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The lowering operator σ associated with a polynomial set {Pn}n≥0 is an operator not de-
pending on n and satisfying the relation σPn = nPn−1. In this paper, we express explicitly
the linearization coefficients for polynomial sets of Sheffer type using the corresponding
lowering operators. We obtain some well-known results as particular cases.
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1. Introduction

Let � be the linear space of polynomials with complex coefficients. A polynomial se-
quence {Pn}n≥0 in � is called a polynomial set if and only if degPn = n for all nonnegative
integers n. Given two polynomial sets {Sn}n≥0 and {Pn}n≥0, the so-called connection prob-
lem between them asks to find the coefficients Cm(n) in the expression:

Sn(x)=
n∑

m=0

Cm(n)Pm(x), (1.1)

which for Sn(x) = xn is known as the inversion problem for the polynomial set {Pn}n≥0.
When Si+ j(x)=Qi(x)Rj(x) in (1.1), {Qn}n and {Rn}n being two polynomial sets, we are
faced to the general linearization problem

Qi(x)Rj(x)=
i+ j∑

k=0

Li j(k)Pk(x). (1.2)

Particular case of this problem is the standard linearization or Clebsch-Gordan-type prob-
lem

Pi(x)Pj(x)=
i+ j∑

k=0

Li j(k)Pk(x). (1.3)

The computation of the connection and linearization coefficients plays an important role
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in many situations of pure and applied mathematics and also in physical and quantum
chemical applications [32, 33]. In particular, the study of positivity conditions of Li j(k)
has received special attention. This property has many important consequences. It gives
rise to a convolution structure associated with the polynomial set {Pn}n≥0 [8, 9, 19, 36].
Several sufficient conditions for the sign properties to hold have been derived in [6, 7, 37,
38]. The literature on this topic is extremely vast and a wide variety of methods, based
on specific properties of the involved polynomials, have been devised for computing the
linearization coefficients Li j(k) either in closed form or by means of recursive relations
(usually in k) [10, 26, 27], exploiting for this purpose several of their specific properties:
recurrence relation [24], generating function [3, 7, 15, 16, 22], orthogonality weights
and Rodrigue’s formula [1, 5], inversion formulas [4, 29], and so forth. A combinatorial
approach to solve the linearization problems was also given in [21, 28, 39].

A general method, based on lowering operators, was developed by the authors [13, 14]
to solve connection problems. The purpose of this work is to show that such a technique
can likewise be used to treat linearization problems.

The outline of the paper is as follows. In Section 2, we give a result for a general lin-
earization problem. Then we prove a useful lemma, generalizing the Leibniz formula,
to express explicitly the standard linearization coefficients for Sheffer polynomial sets
(Theorem 2.6). In Section 3, for practical uses of the main result, we give the standard
linearization coefficients for some well-known basic Sheffer polynomial sets. Finally, in
Section 4, we apply Theorem 2.6 to orthogonal Sheffer polynomial sets.

2. Linearization coefficients

2.1. A general result. Denote by Λ(−1) the space of operators σ acting on analytic func-
tions that reduce the degree of every polynomial by exactly one and σ(1)= 0.

It was shown, by the first author, that every polynomial set is quasi-monomial [12].
That is to say, there exist a lowering operator σ and a raising operator τ, independent of
n, such that

σ
(
Pn
)= nPn−1, τ

(
Pn
)= Pn+1, n= 1,2, . . . . (2.1)

Definition 2.1. Let σ ∈ Λ(−1) and let {Pn}n≥0 be a polynomial set. {Pn}n≥0 is called a σ-
Appell polynomial set if and only if

σ
(
Pn
)= nPn−1, n= 1,2, . . . . (2.2)

Definition 2.2. Let σ ∈ Λ(−1). A polynomial set {Bn}n≥0 is called the sequence of basic
polynomials for σ if and only if

(i) {Bn}n≥0 is a σ-Appell polynomial set;
(ii) Bn(0)= δ0,n, n= 0,1, . . . .

In [11], it was shown that every σ ∈Λ(−1) has a unique sequence of basic polynomials.
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Theorem 2.3 [11]. Let {Pn}n≥0 be a polynomial set. Then there exist a unique σ ∈ Λ(−1)

and a unique power series A(t) =∑∞
k=0 ant

n, a0 �= 0, such that {Pn}n≥0 is a σ-Appell poly-
nomial set and

A(σ)
(
Bn
)= Pn, n= 0,1, . . . , (2.3)

where {Bn}n≥0 is the sequence of basic polynomials for σ .
Call {Pn}n≥0 a σ-Appell polynomial set of transfer power series A.

A σ-Appell polynomial set of transfer power series A is generated by

G(x, t)= A(t)G0(x, t)=
∞∑

n=0

Pn(x)
n!

tn, (2.4)

where G0(x, t) is a solution of the system

σG0(x, t)= tG0(x, t), G0(x,0)= 1, (2.5)

and conversely.
Let �′ be the algebraic dual of �. We denote by 〈�, f 〉 the effect of the functional

� ∈ �′ on the polynomial f ∈ �. Let {Pn}n≥0 be a polynomial set. Its dual sequence
{Pn}n≥0 is defined by

〈
Pn,Pm

〉= δn,m, n,m≥ 0. (2.6)

When {Pn}n≥0 is a σ-Appell polynomial set of transfer power series A, an explicit expres-
sion of its dual sequence was given in [11] by

〈
Pn, f

〉= 1
n!
σnÂ(σ)( f )(x)

∣∣∣∣
x=0

, n= 0,1, . . . , f ∈�, (2.7)

where Â(t)= 1/A(t).
Combining (1.2), (2.6), and (2.7), we state the following general result.

Theorem 2.4. Let σ ∈ Λ(−1) and {Pn}n≥0 be a σ-Appell polynomial set of transfer power
series A. Then the general linearization coefficients in (1.2) are given by

Li j(k)= 1
k!
σkÂ(σ)

(
QiRj

)
(0), i, j = 0,1, . . . , k = 0,1, . . . , i+ j. (2.8)

Next, in this paper, we limit ourselves to standard case for Sheffer polynomial sets case.

2.2. Sheffer polynomials. Recall that a polynomial set {Pn}n≥0 is said to be of Sheffer
typeA-zero (Sheffer polynomial set, for shorter,) if and only if it has a generating function
of the form [25, 30]

A(t)exp(xC(t))=
∞∑

n=0

Pn(x)
n!

tn, (2.9)
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where A and C are two formal power series:

A(t)=
∞∑

k=0

akt
k, a0 �= 0, C(t)=

∞∑

k=0

ckt
k+1, c0 �= 0. (2.10)

It was shown in [12] that a Sheffer polynomial set generated by (2.9) is σ-Appell polyno-
mial set of transfer power series A, where σ = C∗(D), D = d/dx, and C∗ is the inverse of
C; that is, C∗(C(t))= C(C∗(t))= t.

If C(t)= t, we have σ =D. That corresponds to Appell polynomial sets [2].
In order to apply (2.8) to Sheffer polynomial sets we need the following.

Lemma 2.5 (generalized Leibniz formula). Let σ ∈ Λ(−1) and let {Bn}n≥0 be the sequence
of basic polynomials for σ . Suppose that σ commutates with the derivative operator D. Let f
and g be two formal power series. Then,

σn
(
f (z)g(z)

)=
∞∑

m=n

m∑

k=0

ck,m(n)σk f (z)σm−kg(z), (2.11)

where

ck,m(n)= 1
k!(m− k)!

σn(BkBm−k)
∣∣∣∣
x=0

. (2.12)

Proof. Let z0 ∈ C. Let us define the translation operators Tz0 by Tz0 f (z) = ez0D f (z) =
f (z+ z0). Since σ commutates with Tz0 , f and g have the formal power expansions:

f (z)= Tz0 f (z− z0)=
∞∑

m=0

σm f (z0)
m!

Bm(z− z0), g(z)=
∞∑

m=0

σmg(z0)
m!

Bm(z− z0),

(2.13)

by virtue of (2.7). So

σn
(
f (z)g(z)

)=
∞∑

m=n

m∑

k=0

σk f (z0)
k!

σm−kg(z0)
(m− k)!

σn
(
Bk(z− z0)Bm−k(z− z0)

)
, (2.14)

since σn(Bk(z− z0)Bm−k(z− z0))= 0 if m< n. Put z = z0 in (2.14), we deduce (2.11) since
z0 is arbitrary. �

For the particular case σ = D, the corresponding basic sequence is Bn(x) = xn. Then
the coefficients in (2.12) are given by

ck,m(n)= 1
k!(m− k)!

Dn(xm)
∣∣∣∣
x=0

= n!
k!(m− k)!

δn,m, (2.15)

and (2.11) is reduced to the well-known Leibniz formula

Dn
(
f (z)g(z)

)=
n∑

k=0

(
n

k

)
Dk f (z)Dn−kg(z). (2.16)
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As every Sheffer polynomial set generated by (2.9) may be viewed as a σ-Appell polyno-
mial set of transfer power series A where σ = C∗(D), we use this property to state our
following main result.

Theorem 2.6. The linearization coefficients in (1.3) with {Pn}n≥0 a Sheffer polynomial set
generated by (2.9) are given by

Li j(k)=
∑

m≥k

m∑

p=0

(
i

p

)(
j

m− p

)
lp,m−p(k)Â

(
C∗(D)

)(
Pi−pPj−m+p(x)

)∣∣∣∣
x=0

, (2.17)

where lnm(k) are the standard linearization coefficients for the corresponding basic sequence
generated by

1
k!
C∗k

(
C(t) +C(s)

)=
∑

n,m

lnm(k)
n!m!

tnsm. (2.18)

Proof. {Pn}n≥0 is a σ-Appell polynomial set of transfer power series A, where σ = C∗(D).
Then by virtue of Theorem 2.4 and (2.11) we derive (2.17).

The basic sequence {Bn}n≥0 is a σ-Appell polynomial set of transfer power series 1. So
according to (2.8) and (2.16), we have

li j(k)= 1
k!
σk(BiBj)

∣∣∣∣
x=0

= 1
k!
C∗k(D)(BiBj)

∣∣∣∣
x=0

= 1
k!

∑

n≥k
αn,kD

k(BiBj)
∣∣∣∣
x=0

, where C∗k(t)=
∑

n≥k
αn,kt

n,

= 1
k!

∑

n≥k
αn,k

( n∑

p=0

(
n

p

)
DpBiD

k−pBj

)∣∣∣∣
x=0

= 1
k!

∑

n≥k
αn,k

( n∑

p=0

(
n

p

)
C(σ)pBiC(σ)k−pBj

)∣∣∣∣
x=0

= 1
k!

∑

n≥k
αn,k

(
C(σ)(Bi) +C(σ)(Bj)

)n
∣∣∣∣
x=0

= 1
k!
C∗k

(
C(σ(Bi)

)
+C(σ(Bj)

)∣∣∣∣
x=0

.

(2.19)

Put (1/k!)C∗k(C(t) +C(s))=∑n,man,m(k)tnsm. It follows from (2.19) and Definition 2.2
that

li, j(k)= 1
k!

∑

n,m

an,m(k)σn(Bi)σm(Bj)
∣∣∣∣
x=0

= 1
k!

∑

n,m

an,m(k)
i!

(i−n)!
Bi−n(0)

j!
( j−m)!

Bj−m(0)
∣∣∣∣
x=0

= i! j!ai, j(k),

(2.20)

which gives (2.18). �
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Remark 2.7. A similar proof may be used to express general linearization coefficients in
(1.2) where the involved three polynomial sets are of Sheffer type.

Next, in Section 3, we use (2.18) to express explicitly the standard linearization coeffi-
cients for some well-known basic Sheffer polynomial sets. Then, in Section 4, in order to
show the efficiency of the proposed approach, we apply Theorem 2.6 to orthogonal Shef-
fer polynomial sets to derive some already obtained results in the literature by alternative
methods.

3. Linearization coefficients for basic polynomials

3.1. Stirling polynomials. The Stirling polynomial set {x[n]=x(x− 1)···(x−n+ 1)}n≥0

is generated by

(1 + t)x =
∞∑

n=0

x[n]

n!
tn. (3.1)

For this case we have C(t)= Log(1 + t) and C∗(t)= et − 1.
It follows that {x[n]}n≥0 is a Δ-Appell polynomial set, where Δ= eD − 1 is the difference

operator, and

1
k!
C∗k

(
C(t) +C(s)

)= 1
k!

(t+ s+ st)k =
∑

n,m

tm+k−nsk−m

(k−n)!(n−m)!m!

=
∑

i, j

tis j

(k− j)!(k− i)!(i+ j− k)!
.

(3.2)

Then

x[i]x[ j] =
min(i, j)∑

k=0

k!

(
i

k

)(
j

k

)
x[i+ j−k]. (3.3)

According to (3.3), the following relations can be derived

(
x

n

)(
x

m

)
=

min(n,m)∑

k=0

(n+m− k)!
(n− k)!(m− k)!k!

(
x

n+m− k

)
,

(x)n(x)m =
min(n,m)∑

k=0

(−1)kk!

(
n

k

)(
m

k

)
(x)n+m−k,

(3.4)

where (x)n = x(x+ 1)···(x+n− 1).
Also, from (3.3), one can see that (2.11) contains as a particular case the well-known

Jordan formula [20]

Δn( f g)(z)=
n∑

k=0

(
n

k

)
Δk f (z)Δn−kg(z+ k). (3.5)
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In fact, for the special case σ = Δ, the corresponding basic sequence is Bn(x)= x[n]. Then
(2.12) is reduced to

ck,m(n)= n!
k!(m− k)!

lk,m−k(n)= n!
(n− k)!(n−m)!(m+ k−n)!

. (3.6)

It follows from (2.11) and (3.6) that

Δn
(
f (z)g(z)

)=
∞∑

m=0

m∑

k=0

ck,mΔ
k f (z)Δm−kg(z)=

∞∑

k=0

n!
k!
Δk f (z)

( ∞∑

m=0

lk,m(n)
m!

Δmg(z)

)

=
∞∑

k=0

Δk f (z)

( ∞∑

m=0

n!
(n− k)!(n−m)!(m+ k−n)!

Δmg(z)

)

=
∞∑

k=0

(
n

k

)
Δk f (z)Δn−k

( ∞∑

p=0

(
k

p

)
Δpg(z)

)
,

(3.7)

which, in view of the expansion formula [20]

g(z+ a)=
∞∑

p=0

(
a

p

)
Δpg(z), (3.8)

gives (3.5).

3.2. Basic Laguerre polynomials. The basic Laguerre polynomials {Ln(x)}n≥0 are gen-
erated by

ex(t/(t−1)) =
∞∑

n=0

Ln(x)tn. (3.9)

Then C(t)= C∗(t)= t/(t− 1). It follows that {n!Ln(x)}n≥0 is a σ-Appell polynomial set,
where σ =D/(D− 1) is the Laguerre operator.

For this case we have

1
k!
C∗k

(
C(t) +C(s)

)= 1
k!

(
t+ s− 2st

1− st

)k

=
∑

i, j

∑

n≥0

(k)n(−2)i+ j−k−2n

(n+ k− j)!(n+ k− i)!(i+ j− k− 2n)!
tis j .

(3.10)

Then

li j(k)=
∑

n≥0

(k)nk!(−2)i+ j−k−2n

n!(n+ k− i)!(n+ k− j)!(i+ j− k− 2n)!

= (−2)i+ j−kk!
(i+ j− k)!(k− i)!(k− j)! 3F2

⎛
⎜⎝
k,
k− i− j

2
,
k− i− j + 1

2
k− i+ 1,k− j + 1

;1

⎞
⎟⎠ .

(3.11)
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3.3. Basic Meixner polynomials. The basic Meixner polynomial set {Pn(x)}n≥0 is gener-
ated by

ex ln((1−t/a)/(1−t)) =
∞∑

n=0

Pn(x)
n!

tn. (3.12)

For this case we have

C(t)= ln
(

1− t/a

1− t

)
, C∗(t)= et − 1

et − 1/a
. (3.13)

It follows that {Pn(x)}n≥0 is a σ-Appell polynomial set, where σ = (eD − 1)/(eD − 1/a),
and

1
k!
C∗k

(
C(t) +C(s)

)= 1
k!

(
t+ s− (1 + 1/a)st

1− st/a

)k

=
∑

i, j

∑

n≥0

(k)n(−1− 1/a)i+ j+k−2n

n!an(n+ k− j)!(n+ k− i)!(i+ j− k− 2n)!
tis j .

(3.14)

Then

li j(k)=
∑

n≥0

(k)ni! j!(−1− 1/a)i+ j−k−2n

n!an(n+ k− i)!(n+ k− j)!(i+ j− k− 2n)!

= i! j!(−1− 1/a)i+ j−k

(i+ j− k)!(k− i)!(k− j)! 3F2

⎛
⎜⎝
k,
k− i− j

2
,
k− i− j + 1

2
k− i+ 1,k− j + 1

;
4a

(a+ 1)2

⎞
⎟⎠ .

(3.15)

3.4. Basic Meixner-Pollaczek polynomials. The basic Meixner-Pollaczek polynomial set
{Pn(x)}n≥0 is generated by

ex arctan(t/(1+δt)) =
∞∑

n=0

Pn(x)
n!

tn. (3.16)

For this case we have

C(t)= arctan
t

1 + δt
, C∗(t)= tan t

1− δ tan t
. (3.17)

It follows that {Pn(x)}n≥0 is a σ-Appell polynomial set, where σ = tanD/(1− δ tanD) and

1
k!
C∗k

(
C(t) +C(s)

)= 1
k!

(
t+ s+ 2δst

1− (1 + δ2)st

)k

=
∑

i, j

∑

n≥0

(k)n(1 + δ2)n(2δ)i+ j−k−2n

n!(n+ k− j)!(n+ k− i)!(i+ j− k− 2n)!
tis j .

(3.18)
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Then

li j(k)=
∑

n≥0

(k)n(1 + δ2)ni! j!(2δ)i+ j−k−2n

n!(n+ k− i)!(n+ k− j)!(i+ j− k− 2n)!

= i! j!(2δ)i+ j−k

(i+ j− k)!(k− i)!(k− j)! 3F2

⎛
⎜⎝
k,
k− i− j

2
,
k− i− j + 1

2
k− i+ 1,k− j + 1

;
1 + δ2

δ2

⎞
⎟⎠ .

(3.19)

4. Orthogonal Sheffer polynomials

Let {Pn}n≥0 be an orthogonal σ-Appell polynomial set of transfer power series A. The
linear functional � for which the orthogonality holds is given by [34]

〈�, f 〉 = Â(σ)( f )(0). (4.1)

We use this relation and Theorem 2.6 to state the following.

Corollary 4.1. The linearization coefficients in (1.3) for {Pn}n≥0 an orthogonal σ-Appell
polynomial set of transfer power series A of Sheffer type are given by

Li j(k)=
∑

2s≤i+ j−k

(
i

s

)(
j

s

)
li−s, j−s(k)Is, (4.2)

where Is = 〈�,PsPs〉 = Â(σ)(P2
s )(x)|x=0 and li j are the standard linearization coefficients

for the corresponding basic sequence.

An immediate consequence of this result is the following.

Corollary 4.2. A sufficient condition to ensure the positivity of the standard linearization
coefficients for an orthogonal Sheffer polynomial set is the positivity of those associated with
the corresponding basic sequence.

It follows, from the results obtained in Section 3, that the standard linearization co-
efficients for Hermite, Charlier, monic Laguerre polynomials {(−1)nn!Lαn(x)}n≥0, and
Meixner-Pollaczek polynomials are positive.

Let us return now to Corollary 4.1 to mention that this result concerns exactly five
classes of Sheffer polynomials according to Meixner characterization [17]. In Table 4.1,
we recall these classes with the corresponding lowering operators and transfer power se-
ries according to our analysis.

Next, for each case, we use (4.2) to express explicitly the corresponding standard lin-
earization coefficients in terms of hypergeometric series.

4.1. Hermite polynomials. The Hermite polynomials {Hn}n≥0 are generated by

e−t
2
e2xt =

∞∑

n=0

Hn(x)
n!

tn. (4.3)
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Table 4.1. Orthogonal Sheffer polynomial sets.

Polynomial set Lowering operator Transfer power series

Hermite
σ = D

2
A(t)= e−t2

Hn(x)

Charlier
σ = Δ= eD − 1 A(t)= e−at

Ca
n(x), a > 0

Laguerre
σ = D

D− 1
A(t)= (1− t)−α−1

Lαn(x), α >−1

Meixner
σ = Δ

(a− 1)/a+Δ
A(t)= (1− t)−βMn(x,β,a),

β > 0, 0 < a < 1

Meixner-Pollaczek

σ = tanD
1− δ tanD

A(t)= [(1 + δt)2 + t2]−η/2Pn(x;δ,η)

δ > 0, η > 0

Then σ =D/2 and A(t)= e−t2
. Since the corresponding basic sequence is {(2x)n}n≥0, we

get li j(k)= δi+ j,k. The linear functional for which the orthogonality holds is [34]

Â(σ)( f )(0)= exp(σ2)( f )(0)= 1√
π

∫ +∞

−∞
e−x

2
f (x)dx. (4.4)

Then we have [17] Is = s!2s. According to (4.2), we deduce [18]

Li j(k)=

⎧
⎪⎪⎨
⎪⎪⎩

(
i

s

)(
j

s

)
2ss! if k = i+ j− 2s,

0 otherwise.
(4.5)

4.2. Charlier polynomials. The Charlier polynomials{Ca
n}n≥0 are generated by

e−at(1 + t)x =
∞∑

n=0

Ca
n(x)
n!

tn. (4.6)

Then σ = Δ and A(t)= e−at. Since the corresponding basic sequence is the Stirling poly-

nomial set {x[n]}n≥0, we have li j(k)= k!
(

i
i+ j−k

)(
j

i+ j−k
)

by virtue of (3.3). The linear func-
tional for which the orthogonality holds is [34]

Â(σ)( f )(0)= exp(aΔ)( f )(0)= e−a
∞∑

j=0

aj

j!
f ( j). (4.7)
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Then we have [17] Is = ass!. According to (4.2), we obtain [39]

Li j(k)=
∑

s≥0

i! j!as

(s+ k− i)!(s+ k− j)!(s)!(i+ j− k− 2s)!

= i! j!
(i+ j− k)!(k− i)!(k− j)! 2F2

⎛
⎜⎝

k− i− j

2
,
k− i− j + 1

2

k− i+ 1,k− j + 1
;4a

⎞
⎟⎠ .

(4.8)

4.3. Laguerre polynomials. The Laguerre polynomials {Lαn}n≥0 are generated by [17]

(1− t)−α−1 exp
(
x

t

t− 1

)
=

∞∑

n=0

Lαn(x)tn. (4.9)

Then the lowering and transfer operators for {n!Lαn}n≥0 are, respectively, σ = D/(D− 1)
and A(σ)= (1− σ)−α−1. The linear functional for which the orthogonality holds is [34]

Â(σ)( f )(0)= (1− σ
)α+1

( f )(0)= 1
Γ(α+ 1)

∫ +∞

0
f (x)xαe−xdx, α >−1. (4.10)

For this case we have [17, 23] Is = s!(α+ 1)s.
According to (3.11) and (4.2), we deduce the linearization coefficients for {Lαn}n≥0,

Li j(k)=
(− 2

)i+ j−k

k!

∑

n,s

2−2(n+s)
(
k
)
n

(
α+ 1

)
s

n!s!
(
(n+ s) + k− i

)
!
(
(n+ s) + k− j)!(i+ j− k− 2(n+ s)

)
!
,

(4.11)

which, in view of the well-known relationship [31, 35]:

∑

n,m

(ρ)n(σ)mcn+m

m!n!
xn+m =

∑

n

(ρ+ σ)ncn
n!

xn, {cn} being a sequence of complex numbers,

(4.12)

assumes the form [28]

Li j(k)= (−2)i+ j−k

k!

∑

p≥0

(α+ 1 + k)p2−2p

p!(p+ k− i)!(p+ k− j)!(i+ j− k− 2p)!

= (−2)i+ j−k

k!(i+ j− k)!(k− i)!(k− j)! 3F2

⎛
⎜⎝
k+α+ 1,

k− i− j

2
,
k− i− j + 1

2
k− i+ 1,k− j + 1

;1

⎞
⎟⎠ .

(4.13)

4.4. Meixner polynomials. The Meixner polynomial set {Mn(x;β,a)}n≥0 is generated by
[17]

(1− t)−β
(

1− t/a

1− t

)x
=

∞∑

n=0

Mn(x;β,a)
tn

n!
. (4.14)
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It follows that σ = (eD − 1)/(eD − 1/a) and A(t) = (1− t)−β. The linear functional for
which the orthogonality holds is [34]

Â(σ)( f )(0)= (1− σ
)β

( f )(0)= (1− a
)β ∞∑

j=0

(β) j
j!

aj f ( j). (4.15)

For this case we have [18] Is = s!(β)sa−s. According to (3.15), (4.2), and (4.12) we obtain
[9]

Li j(k)=i! j!
(
− 1− 1

a

)i+ j−k ∑

p≥0

(
β+ k

)
p

(
1 + a

)−2p
ap

p!(p+ k− i)!(p+ k− j)!(i+ j− k− 2p)!

=
i! j!
(
− 1− 1/a

)i+ j−k

(i+ j− k)!(k− i)!(k− j)! 3F2

⎛
⎜⎝
k+β,

k− i− j

2
,
k− i− j + 1

2
k− i+ 1,k− j + 1

;
4a

(a+ 1)2

⎞
⎟⎠ .

(4.16)

So, the linearization coefficients alternate in sign just as in the Laguerre polynomial set
case.

4.5. Meixner-Pollaczek polynomials. The Meixner-Pollaczek polynomials are generated
by [17]

[(
1 + δt

)2
+ t2

]−η/2
exarctan(t/(1+δt)) =

∞∑

n=0

Pn(x,δ,η)
n!

tn. (4.17)

Then we have

σ = tanD
1− δ tanD

, A(t)= ((1 + δt
)2

+ t2)−η/2. (4.18)

To obtain the effect of the linear functional Â(σ) on analytic functions, we need the fol-
lowing relation [39]:

1
πΓ(ρ)

∫ +∞

−∞
e−(π−2t)x

∣∣∣∣∣Γ
(
ρ+ ix

2

)∣∣∣∣∣

2

dx = (2sin t
)−ρ

, ρ > 0. (4.19)

It follows from (4.18) that

Â
(
σ( f )

)=(cosD− δ sinD)−η( f )=
(

sin
(
π/2 +D+ arctanδ

)

sin
(
π/2 + arctanδ

)
)−η

( f )

=
∫ +∞
−∞ f (x)ω(x)dx
∫ +∞
−∞ ω(x)dx

,

(4.20)
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where ω(x) = [Γ(η/2)]−2|Γ(η + ix/2)|2 exp(−x tan−1 δ). So we have [17, 23] Is = (δ2 +
1)ss!(η)s. According to (3.19), (4.2), and (4.12), we obtain [39]

Li j(k)=i! j!(2δ)i+ j−k ∑

p≥0

(
η+ k

)
p

(
2δ
)−2p(

1 + δ2
)p

p!(p+ k− i)!(p+ k− j)!(i+ j− k− 2p)!

= i! j!
(
2δ
)i+ j−k

(i+ j− k)!(k− i)!(k− j)! 3F2

⎛
⎜⎝
k+η,

k− i− j

2
,
k− i− j + 1

2

k− i+ 1,k− j + 1
;
1 + δ2

δ2

⎞
⎟⎠ .

(4.21)

Taking δ �→ 0 and η = 2λ in (4.21) and using the well-known relation [35], namely,

(−2k+ 1
2

)

k
= (− 1

)k (2k)!
22kk!

, k = 0,1,2, . . . , (4.22)

we obtain [3]

p(λ)
i (x)p(λ)

j (x)=
min(i, j)∑

k=0

Γ(i+ j− 2k+ 2λ+ 1)(i+ j− 2k)!
k!(i− k)!( j− k)!

p(λ)
i+ j−2k(x), (4.23)

where p(λ)
n (x) = (1/n!)Pn(x;0,2λ) designates the symmetric Meixner-Pollaczek polyno-

mials.
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d’Ingénieur de Monastir, 5019 Monastir, Tunisia
E-mail address: hamza.chaggara@ipeim.rnu.tn

mailto:youssef.bencheikh@planet.tn
mailto:hamza.chaggara@ipeim.rnu.tn

	1. Introduction
	2. Linearization coefficients
	2.1. A general result
	2.2. Sheffer polynomials

	3. Linearization coefficients for basic polynomials
	3.1. Stirling polynomials
	3.2. Basic Laguerre polynomials
	3.3. Basic Meixner polynomials
	3.4. Basic Meixner-Pollaczek polynomials

	4. Orthogonal Sheffer polynomials
	4.1. Hermite polynomials
	4.2. Charlier polynomials
	4.3. Laguerre polynomials
	4.4. Meixner polynomials
	4.5. Meixner-Pollaczek polynomials

	References

