) for every V € SC(Y);

(7) f~'(Int( CI(G))) € 6PC(X) for every open subset G of Y;
(8) f~1(Cl(Int(F))) € 8PO(X) for every closed subset F of Y.

Proof. (1) (2): let F be any semiclosed set in Y not containing f(x). Then Y\ F is a
semiopen set in Y containing f(x). By (1), there exists a §-preopen set U in X containing
x such that f(U) < CI(Y \ F). Hence, U = f~}(CI(Y \ F)) = X \ f~!(Int(F)) and then
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f(Int(F)) = X \ U. Take K = X \ U. We obtain that K is a § -preclosed set in X non-
containing x such that f~!(Int(F)) < K.

The converse can be shown similarly.

(1)e(3): let V€ RC(Y) and f(x) € V. It follows that V € SO(Y) containing f(x).
By (1), there exists a §- preopen set Uy in X containing x such that f(U,) < CI(V'). Then
x€ U, < f7Y(CI(V)) and f! V) = Uxef 1ci(v)) Ux. This shows that f~!(Cl(V)) €
6PO(X) by Lemma 3.1. Since V S RC( ), then also Cl(V) € RC(Y).So,Cl(V) =V and
we have f~1(V) € §PO(X).

Conversely, let V. € RC(Y) and f(x) € V. Then x € f~1(V) and by (3), f"1(V) €
dPO(X).Since V € RC(Y), it follows that V € SO(Y) containing f(x). Take U = f !
then

xef'(V)=U,  fU)=f(f(V) cVeClV). (3.2)

This shows that f is (§-pre, s)-continuous.

(2)(4): let V.€ RO(Y) and f(x) ¢ V. It follows that V € SC(Y) is noncontaining
f(x). By (2), there exists a § -preclosed set K in X noncontaining x such that f~!(Int(V))
c K. Hence, X\K is a §-preopen set in X containing x, thatis, x € X \K < X\ f~!(Int(V)).
Thus, X \ f~1(Int(V)) = Usex\ /-1 anevy) X \ K is a d-preopen set in X containing x by
Lemma 3.1. Therefore, f~!(Int(V)) is a § -preclosed set in X noncontaining x. Since
V € RO(Y), then Int(V) € RO(Y). So Int(V) = V and we have f~1(V) is a § -preclosed
set in X noncontaining x.

Conversely, let V € RO(Y) and f(x) ¢ V. Then x ¢ f~'(V) and by (4), f (V) €
OPC(X). Since V € RO(Y), it follows that V € SC(Y) is noncontaining f(x). Take K =
f71(V). We obtain that K is a §-preclosed set in X noncontaining x such that f ~!(Int(V))
c f!

(3)e(4):let V.€ RO(Y). Then Y\ V € RC(Y). By 3), f (Y \V) =X\ f!
dPO(X). We have f~1(V) € 6PC(X).

The converse can be obtained similarly.

(3)(5):let V € SO(Y). Then CI(V) € RC(Y). By (3), f1(CI(V)) € 6PO(X).

Conversely, let V € RC(Y). It follows that V € SO(Y). By (5), f~}(Cl(V)) € §PO(X).
Since V € RC(Y), then CI(V)) € RC(Y). So CI(V) = V and we have f~1(V) € §PO(X).

(4)(6):let V € SC(Y). Then Int(V) € RO(Y). By (4), ! (Int(V)) € 0PC(X).

Conversely, let V € RO(Y). It follows that V € SC(Y). By (6), f ~!(Int( )) € §PC(X).
Since V € RO(Y), then Int(V) € RO( ). So Int(V) = V and we have f~1(V) € §PC(X).

(1) (5):let V€ SO(Y) and f(p) € V. Since f is (6-pre, s)—continuous there exists
a Up € §PO(X) contalnlng p such that f(U,) < Cl( ). Then p € U, = f~1(CI(V)) and
fHCV)) = Upef1civy) Up- This shows that f~1(CI(V)) € §PO(X) by Lemma 3.1.

Conversely, let V € SO(Y) and f(p) € V. Then p € f~1(V)and by (5), f~1(Cl(V)) €
O0PO(X).Let U = f~1(CI(V)), then

peftV)cU,  fU)=f(fH(CUV)))  CUV). (3.3)

This shows that f is (§-pre, s)-continuous.
(2)e(6): let V e SC(Y) be a noncontaining f(x). By (2), there exists a § -preclosed
set K in X noncontaining x such that f~!(Int(V)) = K. Hence, X \ K is a §-preopen
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set in X containing x, that is, x € X \ K € X \ f~}(Int(V)). Thus, X \ f!(Int(V)) =
Usex\f1(nt(v)) X \ K is a d-preopen set in X containing x by Lemma 3.1. Therefore,
f'(Int(V)) is a § -preclosed set in X noncontaining x.

Conversely, let V € SC(Y) and f(x) ¢ V. Then x ¢ f~1(V) and by (6), f (V) €
OPC(X). Take K = f~!(V). We obtain that K is a § -preclosed set in X noncontaining x
such that f~!(Int(V)) = f~14(V) =

(5)«(6): let V € SC(Y). Then Y \ V € SO(Y). By (5), f~HCI(Y \V)) =
f(Int(V)) € 8PO(X). We have f~!(Int(V)) € SPC(X).

The converse can be obtained similarly.

(6)«(7): let G be any open subset of Y. Since Int(CI(G)) is regular open, then it
is semiclosed in Y. By (6), it follows that f~!(Int(Int(CI(G)))) is & -preclosed, that is,
f1(Int(CI(G))) € PC(X).

Conversely, let V € SC(Y). Then Int(V) € RO(Y) and Int(V) is an open subset of Y.
Hence, by (7), f~1(Int(Cl(Int(V)))) is & -preclosed. Since Int(V) = Int(Cl(Int(V))), it
follows that f~!(Int(V)) € §PC(X).

(5)©(8): let F be any closed subset of Y. Since Cl(Int(F)) is regular closed, then
it is semiopen in Y. By (5), it follows that f~!(CI(Cl(Int(F)))) is d-preopen, that is,
fHCl(Int(F))) € §PO(X).

Conversely, let V € SO(Y). Then CI(V) € RC(Y) and CI(V) is a closed subset of Y.
Hence, by 8) f (Cl(Int(CI(V)))) is §-preopen. Since CI(V) = Cl(Int(Cl(V))), it fol-
lows that f~! V)) € §PO(X).

(7)=(8): this is obvious, by taking complement, respectively.

(3)(8): let F be any closed subset of Y. Since Cl(Int(F)) is regular closed subset of Y,
then by (3), it follows that f~!(Cl(Int(F))) € §PO(X).

Conversely, let V€ RC(Y). Then V is a closed subset of Y. By (8),

fH(Cl(Int(V))) € SPO(X). (3.4)

Since V = Cl(Int(V)), it follows that f~!(V) € §PO(X).

(4)«(7): see [7, Theoreml], (4) < (6).

(7)#(2):let x € X and F € SC(Y) be noncontaining f(x). Then Int(F) € RO(Y) and
Int(F) is an open subset of Y. By (7), it follows that

' (Int (Cl(Int(F)))) (3.5)

is a § -preclosed set in X noncontaining x. Since Int(Cl(Int(F))) = Int(F ), it follows that
f'(Int(F)) is a & -preclosed set in X noncontaining x. Let K = f~!(Int(F)). We obtain
that K is a & -preclosed set in X noncontaining x such that f ~!(Int(F)) < K.

Conversely, let x € X and let G be any open subset of Y noncontaining f(x). Since
Int(CI(G)) is regular open, then it is semiclosed in Y noncontaining f(x). By (2), there
exists a § -preclosed set K in X noncontaining x such that

7' (Int(Int (CK(G)))) K, (3.6)

that is, f~ (Int(Cl(G))) < K. Hence, X \ K is a §-preopen set in X containing x, that
is, x € X \K € X\ f~!(Int(CI(G))). Thus, X \ f~1(Int(CI(G))) = Usex\ f-1amucio) X \
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K is a -preopen set in X containing x by Lemma 3.1. Therefore, f~!(Int(Cl(G))) is a
0 -preclosed set in X noncontaining x.

(8)e(1):let x € X and V € SO(Y, f(x)). Then CI(V) € RC(Y) and clearly CI(V) is
a closed subset of Y. By (8), it follows that f~!(Cl(Int(CI(V)))) is a §-preopen set in X
containing x. Since CI(V)) = Cl(Int(CI(V))), it follows that f ~!(CI(V)) is a 6-preopen set
in X containing x. Let U = f~}(CI(V)), then f(U) < CI(V). This implies that f is (8-pre,
s)-continuous.

Conversely, let x € X and let F be a closed subset of Y containing f(x). Since
Cl(Int(F)) is regular closed, then it is semiopen in Y containing f(x). By (1), there exists
a 0-preopen set Uy in X containing x such that

£(Uy) < Cl(Cl(Int(F))) = Cl (Int(F)). (3.7)

Hence, x € U, = f~1(Cl(Int(F))) and f~!(Cl(Int(F))) = Uxef—l(cl(lnt(F))) U,. This shows
that f~!(Cl(Int(F))) € §PO(X) by Lemma 3.1. O

Remark 3.3. Ttis known in [7, Theorem 1] that (1), (3), (4), (7), and (8) are all equivalent.
Therefore, (1), (2), (5), and (6) are valuable in Theorem 3.2.

The following example shows that (§-pre, s)-continuous function does not imply al-
most contraprecontinuous function.

Example 3.4. Let X = {a,b,c}, let 0 = {X,,{a}}, and let 7 = {X,J, {a},{b,c}}. Then
the identity function f : (X,0) — (X,7) is (§ -pre, s)-continuous but not almost con-
traprecontinuous, since {b,c} is regular closed in (X,7) but f~!({b,c}) = {b,c} is not
preopen in (X,0), that is, {b,c} € Int(Cl({b,c})) = Int({b,c}) = @.

Recall that for a function f : X — Y, the subset {(x, f(x)) : x € X} € X X Y is called the
graph of f. The following theorems are obtained in [7] and proved by using [7, Theorem
1(3)]. We prove here by using different technique, that is, by using Theorem 3.2(5) in this

paper.

THEOREM 3.5. Let f : X — Y be a function and let g : X — X X Y be the graph function of
f, defined by g(x) = (x, f(x)) for every x € X. If g is (8-pre, s)-continuous, then f is (§-pre,
s)-continuous.

Proof. Let W € SO(Y), then X x W < X X Cl(Int(W)) = Cl(Int(X)) x Cl(Int(W)) =
Cl(Int(X x W)). Hence, X x W € SO(X X Y). Since g is (§-pre, s)-continuous, it follows
from Theorem 3.2(5) that

fH(Cl(W)) =g '(Cl(X x W)) € §PO(X). (3.8)
Thus, f is (6-pre, s)-continuous by Theorem 3.2. O

LEmMMA 3.6 (see [16]). Let A and X, be subsets of a space (X,7). If A € 6PO(X) and X, €
80(X), then An Xy € SPO(Xy).
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LEMMA 3.7 (see [16]). Let Ac Xy S X. If Xo € 60(X) and A € §PO(Xy), then A € §PO(X).

Tueorem 3.8. If f : X — Y is a (8-pre, s)-continuous function and A is any §-open subset
of X, then the restriction f|a: A — Y is (§-pre, s)-continuous.

Proof. Let G € SO(Y). Since f is (8-pre, s)-continuous, then f~!(CI(G)) € §PO(X)
by Theorem 3.2(5). Since A is §-open subset of X, it follows from Lemma 3.6 that
(f14)"HCI(G)) = An fYCI(G)) € SPO(A). Therefore, f|4 is a (§-pre, s)-continuous
function by Theorem 3.2. O

TaEOREM 3.9. Let f : X — Y be a function and let {Uy : « € A} be a §-open cover of X. If
foreach a € A, fluy, is (0-pre, s)-continuous, then f is a (§-pre, s)-continuous function.

Proof. Let V. €SO(Y). Since f |y, is (8-pre, s)-continuous for eacha € A, (f1y,) ' (CI(V))
€ 6PO(U,) by Theorem 3.2(5). Since U, € §0O(X), by Lemma 3.7, (f]y,) ' (Cl(V)) €
0PO(X) for each & € A. Then

£ = ULflu) " (CUv))] € 6POX) (3.9)
aEA
by Lemma 3.1. This gives that f is a (§-pre, s)-continuous function. O

TaEOREM 3.10. Let f : X — Y be a function. If there exists U € §O(X) and the restriction
of f to Uisa (8-pre, s)-continuous, then f is (8-pre, s)-continuous function.

Proof. Suppose thatx € X and F € SO(Y, f(x)). Since f|y is (§-pre, s)-continuous, there
exists a V € §PO(U,x) such that f(V) = (f|y)(V) < CI(F) because V < U. Since U €
00(X,x), it follows from Lemma 3.7 that V € §PO(X,x). Since x € X is arbitrary, this
shows that f is (§-pre, s)-continuous function. O

Definition 3.11. A function f : X — Y is said to be
(1) B-irresolute [11] if for each x € X and each V € SO(Y, f(x)), there exists U €
SO(X,x) such that f(Cl(U)) < CI(V),
(2) 8-preirresolute [7] if for each x € X and each V € §PO(Y, f(x)), there exists a
d-preopen set U in X containing x such that f(U) c V.

In [7, Theorem 10], Ekici has proved that composition of two functions with specific
condition would yield the (§-pre, s)-continuous function. For the composition of three
functions, we have the following results.

ProrosiTioN 3.12. Let f : X =Y, g:Y — Z, and h: Z — W be functions. Then the follow-
ing properties hold.
(1) If f and g are §-preirresolute, and h is (§ -pre, s)-continuous, thenhogo f: X - W
is (8-pre, s)-continuous.
(2) If f is (8-pre, s)-continuous, and g and h are 0-irresolute, then hogo f : X — W is
(8-pre, s)-continuous.
(3) If f is §-preirresolute, g is (8-pre, s)-continuous, and h is O-irresolute, then ho go f :
X — W is (8-pre, s)-continuous.
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Proof. (1) Let x € X and V € SO(W,(ho go f)(x)). Since h is (J-pre, s)-continuous,
there exists a §-preopen set G in Z containing (g o f)(x) such that h(G) < CI(V). Since g
is §-preirresolute, there exists a §-preopen set F in Y containing f(x) such that g(F) < G.
Since f is d-preirresolute, there exists a §-preopen set U in X containing x such that
f(U) < F. This shows that (hogo f)(U) < (hog)(F) < h(G) = CI(V). Therefore, hog o
f is (8-pre, s)-continuous.

(2) Letx € X and V € SO(W,(hogo f)(x)). Since h is O-irresolute, there exists G €
SO(Z,(g o f)(x)) such that h(CI(G)) < CI(V). Since g is O-irresolute, there exists F €
SO(Y, f(x)) such that g(CI(F)) = CI(G). Since f is (§-pre, s)-continuous, there exists a 6-
preopen set U in X containing x such that f(U) < CI(F). This shows that (hogo f)(U)
(hog)(CI(F)) € h(CI(G)) € CI(V). Therefore, ho g o f is (§-pre, s)-continuous.

(3) Letx € X and V € SO(W,(hogo f)(x)). Since h is O-irresolute, there exists G €
SO(Z,(g o f)(x)) such that h(Cl(G)) € CI(V). Since g is (d-pre, s)-continuous, there
exists a §-preopen set F in Y containing f(x) such that g(F) < CI(G). Since f is -
preirresolute, there exists a §-preopen set U in X containing x such that f(U) < F.
This shows that (hogo f)(U) < (hog)(F) € h(Cl(G)) < CI(V). Therefore, hogo f is
(6-pre, s)-continuous. O

Next, we obtained Corollaries 3.13 and 3.14 as general cases, obvious from [7, Theo-
rem 10] and Propositions 3.12(1) and 3.12(2), by repeating application of §-preirresolute
and O-irresolute functions, respectively.

CorOLLARY 3.13. If fi : X; — Xiy1, i=1,2,...,n, are §-preirresolute functions and g : X1 —
Y is (8-pre, s)-continuous, then go f,o---o fro fi: X) — Y is (8-pre, s)-continuous.

CoroLLARY 3.14. If f: X — Y, is (8-pre, s)-continuous and g;: Y; — Yin1, i = 1,2,...,m,
are 0-irresolute functions, then g, o - -~ ogyogio f : X — Y,y is (§-pre, s)-continuous.

Observe that, in Corollary 3.13, the (J-pre, s)-continuous function lies at the begin-
ning of the composition function, while in Corollary 3.14, the (8-pre, s)-continuous func-
tion lies at the end. How about, if the (§-pre, s)-continuous function lies inside of the
composition function? We have the following results.

ProprosiTioN 3.15. Let f: X - Y, ¢g: Y~ Z, h:Z— W, and p: W — V be functions.
Then the following properties hold.
(1) If f and g are §-preirresolute, h is (§-pre, s)-continuous, and p is O-irresolute, then
pohogo f:X — Vis(8-pre, s)-continuous.
(2) If f is 6-preirresolute, g is (8-pre, s)-continuous, and h and p are O-irresolute, then
pohogo f:X — Vis(§-pre, s)-continuous.

Proof. (1) Letx € Xand G € SO(V,(pohogo f)(x)). Since p is O-irresolute, there exists
F € SO(W,(hogo f)(x)) such that p(CI(F)) < CI(G). Since h is (§-pre, s)-continuous,
there exists a §-preopen set N in Z containing (g o f)(x) such that h(N) < CI(F). Since g
is §-preirresolute, there exists a §-preopen set M in Y containing f(x) such that g(M) <
N. Since f is §-preirresolute, there exists a §-preopen set U in X containing x such that
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f(U) € M. This shows that (pohogo f)(U) < (pohog)(M) < (poh)(N) < p(CI(F)) <
CI(G). Therefore, pohogo f is (§-pre, s)-continuous.

(2) Let x€ X and G € SO(V,(pohogo f)(x)). Since p is O-irresolute, there exists
F € SO(W,(hogo f)(x)) such that p(CI(F)) < CI(G). Since h is O-irresolute, there ex-
ists N € SO(Z,(g o f)(x)) such that h(CI(N)) < CI(F). Since g is (§-pre, s)-continuous,
there exists a §-preopen set M in Y containing f(x) such that g(M) < CI(N). Since f
is §-preirresolute, there exists a §-preopen set U in X containing x such that f(U) € M.
This shows that (pehogo f)(U) = (pohog)(M) < (poh)(CI(N)) < p(CI(F)) = CI(G).
Therefore, pohogo f is (§-pre, s)-continuous. O

Clearly, from Propositions 3.12(3) and 3.15, we obtain the following corollary.

CoroOLLARY 3.16. Iffori=1,2,...,n, fi: X;j — X1 are §-preirresolute functions, g : Xiy1 —
Yy is (8-pre, s)-continuous, and h;: Y; — Y;y1, j = 1,2,...,m, are O-irresolute functions,
then hy,o---ohjogo fyo---o fi: Xy = Yy is (8-pre, s)-continuous.

Definition 3.17. A function f : X — Y is called &-preopen [7] if the image of each §-
preopen set is §-preopen.

In [7, Theorem 11], Ekici has also proved that, given a composition of two functions
with specific conditions where the (§-pre, s)-continuous function would be yield, the
first function in the composition is (§-pre, s)-continuous. For the composition of three
functions, we give the following proposition.

ProrosiTioN 3.18. If f: X — Y and g:Y — Z are surjective §-preopen functions and
h:Z — W is a function such that hogo f:X — W is (§-pre, s)-continuous, then h is
(8-pre, s)-continuous.

Proof. Suppose that x, y, and z are three points in X, Y, and Z, respectively, such that
f(x) =y and g(y) = z. Let V. € SO(W,(hogo f)(x)). Since hogo f is (§-pre, s)-
continuous, there exists a §-preopen set U in X containing x such that (hogo f)(U) €
CI(V). Since f is -preopen, f(U) is a §-preopen set in Y containing y such that (h o
g)(f(U)) € CI(V). Since g is also §-preopen, g(f(U)) is a §-preopen set in Z containing
z such that h(g(f(U))) € CI(V). This implies that k is (8-pre, s)-continuous. O

As in [7, Corollary 1], we obtained the following corollary.

CoroLLARY 3.19. Let f : X — Y and g: Y — Z be surjective, 5-preirresolute, and §-preopen
functions and let h: Z — W be a function. Then, hogo f: X — W is (§-pre, s)-continuous
if and only if h is (§-pre, s)-continuous.

Proof. It can be obtained from Propositions 3.12(1) and 3.18. O

The following corollaries are considered as general cases obtained from the above dis-
cussions.
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CoroLLARY 3.20. If fi: X; — Xy, i = 1,2,...,n, are surjective 6-preopen functions and
g Xy — Y is a function such that go fyo---0 fr0 fi : Xy — Y is (8-pre, s)-continuous,
then g is (8-pre, s)-continuous.

The proof of Corollary 3.20 is obvious from [7, Theorem 11] and Proposition 3.18.

CororrLAry 3.21. Let fi: X; — Xiv1, i = 1,2,...,n be surjective, §-preirresolute, and J-
preopen functions and let g : X,.1 — Y be a function. Then go fyo---0 fro fi: X; =Y
is (8-pre, s)-continuous if and only if g is (§-pre, s)-continuous.

The proof of Corollary 3.21 can be obtained from Corollaries 3.13 and 3.20.
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