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We extend the LP-boundedness of a class of singular integral operators under the H!
kernel condition on a compact manifold from the homogeneous Sobolev space LE(R™)
to the Lebesgue space LP(R").
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1. Introduction

Let $"7! be the unit sphere in R”, n > 2, with the normalized Lebesgue measure do =
do(x"). Let Q(x") be a homogeneous function of degree 0, with Q € L!(S""!) and

SilQ(x')do(x') =0, (1.1)

where x’ = x/|x| for any x # 0.
Suppose that /1 is an L® (R*) function; the singular integral operator Sl 4, is defined by

Q(y')
[yl

Slas () = b [ h(y) T2 - y)dy (12)

for all test functions f, where y’ = y/|y| € $"~ 1.

We denote SIg,(f) by SIq(f) if h = 1. The operator Sl was first studied by Calderén
and Zygmund in their well-known papers (see [1, 2]). They proved that Sl is LP(R")
bounded, 1 < p < o, provided that Q € LLog"L(S""!) satisfying (1.1). They also
showed that the space LLog" L(S"~!) cannot be replaced by any Orlicz space L$(S""!)
with a monotonically increasing function ¢ satistying ¢(t) = o(tlogt), t — oo, that is,
L(Log" L)' ~¢(S"1), 0 < & < 1. The idea of their proof was as follows.

Suppose that Q € L'(S"~!) is an odd function, then one can easily show that

Sla(f)(x) = % o Q(y'){fl flx— ty')tfldt}da(y’). (1.3)
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2 Singular integrals along manifolds

By the method of rotation and the well-known L?-boundedness of the Hilbert trans-
form, one then obtains the L’-boundedness of Sl under the weak condition Q €L!(S" ).

For even kernels, the condition Q € L'($"7!) is insufficient. It turns out that the right
condition is Q € LLog"L(S""!) (as far as the size of Q is concerned). The idea of
Calderén and Zygmund is to compose the operator Slo with the Riesz transforms R;,
1 < j < n, and to show that R;(SIq) is a singular integral operator with an appropriate
odd kernel. Thus

||Rj(SIQ)(f)Hp5Cp||f||p (1.4)

for all test functions f € &. Furthermore, one can obtain

(i R?) SIa(f)

j=1

IS1a(All, =‘ = 2 |IR; (R;SLa (/)]
j=1

P (1.5)

<nC [IR;Sla(f)|l, = n*CC, I fll,
j=1

for all test functions f € &, since —Z;'le? is the identity map. Using the above
method, Connett [7] and Ricci and Weiss [15] independently obtained the same LP-
boundedness of Sl under the weak condition Q € H'(8"!), where H'(S""!) is the
Hardy space which contains LLog" L(S"~!) as a proper subspace.

In [12], Fefferman generalized this Calder6n-Zygmund singular integral by replacing
the kernel Q(x")|x|~" by h(|x])Q(x")|x]~", where h is an arbitrary L* function. This al-
lows the kernel to be rough not only on the sphere but also in the radial direction. For the
singular integral operator Slq ; with the kernel K(x) = h(|x])(Q(x")/(Ix]")), the formula
(1.3) now is

STon(f)(x) = Q(y')U: Fle— ty')h(t)t-ldt}do(y'). (1.6)

Sn-1

Clearly, the method of Calderén and Zygmund can no longer be used to estimate the
above integral in (1.6) even if Q) is odd, since the integral in parentheses cannot be reduced
to the Hilbert transform for an arbitrary h(t). Thus, one needs to find a new approach.

Using a method which is different from Calderén and Zygmund, Fefferman showed
in [12] that if Q satisfies a Lipschitz condition, then Sl is bounded on LP(R") for
1 < p < co. Later in [8], using Littlewood-Paley theory and Fourier transform methods,
Duoandikoetxea and Rubio de Francia improved Fefferman’s results by assuming a rough-
ness condition Q) € L1(S"~1) (see also [3, 13, 14]). By modifying the method in [8], re-
cently, Fan and Pan [11] have improved the above results on Sl , by assuming a rough-
ness condition Q € H!(S*1).
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Noting that S ! is an (n—1)-dimensional compact manifold in R”~!, Duoandikoetxea
and Rubio de Francia [8] introduced the following extension of the operator Slg .

Let m,n € N, m < n— 1, and let /il be a compact, smooth, m-dimensional manifold in
R". Suppose that MN{rv:r >0} contains at most one point for any v € $"~1. Let € ()
denote the cone {rf:r >0, 8 € M} equipped with the measure ds(r0) = r"drdo(0),
where do represents the induced Lebesgue measure on Jl. For a locally integrable func-
tion in 6 () of the form

K(r6) = r " 'h(r)Q(0), (1.7)

where Q) satisfies
J Q(0)do(6) = 0, (1.8)
A

they defined the corresponding singular integral operator Sl o, on R” by

(SLuan f) (x) = pv. f(@( = PKG)ds)
5 (1.9)
_ lim J LL Flx—r0)QOA()r ' do(0)dr

e—0*

initially for f € S(R").
In [8], Duoandikoetxea and Rubio de Francia obtained the following results regarding
SLi,0,h-

THEOREM 1.1. Let Sl be given asin (1.7)—(1.9). Suppose that
(i) Qe Li(M),
(ii) supp(1/R) fy' |h(r)[2dr) < oo,
(iii) M has a contact of finite order with every hyperplane.
Then SLy,o, extends to a bounded operator on LP(R") for 1 < p < co.

Inspired by the earlier result of Fan and Pan regarding Q € H!(S""!), Cheng and
Pan [5] established the following.

THEOREM 1.2. Let Sl be given as in Theorem 1.1, and let h and M satisfy (ii) and
(iii), respectively. If Q € H' (M), then Sly,q extends to a bounded operator on LP(R")
forl<p<oco.

The main purpose of this paper is to extend Theorem 1.2 to the case Q € H"(Jl)
with 0 < 7 < 1. The space H" (M) is a distribution space when 0 < r < 1. The definition
of H" (M) can be found in Section 2, but here we must define the operator in the sense
of distribution.
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Let (Q,¢) be the pairing between Q € H"(Jl) and a C® function ¢ on L. For 0 < a,
we define the singular integral operator SLy o« f(x) by

SLiana f(x) = hmJ (f(x =), Q) h(r)r-dr, (1.10)

where f € ¥(R"), h, Q satisfy (ii) and (iii) in Theorem 1.1, respectively, and Q € H"(M)
satisfies

(Q,Pyulu) =0 (1.11)

for all polynomials on R" with degree m < [a] and r = m/m + a.

When Ml = S"~1, the operator Slg«-1 o« Was studied in [4]. It is not difficult to check
that (1.10) is well defined and it is finite for all x € R".

When « = 0, the operator Slg:-1 050 is exactly the operator SLy o 4.

The main result of this paper is as follows.

THEOREM 1.3. Let Sly,ana be given as in (1.10), and let h, M satisfy (ii) and (iii) as
in Theorem 1.1, respectively. If Q € H"(M) satisfies (1.11), then Sly,ona extends to a
bounded operator from the homogeneous Sobolev space LY (R") to the Lebesgue space LP(R™)
for1< p < co.

2. Definitions and lemmas

Let Jl be a compact, smooth, m-dimensional manifold in R", m < n — 1. The Hardy
spaces H? () can be defined by using the maximal operator

&4=f—*(ﬂf)(x)=sug|u(t,x)|, (2.1)
>
where u(t,x) is the solution of the boundary value problem

2\ .
(E)t —Ax)u—O, (Lx) € R x

(2.2)
u(0,x) = f(x), xeJM.
Here A, denotes the Laplace-Beltrami operator of .
Definition 2.1. Define
HP(M) = {f € S (M) : | A [y < 0} (2.3)

For f € HP (M), we set || fllgecaty = IS4 f 1 Loty
It is well known that since Jl is compact,

HP (M) =LP(M) C LLog" L(M) C H'(M) C H" (M), O<r<l1<p, (2.4)

and all the inclusions are proper.
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Let B,(x,r) = {y € R": |y — x| < r}. To give the atomic characterization of H", we
need to define atoms on JL.

Definition 2.2. A function a(-) on Jl is called an H" atom if there are p >0 and 6, € .l
such that

(1) supp(a) < B,(6p,p) N M,

(2) llallo < p=™T,

(3) [ a(0)Pilu(8)do(0) =0,
for all polynomials Py on R”, with degrees k < [m(1/r —1)].

If O € H"(M), then there exist H" atoms {a;} and complex numbers {c;} such that

Q=>caj, Dl =Ql .y (see [6]). (2.5)

Definition 2.3. A smooth mapping ¢ from an open set U in R™ into R” is said to be of
finite type at ug € U if, for every n € $"~!, there exists a nonzero multi-index w = w(#)
such that

9“[n - (u)]

ou® B

£0. (2.6)

By the smoothness and compactness of JIl, we may assume that there is a smooth
mapping ¢ from a neighborhood of B,,(0, 1) into R" such that
(i) 6y € ¢(B(0,1/2)) and JM N B,(0o,p) C ¢(Bn(0,1)) C M;
(ii) the vectors d¢/0uy,...,0¢/duy, are linearly independent for each u € B,,(0,1);

(iii) ¢ is of finite type at every point in B,, B,,(0,1) (see [16, page 350]).
Thus there is a smooth function J(u) such that

J Fdo - J F($())] ()i, 2.7)
(B (0,1)) B (0,1)

for any integrable function F on Jl. Since Jl is compact, we may assume that all ¢ raised
from atoms a satisfy |¢(u) — ¢(uo)| < |u — upl.
Now given ) € H" (), then for each H" atom, a(8) supported in M N B,,(60y, p), write
= a(¢p(w))J (u)xB,0,1)- Let ug = ¢~1 (). It follows from (i)—(iii) that

Supp(b) - Bm(UO)P)>
bl < Cp~™™", we may assume that C = 1, (2.8)

[ bt 9~ pluo)) du=o,

for all |k| < [«], where k = (ki,kz,..., k) is a multi-index and k = X7 k;.
We will need the following result (see [8]).
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LEMMA 2.4. Let {ax} be a lacunary sequence of positive numbers such that ay >0 and
infrez laks1/axl = 7 > 1. Let 1x be a sequence of Borel measures in R". Suppose that
1kl < 1 and

(1) 17kl < Clag &1,

(2) 17kl < Clak&l 7,
forall k € Z, and suppose also that for some q > 1,

G) IO =Clifllg

where T* is the maximal operator: T*(f) = sup, |l |7x| * f|. Then

<)

Tf(x)= > w* f(x) (2.9)

k=—co
is a bounded operator on LP(R™) for |1/p — 1/2| < 1/24.
We will also need the following result (see [8, 9, 11]).

LemMa 2.5. Let Ln € N, and {754 :0 <s <1, and k € Z} be a family of measures on R"
with Tox = 0 for every k € 7. Let {asj:1<s<l,andj=12} CR*  {n:1<s<I}C
R*\{1}, IM;: 1 <s<I} CN, and Ly : R" — R™ be linear transformations for 1 <s <.
Suppose that

@) skl <1 forkeZand0<s<1;

(ii) 17k ()l < C(yFILél) ™ for§ e R™ k€ Z,and 0 < s < ;

(iii) 11Tsk (&) = Too14 (&)l < C(HE L) forE e R™ k€ Z, and 0 <s<;

(iv) for some py > 2, there exists a C > 0 such that

1/2
<C

Lpo(R")

Z(|Ts,k>l<gk|2)1/2

kez

> (lg!?)

kez

S (2.10)
LPo(Rn)

forall {grk} € LP(R™,1>) and 1 <s <.
Then for every p € (po, po), there exists a positive constant Cp, such that

Z Tk * f = Cp||f||LP([Rn),
kez LP(R7)
2.11
172 ( )
2
‘(Z | 7i  f | ) < Cpll fllorm)
kez 17 (R

hold for all f € LP(R™). The constant C, is independent of the linear transformations (L},

3. Proof of theorem

We will prove the theorem in three different cases: 0 <« < 1, @ = 1,2,3,..., and a > 1,
a & Z. Without loss of generality, we may assume that Q(0) = a(0) is an H" atom as
defined in Definition 2.2, the details can be found in [4].
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Case 1 (0 < a < 1). Using the “lift” property of the Riesz potential and the definition of the
space LE(R"), it is known that for any a > 0 and f € L5(R"), one can write f = G, * f,
with [Ga(§)| = 1€]7%, 1Ga(»)| = [y|7"*% and || full p ~ | f 1l -

We write

(SIMQhaf Z‘uk(x*fa(x) (3.1)

where

2k+1

Yk () = J

In light of Lemma 2.4, in order to show that || STy,a.« fllzr < Cll fll 2, it suffices to show
that
(1) lpralloiwn <G,
(ii) |fka(&)] < Cl2kEp|1-e,
(iii) |fka(E)| < Cl25Ep| 2,
(iv) IIsupxez lptka * flllLawn) < Cl flLawn), for allq € (1,00).
Now, by the cancellation condition of b(u) = Q(¢(u))] (1) xB,,(0,1) (1), we have

U (Galx —r¢p(u))
B (0,1)
— Gylx— r¢(u0)))b(u)du] |h(r)|r'%dr|dx

JM Gulx — rO)QO(r)r1~*do(0)dr. (3.2)

2k+1

J,

bkl oy = |

2k+1

<[] bl
2k B, (0,1)

XJ | Ga(x —rd(u)) —Ga(x—rd(uo)) |dx | h(r) | dudr.
g (3.3)

Letting y = x — r¢(uo), we have

). 1Gu(x = r900)) = Gul = rg(uo)) i = | 1Galy +r(9(a) = () = Guly) .

(3.4)
As we mentioned before, |¢(u) — ¢(uo)| < |u—ugl| < p, for u € supp(b).
We write
|Gty + 190 = $())) - Gaty) | dy
=[Gy ()~ () - Galy) | dy
lyl=3rp (3.5)

]Gty 9w — $(u0)) — Gl | dy
lyl<3rp

=1 +L, whereuisin the supportof b(u).
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By the definition of G,(x), we have, if y = 3rp = 3r|¢(u) — ¢(uo)l,

[Galy +r(9(a) = 9(u0))) = Gl = C

Thus,

_p
L<C rp)®
! |yl=3rp |)’|" atl }/ ( P)

It is easy to see that

Izszf IGa(y)IdysCJ dy,
lyl<5rp ly|<5rp |}/|n @

Thus,

2k+1

ekl o1 ey < Lk e JBm(O,l) 6@

% [ 1Gele= r(u0) = Galx = r(un)
[Rﬂ

2k+1

< C(rp)*.

) |dx|h(r)|dudr

sf r*HJ b(w) | (rp)® | h(r) | dudr < C.
2k B, (0,1)

To prove (ii), we write

| ita(E)| = | (Coa * Ga) (B)| = [5ea(®)] | Gal®)| < CIEI™|Ga(®)].

Thus,
2k+1
| fa(®)| < ClEI (J e*i’f"ﬁ(“)b(u)du)r*““h(r)dr
2k B,,(0,1)
2k+l
< CIfI‘“Z‘k“I J (e‘irf"/’(“) - ei’E"/’(“O))b(u)du
2k B,,(0,1)

< ClE|72 k| 2k¢ | JB o |¢(u) — ¢ (o) | | b(u) | du < C|2kEp| 7%,
n (3.11)

which proves (ii).
On the other hand,

2k+1

| ia()] < CIEI722 "“j

which proves (iii).

J |b(u) | dur ' [ h(r) | dr = C|2%Ep| %,
B,,(0,1)

r'|h(r)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.12)



A. Al-Hasan and D. Fan 9

It remains to show that

sup | pa| * fl| < CIIfllp. (3.13)

kez p

Without loss of generality, assume that 4(r) > 0. Then

sup |pkal * f
kez LI(R")

ek 2k+1

<Comprrte [ [ 1T [, 172 1Guta )
— Gu(z—r¢(uo)) | dzdudr.
(3.14)
In the above integral, we write
[ 15621 1Gule = r90) ~ Gule -~ rg(uo)) | d
- | £ —2)| | Galz— rd(w)) — Galz — rd(uo)) | dz
lz—r¢(up)|>3rp (315)

+I |f(X—Z)||Ga(Z—r(/>(u))— ( —T’¢ u() |dz
lz=r¢(ug)|<3rp
=L(f)(x)+L(f)(x)

where u € B, (ug,p) N JM.
In the integral I; ( f), we change variables z — r¢(u9) — y and again write y as z, then

L(f)x)=C oy | f(x—z+71d(u)) | | Ga(z+7rd(uo) — r(u)) — Go(2) | dz.
(3.16)

Note that |r¢(ug) — r¢(u)| < rp < |z]/2. By the mean value theorem,

Il(f)(x)sCL - rp| fx—z+rd(up))|1z1* 1 "dz

. (3.17)
;J J rps* 2| f(x—sz' +rd(uo)) |dsda(z")
Sn=1.J3rp
Using integration by parts, it is easy to see that
3rp
L)) < CLnil(rp)"‘(rp)’lL | f(x =t +ré(uo)) | dtdo(2)
(3.18)

* CL.H Lo:p rpst LS | f(x—tz' +r¢(uo)) |dsdtdo(2").
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Let M, f (x) be the maximal function

M, f(x) =supt™! Lt | f(x—rz)dr.

t>0

(3.19)

It is known in [16, page 477] that there is a constant C independent of z such that

||Ml(f)||LP([R") < Cllf llzewn.-

Thus we have

B0 = Clrp)* | M f (e 1 o) o (2.

For the second integral I, (f)(x), we have L (f)(x) < J1(f)(x) + Jo(f)(x), where

L)) = j | F(x - 2)Galz — ré(w)) | dz,

|z—r¢(uo)|<3rp

J2(f)(x) = LMP | f(x — 2+ 1 (1)) Gal2) | d.
Let w = z — r¢(u). Then, in J; (f)(x), we have
wl < l2= ruo) | + | ré(a) — r(uo) | < 4p
This gives (again write z instead of w)
I < cjzm | f (2= 2= r(w)) 2l "dz
_ CLH J:m | f(x—t2 - r¢(w))dtdo(2).

Using integration by parts, we obtain

@) = C | (oI Me (f (= r9(w) o (2.

Similarly, we can have the same estimate on J>(f)(x) so that

L(f)(x) < CLH (rp)*{Mz f (x+r¢(uo)) + Mz (f (x = r¢(w))) }do(2").

Thus

[ 17— 211 Gale = r9(a) - Gulz = rg o)) |z
<C(rp)® L My f (et ré(uo)) + Mo (f (x — ré(w))) }do(2).

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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Therefore, we have

sup | pika| * f
kez La(R")

= CJB (O.1)xS |b(“) |Pa{||M¢(uo)Mz’ (f)”Lq(Rn) + ||M¢(M)M2’f||Lq(Rn)}d0(Z,)dU-
o (3.28)

Since b is an (r, o) atom supported in B, (uo,p) N M with r = m/(m + «), it is easy to
see that

J |b(u) | pdu < C (3.29)
Bu(0,1)
uniformly for b and p. Thus
sup || * f < Cll fllzs(ro)- (3.30)
kez La(R")

By Lemma 2.4, Case 1 is established.

Case 2 (a = 1,2,3,...). Using Taylor’s expansion about 6, we have, for j = (ji,..., jm),

(S f) (x ZCJU%“%ihm)uﬂ%w

ljl=a

X DI f (x —r¢(uo) +rt(¢(uo) — d(u)))dudrdt,

(3.31)

where C;’s are constants and B (u) = b(u)(¢(u) — ®(up))!. Clearly, B(u) is an H' atom
with the same support as b.

For each j, | j| = «, define the measures {0y nralk € Z} on R" by

JW F(x)dogank.a
J (1-0% 1j
LemMa 3.1. Suppose that h satisfies (ii) in Theorem 1.1. Then for 1 < p < co, there exists a

constant Cy > 0 such that
12
2
> Il
kez

holds for all continuous mappings ¢ and measurable functions {gr} on R".

2k+1

JB ( (x = r¢(uo) +7t($(uo) — (w)))B()r™ " h(r)dudr dt.
1 (0,1)
(3.32)

<G, (3.33)

1/2
( Z | 09, B,hk,a * gk | 2)

kez

p p
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Proof. For & € R", we define the maximal operator M on R” by

2k+1

(M f)(x) = sup [Z_kj | fle+rd)] dr]. (3.34)
kez 2k

It follows from the LP-boundedness of the one-dimensional Hardy-Littlewood maximal
operator that

IMefll, < Apll fllps (3.35)

for 1 < p < oo, where A, is independent of &
By duality, we may assume that p > 2, then for {gx} € LP(R", I2), there exists a function
w e L2 (R") such that lwll(p2y = 1and

By Holder’s inequality and (3.35),

2
- JW (Z | Op Bk *gk|2) w(x)dx. (3.36)
P

kez

1/2
( Z |0¢,%,h,k,a * gk | 2)

kez

2

1/2
( D | opnka * g |2)

kez

p
2k+1

1
=0t [ o) (6 () - ga)

2

X B(w)r  h(r)dudrdt| w(x)dx

SJZ

kez

ok+l

scimh 32 [ [ st retu) i) -gw) |

kez

X | B(u)w(x)|dudrdtdx

1
:cu%nlj J B ()|
0 JB,(0,1)

2kt

X [ > ok Lk J[Rn | gk (x) |2 | w(xtrd(uo)+re(p(uo)—p(u))) |dxdr} dudt

kez

1
< ClI%BII L JBM(O)I) UR ( > |gk(x)] 2) (Mg a0yt u10)-p(u)) W) (x)dx] | B(u) | dudt

kez
( Z |gk | 2) 1/2

2
1
kez

P
(3.37)

We also have the following estimates for o5 ik - O
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LEMMA 3.2. Suppose that ¢ is smooth and of finite type at every point in B,,(0,1) and h
satisfies (ii) in Theorem 1.1. Then there exists a 8 > 0 such that

~ -5
|Gp k| < CIIBI(251E)°. (3.38)
Proof.
1 2k+1
| Opmnkall)] = ‘ J (1- t)“flj h(r)r’leif"p(““)e’if’t“’(”")J B(w)es W dy drdt |
0 2k B, (0,1)
(3.39)

Changing variables (s = rt), we have

okt ¢

1
| O Bnka(E)] = ‘ J (l—t)“"lj h<s> 18 (s/09(uo) g=isg(uo)
0 2kt t
xj %(u)eifsﬂu)dudsdt'
B, (0,1)

2k+lt
J R 1|J | h(s/t)s™ | ‘ (J )eifs¢<u>du) dsdt.
B(0,1)
(3.40)
The remainder of the proof is similar to the proof of Lemma 3.3 in [5].
The following result is similar to those in [10], see also [5]. O

LEmMA 3.3. Let B(-) be a function satisfying supp(®B) C B,,(0,p) and |Bll < p~™ for
some p < 1. Suppose that h satisfies (ii) in Theorem 1.1. Then there exists a constant C >0
such that

oo

—1/(4s)
SC<2kPS > |dﬁ|>

IBl=s

2k+1

W ([ e @S i |
B (0,1)
(3.41)

holds for all polynomials Q : R™ — R with deg(Q) < s and {dg} C R. The constant C is
independent of p.

Now, by Lemma 3.2, there exists a § > 0 such that

| Opmnkalé)] < C(2k1E]) °pm, (3.42)
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Let I = [m/(26)] + 1. Following the proof of Theorem 3.7 in [5], we define a sequence of
mappings {d)s}ﬁj) by

O = ¢ = (¢1,..,¢n),

S 1 9P¢1 (u0) 1 Bepy (uo) (3.43)
) (M)Z (Esmall/lﬁ()(u_u())ﬂ’.“)m%sﬁ!auﬁO(u_uo)ﬁ>

fors=0,1,...,1—1.
Let

Os 0 = ODs, B, bk, (3.44)

for0<s<landk € Z.

In order to show that || SLi,ona fllzr < Cllf Iz, it suffices to show that the family of
measures {0sq} satisfies the conditions of Lemma 2.5.

By its definition and Lemma 3.2, the family of measures {0k} satisfies conditions (i)
and (iv) in Lemma 2.5, for any p, > 2.

It is easy to see that

2k+1

1
[E ”%'“L (1= | J r U h(r) |drdt < C. (3.45)

2!

Also we have
Ooka(x) =0, by the cancellation condition of B(u). (3.46)
For j=1,...,n,let

0,
dig = ;gjjﬁ%) - (3.47)

By (3.42) and Lemma 3.3, we have

|Gua(8)] < C25pHEN

> digé;

)““S’ (3.48)
j=1

16,10(0)] < C(kas ¥
|Bl=s

forl <s<Il—1,k €Zand & € R". We also have,

| 61,0 (&) — 01-1,,0(8) |

2k+1

1
= ‘ J [(1—1)"| j |h(r)|r’lj | B(w) | | ertd _ irtd ™) | gy, dr dt
0 2k B (0,1)

scmz"j
B, (0

m

) |B(w) | | (p(u) — ¢!~ () |du < C(2¥|EIp").
’ (3.49)
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Similarly,

|Goa(€) = Go-1a(8) | < C2F L o |B) | € (¢*(w) — ¢ () [du

m\Us

n (3.50)
= C2%7 D | 2. digk
IBl=s1j=1
forl<s<l-1,keZand € R".
Invoking Lemma 2.5, Case 2 is established.
Case3(a>1, a ¢ 7). Writea = [a] +y,y € (0,1).
Similar to the case « = 1,2,3,..., by Taylor’s expansion, we have
(SLiaha f)(¥) = S cj o | e [ s
ljl=a 0 Bn(0,1) (3.51)

X DI f (x —r¢(uo) +rt(¢(uo) — d(u)))dudtdr,

where B(u) = b(u)(¢(u) — ¢(uo))/. Clearly, B(u) is an H" atom, where r = m/(m+y).
Similar to Case 1, again using the “lift” property of the Riesz potential and the defi-
nition of the space LE(R™), it is known that for any y>0and f € LE(R™), one can write
£ =Gy fywith 1G,(@)] = 171G, (0 = ly|™7, and I fll, ~ I f2.
We write

(SLuonak f)(x Z(Tky*fy, (3.52)

where
2k+1

1
Oy = L (1= Lk rh(r) JBm(O,I)%<u>Gy (e=rg (o) +7t(¢ (o) — $(w))) dudr dt

2k+1

- Jol(l -7 Lk T ) JBm(o,n%(u)

X [Gy(x = r¢(uo) +rt(¢(uo) — $(u))) = Gy (x = r$(uo)) |dudrat.
(3.53)

Again, by Lemma 2.4, in order to show that || SLy,qnak flle < Cll flI if it suffices to show
that
(i) llogyllzirny < C,
(ii) 0%,y (E)| < Cl2kEp|1-7,
(iii) |0k, (&)| < C|2KEp| 7,
(iv) lIsupgez lokyl * flirawny < Clflrawn).
The proof is similar to the proof for Case 1. We leave the details to the reader.
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