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A generalized Ramanujan sum (GRS) is defined by replacing the usual Möbius function
in the classical Ramanujan sum with the Souriau-Hsu-Möbius function. After collecting
basic properties of a GRS, mostly containing existing ones, seven aspects of a GRS are
studied. The first shows that the unique representation of even functions with respect
to GRSs is possible. The second is a derivation of the mean value of a GRS. The third
establishes analogues of the remarkable Ramanujan’s formulae connecting divisor func-
tions with Ramanujan sums. The fourth gives a formula for the inverse of a GRS. The
fifth is an analysis showing when a reciprocity law exists. The sixth treats the problem of
dependence. Finally, some characterizations of completely multiplicative function using
GRSs are obtained and a connection of a GRS with the number of solutions of certain
congruences is indicated.
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1. Introduction and basic definitions

The classical Ramanujan sum is the arithmetic function of two variables (see [2, 15, 21])

c(n,k)=
∑

m(modk)
gcd(m,k)=1

e2πimn/k, (1.1)

where k ∈ N, n ∈ N0 := N∪{0}. Ramanujan sums are closely connected with the usual
Möbius function via the identity

c(n,k)=
∑

d|gcd(n,k)

dμ
(
k

d

)
. (1.2)

Recently, there have been a great deal of interest in extending results (see [8, 14, 24])
related to the classical Möbius function to those of a generalized Möbius function, also
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2 Ramanujan sums via generalized Möbius functions

known as the Souriau-Hsu-Möbius function, μα, which is defined by [3],

μα(n)=
∏

p|n

(
α

υp(n)

)
(−1)υp(n), (1.3)

where α ∈ C, and n =∏ pυp(n) denotes the unique prime factorization of n ∈ N, υp(n)
being the largest exponent of the prime p that divides n.

Our objectives here are
(1) to define the generalized Ramanujan sum, abbreviated as GRS, by replacing the

usual Möbius function with the Souriau-Hsu-Möbius function and to derive
their arithmetical properties extending the known ones;

(2) to investigate whether the set of GRSs can be used as a basis for expanding even
functions;

(3) to derive the mean value of a GRS;
(4) to derive analogues of Ramanujan’s remarkable formulae relating the divisor

functions with sums of GRSs;
(5) to derive the Dirichlet inverse of a GRS using Haukkanen’s idea (see [9]) of in-

troducing principal functions and to analyze whether a reciprocity law exists;
(6) to investigate the dependence of GRSs; and lastly,
(7) to characterize completely multiplicative functions using GRSs, extending an

earlier work of Ivić (see [12]), and to indicate a connection of a GRS with the
number of solutions of certain congruences.

Let us begin by recalling [2, Theorem 8.5, page 161]: if

Sk(n)=
∑

d|gcd(n,k)

f (d)g
(
k

d

)
, (1.4)

then Sk(n) has a finite Fourier expansion of the form

Sk(n)=
∑

m (mod k)

ak(m)e2πmni/k, (1.5)

where ak(m)=∑d|gcd(m,k) g(d) f (k/d)(d/k).
Substituting f (m) =m, g(m) = μα(m) and using the fact [3, Corollary 2] that μα ∗

μ−1 = μα−1, this simple result leads to the following.

Theorem 1.1. If k ∈N, n∈N0, and α∈ C, then

∑

d|gcd(n,k)

dμα

(
k

d

)
=

∑

m (mod k)

μα−1
(

gcd(m,k)
)
e2πmni/k. (1.6)

We define the generalized Ramanujan sum, GRS, of order α∈ C, by

c(α)(n,k) :=
∑

d|gcd(n,k)

dμα

(
k

d

)
=

∑

m (mod k)

μα−1
(

gcd(m,k)
)
e2πmni/k (n∈N0, k ∈N).

(1.7)
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When α = 1, we get back to the usual Ramanujan sum, which will always be written
without the indication on α. The following basic properties will be frequently used and are
easily verified, so we omit their proofs.

Lemma 1.2. Let m∈N0, n∈N, p prime, and α∈ C. Then
(1)

∑
j|n c(α)(m, j)= c(α−1)(m,n),

(2)

c(0)(m,n)=
⎧
⎨
⎩
n if n |m,

0 otherwise,
(1.8)

(3) c(−1)(m,n)= σ1(gcd(m,n)), where σ1(t)=∑d|t d,
(4) c(α)(n,1)= 1,
(5) c(α)(1,m)= μα(m),
(6) c(α)(n,m)= μα(m) if gcd(n,m)= 1,
(7) c(α)(ab,mk)= c(α)(a,m)c(α)(b,k) whenever gcd(a,k)= gcd(b,m)= gcd(m,k)= 1,
(8) c(α)(ab,m)= c(α)(a,m) if gcd(b,m)= 1,
(9) c(α)(a,mk)= c(α)(a,m)μα(k) if gcd(a,k)= gcd(m,k)= 1,

(10) c(α)(n,rs)= c(α)(n,r)c(α)(n,s) if gcd(r,s)= 1,

(11) for a,b ∈N, c(α)(pb, pa)=∑min(a,b)
i=0 (−1)a−i

(
α
a−i
)
pi, c(α)(pb, p)= p−α,

(12) c(α)(n, pa)= (−1)a
(
α
a

)
if p � n,

(13) c(α)(n, pa)=∑min(a,k)
i=0 (−1)a−i

(
α
a−i
)
pi if pk‖n.

2. More properties

In this section, we derive many more properties about GRSs, similar to those in the be-
ginning of [15, Chapter 2] and [2, Chapter 8]. Throughout this section, assume that g is
a multiplicative function and h a completely multiplicative function. For α∈ C, n∈N0,
r ∈N, define

fα(n,r) :=
∑

d|gcd(n,r)

h(d)g
(
r

d

)
μα

(
r

d

)
,

Fα(r) := fα(0,r)= (h∗ gμα
)
(r).

(2.1)

Recall that a positive integer is said to be d-powerful, d ∈N, if it is divisible by each of its
prime factors up to a power of d. It is easily checked that

(1) Fα(r) is a multiplicative function of r;
(2) if r | n, then Fα(r)= fα(0,r)= fα(n,r);
(3) let ζk(n)= nk; for h(n)= ζ1(n) and g(n)= ζ0(n), we have [24],

c(α)(0,r)=
∑

d|r
dμα

(
r

d

)
= (ζ1∗μα

)
(r)= r

∏

p|r

υp(r)∑

i=0

(
α

i

)
(−p)−i. (2.2)
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In particular, if α∈N and r is α-powerful, this simplifies to

c(α)(0,r)= r
∏

p|r

(
1− 1

p

)α
. (2.3)

From [24], an Euler-type totient is defined as an arithmetic function of the form

φ(α)
k := ζk ∗μα (α∈ C, k ∈ Z). (2.4)

Thus, for r | n, we also have c(α)(n,r)= φ(α)
1 (r). Properties of the function φ(α)

k can also be
found in [11].

Theorem 2.1. Assume that h(p) �= 0 for all primes p. Let α ∈ C and n,r ∈N with prime
factorizations n=∏ pa, r =∏ pb, where a, b are nonnegative integers. Then

fα(n,r)=
∏

p

{
Fα
(
pb
)−h(p)a+1Fα

(
pb−a−1)}, (2.5)

with the convention that Fα(ps)= 0 for negative integer s.

Proof. If gcd(n1,n2)= gcd(r1,r2)= gcd(n1,r2)= gcd(n2,r1)= 1, then gcd(gcd(n1,r1),
gcd(n2,r2))= 1 and gcd(n1n2,r1r2)= gcd(n1,r1)gcd(n2,r2). By multiplicativity, we have

fα
(
n1n2,r1r2

)=
∑

d|gcd(n1n2,r1r2)

h(d)g
(
r1r2

d

)
μα

(
r1r2

d

)

=
∑

d1|gcd(n1,r1)

h
(
d1
)
g
(
r1

d1

)
μα

(
r1

d1

) ∑

d2|gcd(n2,r2)

h
(
d2
)
g
(
r2

d2

)
μα

(
r2

d2

)

= fα
(
n1,r1

)
fα
(
n2,r2

)
.

(2.6)

Using (2.6), it suffices to evaluate fα at prime powers in each of its variables.
If b ≤ a, then fα(pa, pb)=∑d|pb h(d)g(pb/d)μα(pb/d)= Fα(pb).
If b > a, then

fα
(
pa, pb

)=
a∑

i=0

h
(
pi
)
g
(
pb−i

)
μα
(
pb−i

)= Fα
(
pb
)−

b∑

i=a+1

h
(
pi
)
g
(
pb−i

)
μα
(
pb−i

)
. (2.7)

Consequently,

fα(n,r)=
∏

p

[
Fα
(
pb
)−

b∑

i=a+1

h
(
pi
)
g
(
pb−i

)
μα
(
pb−i

)
]

(where empty sum is taken to be 0)

=
∏

p

{
Fα
(
pb
)−h(p)a+1Fα

(
pb−a−1)}.

(2.8)
�
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The following corollary, known as Hölder relation, is [2, Theorem 8.8] and [15, The-
orem 2.3]. It is a special case of a more general result in [1, 6], so we omit its proof.

Corollary 2.2. If h(p) �= 0 and h(p) �= g(p) for all primes p, then

f1(n,r)= F1(r)g(m)μ(m)
F1(m)

, where m= r

gcd(n,r)
. (2.9)

Corollary 2.3. Let G(r) := (ζ1∗ ζ0μα)(r). Then for n=∏ pa, r =∏ pb,

c(α)(n,r)=
∏

p

{
G
(
pb
)− pa+1G

(
pb−a−1)}. (2.10)

Proof. Put h= ζ1, g = ζ0 in Theorem 2.1. �

Theorem 2.4. If h(p) �= 0 for all primes p and H = 1/h, then for any n,r ∈N,

Fα(r)
∑

d|r
gcd(n,d)=1

h(d)
Fα(d)

μα

(
r

d

)
=
∏

p|n

(
Fαμα

)(
pυp(r))∏

p�n

(
Fαh

(
1
Fα
∗H−α

))(
pυp(r)).

(2.11)

Proof. Let

S(r)= Fα(r)
∑

d|r
gcd(n,d)=1

h(d)
Fα(d)

μα

(
r

d

)
. (2.12)

Then S is multiplicative. It suffices to consider the value of S at pa for p prime and a∈N.
If p | n, then S(pa)= Fα(pa)μα(pa). If p � n, then

S
(
pa
)= Fα

(
pa
)
h(p)a

[
μα
(
pa
)

Fα(1)h(p)a
+

μα
(
pa−1

)

Fα(p)h(p)a−1
+ ···+

μα(1)
Fα
(
pa
)
h(1)

]

= Fα
(
pa
)
h(p)a

(
1
Fα
∗H−α

)(
pa
)

(2.13)

because μαH =H−α, H = 1/h being completely multiplicative. �

It is of interest to see how far the nice form of Corollary 2.2 can be extended. The next
theorem shows that a general result of this sort is derivable based solely upon the concept
of unitary pair. We say that 〈n,r〉 ∈N×N is a unitary pair if gcd(gcd(n,r),r/gcd(n,r))=1.

Theorem 2.5. Assume that h(p) �= 0 for all primes p. Let 〈n,r〉 be a unitary pair and
N = r/gcd(n,r). Then

fα(n,r)= g(N)μα(N)Fα(r)
Fα(N)

, (2.14)

whenever Fα(N) �= 0, where Fα(r)= (h∗ gμα)(r).
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Proof. For any k ∈N, we see that

Fα(k)=
∑

d|k
h
(
k

d

)
g(d)μα(d)= h(k)

∑

d|k

g(d)
h(d)

μα(d). (2.15)

Let a= gcd(n,r). Since r = aN and 〈n,r〉 is a unitary pair, then gcd(a,N)= 1. Thus

fα(n,r)=
∑

d|a
h
(
a

d

)
g(Nd)μα(Nd)= g(N)μα(N)h(a)

∑

d|a

g(d)μα(d)
h(d)

= g(N)μα(N)Fα(a)
Fα(N)
Fα(N)

= g(N)μα(N)
Fα(r)
Fα(N)

.

(2.16)

�

Corollary 2.6. Let 〈n,r〉 be a unitary pair and N = r/gcd(n,r). Then

c(α)(n,r)= μα(N)φ(α)
1 (r)

φ(α)
1 (N)

, (2.17)

whenever φ(α)
1 (N) �= 0.

Proof. Take h= ζ1, g = ζ0 in Theorem 2.5. �

The next lot of identities relates to the Cauchy product of GRSs. In the classical situa-
tion, these identities are used in the representation of even functions with respect to the
usual Ramanujan sums.

Theorem 2.7. Let α,β ∈ C and n,r ∈N. If r is divisible by both s and t, then

∑

a+b≡n(modr)

c(α)(a,s)c(β)(b, t)= r
q−1∑

k=0

μα−1
(
s1 gcd(k,g)

)
μβ−1

(
t1 gcd(k,g)

)
e2πikn/g , (2.18)

where g = gcd(s, t), s= gs1, t = gt1, gcd(s1, t1)= 1.

Proof. To prove Theorem 2.7, we make use of the following auxiliary result:

∑

a+b≡n(modr)

e2πias/re2πibt/r =

⎧
⎪⎪⎨
⎪⎪⎩

re2πitr(a+b)/r = re2πitn/r , if
s− t

r
∈ Z,

0, otherwise.
(2.19)

Since

∑

a+b≡n(modr)

c(α)(a,s)c(β)(b, t)

=
∑

m(mods)

∑

j(mod t)

μα−1
(

gcd(m,s)
)
μβ−1

(
gcd( j, t)

) ∑

a+b≡n(modr)

e2πi(ma/s+ jb/t),
(2.20)
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putting s1 = r/s and t1 = r/t, we get

∑

a+b≡n(modr)

c(α)(a,s)c(β)(b, t)

=

⎧
⎪⎪⎨
⎪⎪⎩

∑

m(mods)

∑

j(mod t)

μα−1
(

gcd(m,s)
)
μβ−1

(
gcd( j, t)

)
re2πims1n/r , if

ms1− jt1
r

∈ Z,

0, otherwise

=

⎧
⎪⎪⎨
⎪⎪⎩

∑

m(mods)

∑

j(mod t)

μα−1
(

gcd(m,s)
)
μβ−1

(
gcd( j, t)

)
re2πimn/s, if

m

s
− j

t
∈ Z,

0, otherwise

= r
∑

m(mods)
mt≡0(mods)

μα−1
(

gcd(m,s)
)
μβ−1

(
gcd

(
mt

s
, t
))

e2πimn/s,

= r
g−1∑

k=0

μα−1
(
s1 gcd(k,g)

)
μβ−1

(
t1 gcd(k,g)

)
e2πikn/g ,

(2.21)

where g = gcd(s, t), s= gs1, t = gt1, gcd(s1, t1)= 1. �

A special case of Theorem 2.7, which is [15, Theorem 2.6], yields an orthogonality
property which is used in the classical representation problem.

Corollary 2.8. If r is divisible by both s and t, then

∑

a+b≡n(modr)

c(a,s)c(b, t)=
⎧
⎨
⎩
rc(n,s), if s= t,

0, otherwise.
(2.22)

Proof. Taking α= β = 1 in Theorem 2.7, we have

∑

a+b≡n(modr)

c(a,s)c(b, t)= r
g−1∑

k=0

μ0
(
s1 gcd(k,g)

)
μ0
(
t1 gcd(k,g)

)
e2πikn/g , (2.23)

where g = gcd(s, t), s = gs1, t = gt1, gcd(s1, t1) = 1. Since s = t⇔ g = s = t, s1 = 1, t1 = 1,
we deduce

∑

a+b≡n(modr)

c(a,s)c(b, t)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r
s−1∑

k=0
gcd(k,s)=1

e2πikn/s = rc(n,s), if s= t,

0, otherwise.

(2.24)

�
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Our last batch of identities deals with the Dirichlet series of GRSs. Recall from [22]
that the Dirichlet series associated with each GRS, which converges for Re s > 1, is

∞∑

n=1

μα(n)
ns

= 1
ζα(s)

=
( ∞∑

n=1

1
ns

)−α
. (2.25)

We now use a technique of Ramanathan [18] to derive extensions of this result. For a
multiplicative function f , define Fm(n) = f (mn)/ f (m) (n,m ∈ N). It is proved in [18]
that

∞∑

n=1

Fm(n)
ns

=
∞∑

n=1

f (n)
ns

∏

p|m
�(p,s), (2.26)

where

�(p,s) := Gυp(m)(p,s)

G0(p,s)
, Gk(p,s) := 1 +

1
f
(
pk
)
∑

i≥1

f
(
pk+i

)

pis
. (2.27)

The finite-product term simplifies radically in two special cases. If f is a specially multi-
plicative function [13], that is, a Dirichlet product of two completely multiplicative func-
tions, then

�(p,s)= 1− B(p) f
(
pυp(M)−1

)

f
(
pυp(M)

)
ps

, B(p) := ( f (p)
)2− f

(
p2). (2.28)

If f is a totient [13], that is, a Dirichlet product of a completely multiplicative function
with an inverse of a completely multiplicative function, then

�(p,s)= 1
1−G(p)p−s

, G(p) := f
(
p2
)− ( f (p)

)2

f (p)
. (2.29)

Taking f = μα, we have the following.

Theorem 2.9. If α∈ C and m,s∈N, then

∞∑

n=1

μα(mn)
ns

= μα(m)
ζα(s)

∏

p|m

1 +
∑

i≥1

(
μα
(
pυp(m)+i

)
/μα
(
pυp(m)

)
pis
)

1 +
∑

i≥1

(
μα
(
pi
)
/pis

) . (2.30)

Putting α= 1 in Theorem 2.9, we get yet another beautiful identity

∞∑

n=1

μ(mn)
ns

= μ(m)
ζ(s)

∏

p|m

1
1− p−s

. (2.31)
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3. Representation of even functions

For a fixed r ∈ N, an arithmetic function f is called an even function (modr) if
f (gcd(n,r))= f (n) for all n∈N. It is well known [15, Theorem 2.9] that an even func-
tion (mod r), f , is uniquely representable in the form

f (n)=
∑

d|r
a(d)c(n,d) (n∈N), (3.1)

where the Fourier coefficients a(d) are given by

a(d)= 1
r

∑

e|r
f
(
r

e

)
c
(
r

d
,e
)
= 1

rφ(d)

r∑

m=1

f (m)c(m,d). (3.2)

As expected, the GRS is an even function (mod r) as recorded in the next lemma whose
straight-forward proof is omitted.

Lemma 3.1. For a fixed r ∈N, α∈ C, the GRS c(α)(n,r) is an even function (modr) of n.

Using [15, Theorem 2.9], we have the following.

Proposition 3.2. For fixed α∈ C, r ∈N, the GRS c(α)(n,r) is uniquely representable in the
form

c(α)(n,r)=
∑

d|r
a(α)
r (d)c(n,d) (n∈N), (3.3)

where the coefficients a(α)
r (d), d | r, are given by

a(α)
r (d)= 1

r

∑

e|r
c(α)

(
r

e
,r
)
c
(
r

d
,e
)
= 1

rφ(d)

r∑

m=1

c(α)(m,r)c(m,d). (3.4)

Using identities established in the last section, we record the following identities in-

volving the coefficients a(α)
r (d). This is a special case of a more general result in [4, 10], so

we omit its proof.

Theorem 3.3. Let α,β ∈ C; n,r,s, t ∈N with r divisible by s and t. Then

∑

a+b≡n(modr)

c(α)(a,s)c(β)(b, t)=
∑

s1|gcd(s,t)

a(α)
s

(
s1
)
a

(β)
t

(
s1
)
rc
(
n,s1

)
, (3.5)

where the coefficients a(α)
s (·), a

(β)
t (·) are as in Proposition 3.2.

Two remarks are now in order. First, recall from [15, Theorem 2.8] that for r,e1,e2 ∈N
with r divisible by both e1 and e2, we have

∑

d|r
c
(
r

d
,e1

)
c
(
r

e2
,d
)
=
⎧
⎨
⎩
r, if e1 = e2,

0, otherwise.
(3.6)
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Incorporating with Proposition 3.2, we get

a(1)
r (d)= 1

r

∑

t|r
c
(
r

t
,r
)
c
(
r

d
, t
)
=
⎧
⎪⎨
⎪⎩

1
r
r = 1, if r = d,

0, otherwise.
(3.7)

Second, taking α= β = 1 and s, t | r in Theorem 3.3 and using (3.7), we have

∑

a+b≡n(modr)

c(a,s)c(b, t)=
∑

s1|gcd(s,t)

a(1)
s

(
s1
)
a(1)
t

(
s1
)
rc
(
n,s1

)=
⎧
⎨
⎩
rc(n,s), if s= t,

0, otherwise,
(3.8)

which is [15, Theorem 2.6].
Though Theorem 3.3 does not provide us with any obvious orthogonality relation

between two GRSs, we may be able to salvage such relation in certain special cases.

Theorem 3.4. Let α∈ C and r,s, t ∈N with r divisible by both s and t. Then

∑

d|r
c(α)

(
r

d
,s
)
c
(
r

t
,d
)
=
⎧
⎨
⎩
a(α)
s (t)r, if t | s,

0, otherwise.
(3.9)

Proof. By Proposition 3.2 and (3.6),

∑

d|r
c(α)

(
r

d
,s
)
c
(
r

t
,d
)
=
∑

x|s
a(α)
s (x)

∑

d|r
c
(
r

d
,x
)
c
(
r

t
,d
)

=
∑

x|s
a(α)
s (x)

⎧
⎨
⎩
r, if x = t,

0, otherwise

=
⎧
⎨
⎩
a(α)
s (t)r, if t | s,

0, otherwise.

(3.10)

�

Theorem 3.5. Let α,β ∈ C, r,s, t ∈N with r divisible by both s and t. Then

∑

d|r
c(α)

(
r

d
,s
)
c(β)

(
r

d
, t
)
φ(d)=

∑

a+b≡0(modr)

c(α)(a,s)c(β)(b, t). (3.11)

Proof. Observe that

∑

a+b≡0(modr)

c(α)(a,s)c(β)(b, t)=
r∑

a=1

c(α)(a,s)c(β)(−a, t)

=
∑

d|r

∑

1≤x≤d
gcd(x,d)=1

c(α)
(
xr

d
,s
)
c(β)

(−xr
d

, t
)

=
∑

d|r

∑

x

c(α)
(
xr

d
,s
)
c(β)

(−xr
d

, t
)

,

(3.12)
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where the last sum over x runs over any reduced residues system (mod d). Further-
more, we can assume that this reduced residue system (mod d) is contained in a re-
duced residue system (mod r), that is, that gcd(x,r) = 1 for each x. Thus c(α)(xr/d,s) =
c(α)
s (gcd(xr/d,s),s) and c(β)(−xr/d, t)= c

(β)
t (gcd(−xr/d, t), t). Since gcd(x,r)= gcd(x,s)=

gcd(x, t)= 1, we have c(α)(xr/d,s)= c(α)(r/d,s), c(β)(−xr/d, t)= c(β)(r/d, t) and the result
follows. �

There is an alternative proof of Theorem 3.5, using Proposition 3.2 [15, Problem 2.20
on page 93], (3.6), and Theorem 3.3 which proceeds as follows:

∑

d|r
c(α)

(
r

d
,s
)
c(β)

(
r

d
, t
)
φ(d)=

∑

d|r

∑

d1|s

∑

d2|t
a(α)
s

(
d1
)
a

(β)
t

(
d2
)
φ(d)c

(
r

d
,d1

)
c
(
r

d
,d2

)

=
∑

d1|s

∑

d2|t
a(α)
s

(
d1
)
a

(β)
t

(
d2
)∑

d|r
c
(
r

d
,d1

)
φ
(
d2
)
c
(
r

d2
,d
)

=
∑

d|gcd(s,t)

a(α)
s (d)a

(β)
t (d)φ(d)r =

∑

d|gcd(s,t)

a(α)
s (d)a

(β)
t (d)rc(0,d)

=
∑

a+b≡0(modr)

c(α)(a,s)c(β)(b, t).

(3.13)

The next result provides a main tool for our representation problem.

Lemma 3.6. For a fixed α∈ C, a(α)
r (r) is a multiplicative function of r ∈N.

Proof. Let r1,r2 ∈N be such that gcd(r1,r2)= 1. Then

a(α)
r1r2

(
r1r2

)= 1
r1r2

∑

e1|r1
e2|r2

c(α)
(
r1

e1
· r2

e2
,r1r2

)
μ
(
e1e2

)

= 1
r1r2

∑

e1|r1
e2|r2

c(α)
(
r1

e1
,r1

)
c(α)

(
r2

e2
,r2

)
μ
(
e1
)
μ
(
e2
)

= a(α)
r1

(
r1
)
a(α)
r2

(
r2
)
.

(3.14)

�

Theorem 3.7. For each n∈N and α∈ C, then a(α)
n (n)= 1.

Proof. By Lemma 3.6 and the fact that a(α)
1 (1)= 1, it suffices to check that a(α)

pk (pk)= 1 for
each prime p and each k ∈N. This follows at once by direct computation. �

It is worthwhile to carry out some explicit computations of the coefficient values. Of
interest is another eye-catching formula.
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Proposition 3.8. For r ∈N, then a(α)
r (1)= μα−1(r).

Proof. This follows easily from

a(α)
r (1)= 1

r

r∑

m=1

∑

d|gcd(m,r)

dμα

(
r

d

)
= 1

r

∑

d|r
dμα

(
r

d

)
· r
d
= (μα∗u

)
(r)= μα−1(r). (3.15)

�

We come now to the main point of this section. It is natural to ask whether the set
of GRSs can be used as a basis for Fourier expansions just as the classical Ramanujan
sums can. We will show that the answer is affirmative. To do so, it suffices to show that
Ramanujan sums can be written as a linear combination of GRSs, that is, the coefficients
A(t;D) with D | t can be so determined that

c(n, t)=
∑

D|t
A(t;D)c(α)(n,D). (3.16)

Using the unique expansion of GRSs with respect to Ramanujan sums, this is equivalent
to finding A(t;D) so that

c(n, t)=
∑

D|t
A(t;D)

∑

d|D
a(α)
D (d)c(n,d)=

∑

d|t
c(n,d)

∑

k|(t/d)

A(t;kd)a(α)
kd (d). (3.17)

It thus suffices to show that the condition

∑

k|t/d
A(t;kd)a(α)

kd (d)=
⎧
⎨
⎩

0, if d �= t, d | t,
1, if d = t

(R)

well defines the A(t;D)’s. For d = t, condition (R) requires that

1=
∑

k|1
A(d;kd)a(α)

kd (d)=A(t; t)a(α)
t (t)= A(t; t), (3.18)

the last equality being followed from Theorem 3.7, which uniquely determinesA(t, t). For
t = 2d, condition (R) requires that

0=
∑

k|2
A(2d;kd)a(α)

kd (d)= A(2d;d)a(α)
d (d) +A(2d;2d)a(α)

2d (d)= A(2d;d) + a(α)
2d (d).

(3.19)

Using Theorem 3.7 and the previous case, we have A(2d;d) = −a(α)
2d (d). In general, for

n,k ∈N, assuming A(nd;kd) have already been well determined for k | n and k > 1 but
not for k = 1, condition (R) requires that

0=
∑

k|n
A(nd;kd)a(α)

kd (d)= A(nd;d)a(α)
d (d) +

∑

k|n,k>1

A(nd;kd)a(α)
kd (d), (3.20)
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and so

A(nd;d)=−
∑

k|n,k>1

A(nd;kd)a(α)
kd (d). (3.21)

Using the induction hypothesis and Theorem 3.7, we see at once that A(nd;d) is well
determined. Consequently, any even function (mod r) can be expanded as a Fourier ex-
pansion with respect to the GRSs.

To prove the uniqueness of such expansion, it suffices to show that the zero function,
which is clearly even (mod r), has only zero Fourier coefficients. Writing the expansion
of the zero function with respect to the GRSs and using Proposition 3.2, we get

0=
∑

D|r
B(D)c(α)(n,D)=

∑

D|r
B(D)

∑

m|D
a(α)
D (m)c(n,m)=

∑

m|r
c(n,m)

∑

k|r/m
B(km)a(α)

km(m).

(3.22)

By the uniqueness of the expansion with respect to the usual Ramanujan sums, we deduce

∑

k|r/m
B(km)a(α)

km(m)= 0. (3.23)

Let the prime factorization of r be r = pn1
1 pn2

2 ··· pnss . Putting m= r, we get

0=
∑

k|1
B(kr)a(α)

kr (r)= B(r)a(α)
r (r)= B(r)= B

(
pn1

1 pn2
2 ··· pnss

)
. (3.24)

Taking m= pn1
1 pn2

2 ··· pns−1
s and using the result just found, we get

0=
∑

k|ps
B(km)a(α)

km(m)= B(m)a(α)
m (m) +B(r)a(α)

r (m)= B(m)= B
(
pn1

1 pn2
2 ··· pns−1

s

)
.

(3.25)

In general, by reverse induction on the number of prime divisors of r, counted with mul-
tiplicity, we obtain B(m)= 0 for m | r. Summarizing, we have the following.

Theorem 3.9. An even function (modr) f can be uniquely expanded as a Fourier expansion
in the form

f (n)=
∑

D|r
A(α)(D)c(α)(n,D), (3.26)

where the Fourier coefficients A(α)(D) are given by

A(α)(D)=
∑

j|r/D
a( jD)A( jD;D), (3.27)

with

a(d)= 1
r

∑

e|r
f
(
r

e

)
c
(
r

d
,e
)
= 1

rφ(d)

r∑

m=1

f (m)c(m,d), (3.28)
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and the A( jD;D) are uniquely determined from

∑

k|t/d
A(t;kd)a(α)

kd (d)=
⎧
⎨
⎩

0, if d �= t, d | t,
1, if d = t,

(3.29)

with a(α)
kd (d) as defined in Proposition 3.2.

4. Mean value

The mean value of an arithmetic function f is defined (see [5, 19, 23]) by

M( f ) := lim
x→∞

1
x

∑

n≤x
f (n), (4.1)

whenever this limit exists. For a GRS, its mean value is quite simple.

Theorem 4.1. For a fixed r ∈N and α∈ C, then M(c(α)(·,r))= μα−1(r).

Proof. Since

∑

n≤x
c(α)(n,r)=

∑

n≤x

∑

d|gcd(n,r)

dμα

(
r

d

)

=
∑

d|r
dμα

(
r

d

)∑

n≤x
d|n

1= x
∑

d|r
μα

(
r

d

)
−
∑

d|r
dμα

(
r

d

)(
x

d
−
[
x

d

])

= x
(
μα∗u

)
(r) +Rr(x)= xμα−1(r) +Rr(x),

(4.2)

where Rr(x) =∑d|r dμα(r/d)(x/d− [x/d]), the result follows at once from the fact that
Rr(x)= o(x). �

Invoking upon [23, Proposition 1], Theorem 4.1 yields.

Corollary 4.2. Let r ∈N and α∈ C. Then

μα−1(r)=M
(
c(α)(·,r)

)= 1
r

∑

e|r
c(α)(e,r)φ

(
r

e

)
. (4.3)

In order to evaluate the mean value of the product of two GRSs, we use the next lemma
whose straightforward proof is omitted.

Lemma 4.3. If f , g are arithmetic functions and β ∈ C, then

M( f + g)=M( f ) +M(g), M(β f )= βM( f ). (4.4)

Theorem 4.4. If r, s∈N and α∈ C, then

M
(
c(α)(·,r)c(α)(·,s))=

∑

d|(r,s)

a(α)
r (d)a(α)

s (d)φ(d). (4.5)
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Proof. Using the orthogonality relation of the usual Ramanujan sums as in [23, equation
(2)] together with Lemma 4.3, we get

M
(
c(α)(·,r)c(α)(·,s))=

∑

d|r

∑

e|s
a(α)
r (d)a(α)

s (e)M
(
c(·,d)c(·,e)

)

=
∑

d|r

∑

e|s
a(α)
r (d)a(α)

s (e)δd,eφ(d)

=
∑

d|gcd(r,s)

a(α)
r (d)a(α)

s (d)φ(d).

(4.6)

�

The next corollary is immediate from Theorem 4.4 and Proposition 3.8. It reveals why
an appropriate orthogonality relation between two GRSs only exists when α= 1.

Corollary 4.5. If r,s∈N and α∈ C, then

M
(
c(α)(·,r)c(α)(·,s))= μα−1(rs) if gcd(r,s)= 1,

M
(
c(α)(·,r)c(α)(·,r)

)=
∑

d|r
a(α)
r (d)a(α)

r (d)φ(d).
(4.7)

Taking α= 1 in Theorem 4.4, using the remarks preceding Theorem 3.4, we have

M
(
c(·,r)c(·,s))=

⎧
⎨
⎩
φ(r), if r = s,

0, otherwise,

= δr,sφ(r),

(4.8)

which is [23, Proposition 3].

5. Ramanujan identities

In this section, the remarkable identity connecting the usual Ramanujan sums with divi-
sor functions, namely,

σs(n)= nsζ(s+ 1)
∞∑

m=1

c(n,m)
ms+1

, where σs(n) :=
∑

d|n
ds = (ζs∗μ−1

)
(n), (5.1)

is extended to GRSs. Indeed, there are at least two possible extensions for this famous
Ramanujan identity, which are established in the next two theorems. Our treatment for
the first theorem proceeds along the line analogous to that in [21, Section 18.1]. For α∈ C
and k ∈ Z, define the generalized divisor function as

σ (α)
k := ζk ∗μ−α. (5.2)

Note that σ (α)
k = φ(−α)

k .
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Theorem 5.1. If n,s∈N, α∈ C, then

1
ns+1

∑

d|n
ds+1σ (1−α)

1

(
n

d

)
=

∞∑

k=1

c(n,k)
[t/k]∑

x=1

c(α−1)(n,kx)
(kx)s+2

(5.3)

for any real number t ≥ n.

Proof. Let �(u,v) be a function of two variables u and v. Define

D(n)=
∑

d|n
�
(
d,
n

d

)
. (5.4)

If

η(n,r)=
⎧
⎨
⎩
r, if r | n,

0, otherwise,
(5.5)

then D(n) can be written as

D(n)=
[t]∑

x=1

1
x
η(n,x)�

(
x,
n

x

)
, (5.6)

where t ≥ n. As
∑

d|r c(n,d)= η(n,r), we have, after rewriting the last relation,

D(n)= c(n,1)
[t]∑

x=1

1
x

�
(
x,
n

x

)
+ c(n,2)

[t/2]∑

x=1

1
2x

�
(

2x,
n

2x

)
+ ··· . (5.7)

Let F(u,v) be a function of two variables u and v and take

�
(
d,
n

d

)
= c(α−1)(n,d)

d
F
(
d,
n

d

)
. (5.8)

Then

D(n)= c(n,1)
[t]∑

x=1

1
x

c(α−1)(n,x)
x

F
(
x,
n

x

)
+ c(n,2)

[t/2]∑

x=1

1
2x

c(α−1)(n,2x)
2x

F
(

2x,
n

2x

)
+ ··· .

(5.9)

Taking F(u,v)= vs, we get

D(n)= ns
∞∑

k=1

c(n,k)
[t/k]∑

x=1

c(α−1)(n,kx)
(kx)s+2

. (5.10)
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On the other hand,

D(n)= 1
n

∑

d|n
c(α−1)

(
n,
n

d

)
ds+1 = 1

n

∑

d|n

∑

k|gcd(n,n/d)

kμα−1

(
n/d

k

)
ds+1

= 1
n

∑

d|n

∑

k|n/d
kμα−1

(
n/d

k

)
ds+1 = 1

n

∑

d|n
ds+1(ζ1∗μα−1

)(n
d

)
= 1

n

∑

d|n
ds+1σ (1−α)

1

(
n

d

)
,

(5.11)

and the desired result follows. �

The second possible extension looks much simpler than the first, but only holds for α
being a positive integer.

Theorem 5.2. For a real s > 1, n∈N, if α is a positive integer, then

(
ζ(s)

)α ∞∑

r=1

c(α)(n,r)
rs

= σs−1(n)
ns−1

. (5.12)

Proof. Multiplying Dirichlet series and using Lemma 1.2 (1), we get

ζ(s)
∞∑

r=1

c(α)(n,r)
rs

=
∞∑

r=1

(
ζ0∗ c(α)(n,·))

rs
(r)=

∞∑

r=1

1
rs
∑

d|r
c(α)(n,d)=

∞∑

r=1

c(α−1)(n,r)
rs

.

(5.13)

Putting Sα = Sα(n) :=∑∞
r=1 c

(α)(n,r)/rs, we find successively

ζ2Sα = ζSα−1 = Sα−2, ζ3Sα = ζ2Sα−1 = ζSα−2 = Sα−3, . . . . (5.14)

Thus

ζαSα = S0 :=
∞∑

r=1

c(0)(n,r)
rs

=
∑

r|n

1
rs−1

= σs−1(n)
ns−1

. (5.15)

�

Theorem 5.2 can be further extended using the technique and results of Ramanathan
[18], mentioned in Section 2 prior to Theorem 2.9, which readily yields the following.

Theorem 5.3. Let α,m,n∈N. If s is a real number > 1, then

∞∑

k=1

c(α)(n,mk)
ks

= c(α)(n,m)σs−1(n)
ζα(s)ns−1

∏

p|m

1 +
∑

i≥1

(
c(α)

(
n, pυp(m)+i

)/
c(α)

(
n, pυp(m)

)
pis
)

1 +
∑

i≥1

(
c(α)

(
n, pi

)
/pis

) .

(5.16)

The next corollary is a generalization of [21, Theorem 84, page 178].

Corollary 5.4. If α, m, and n∈N, then

∞∑

k=1

c(α)(n,km)
k

= 0. (5.17)
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Proof. The result follows from Theorem 5.3 by taking the limit s→ 1+ and using the fact
that lims→1+ (1/ζ(s))= 0. �

Additional identities extending [21, Theorems 85, 86, and 87 in Section 18.1] will be
derived next.

Theorem 5.5. If α,n∈N and s > 0 is real, then

φ(α)
s (n)

(
ζ(s+ 1)

)α

ns
=

∞∑

j=1

c(n, j)μα( j)
js+1

∏

p| j

1 +
∑

i≥1

(
μα
(
pυp( j)+i

)/
μα
(
pυp( j)

)
pi(s+1)

)

1 +
∑

i≥1

(
μα
(
pi
)
/pi(s+1)

) .

(5.18)

Proof. Following the proof of Theorem 5.1, taking

F(u,v)= μα(u)vs, D(n)=
∑

uv=n
F(u,v)=

∑

uv=n
μα(u)vs = φ(α)

s (n), (5.19)

we obtain

D(n)= c(n,1)
[t]∑

x=1

1
x
F
(
x,
n

x

)
+ c(n,2)

[t/2]∑

x=1

1
2x

F
(

2x,
n

2x

)
+ ··· . (5.20)

Thus,

φ(α)
s (n)
ns

= c(n,1)
[t]∑

x=1

μα(x)
xs+1

+ c(n,2)
[t/2]∑

x=1

μα(2x)
(2x)s+1

+ ··· , (5.21)

where t is real and ≥ n. Since s > 0, letting t→∞ we get

φ(α)
s (n)
ns

= c(n,1)
∞∑

x=1

μα(x)
xs+1

+ c(n,2)
∞∑

x=1

μα(2x)
(2x)s+1

+ ··· . (5.22)

Applying the result of Theorem 2.9 to the right-hand expression, the result follows. �

Theorem 5.6. If r ∈N, α∈ C, and s > 1 is real, then

∞∑

n=1

c(α)(n,r)
ns

= ζ(s)φ(α)
1−s(r). (5.23)

Proof. Since
∑∞

n=1(c(α)(n,r)/ns)=∑∞
n=1(1/ns)

∑
d|(n,r)dμα(r/d), we have

∞∑

n=1

c(α)(n,r)
ns

=
∑

d|r
dμα

(
r

d

) ∞∑

m=1

1
(md)s

=
∞∑

m=1

1
ms

∑

d|r
d1−sμα

(
r

d

)

= ζ(s)
(
μα∗ ζ1−s

)
(r)= ζ(s)φ(α)

1−s(r).

(5.24)

�

Theorems 5.2 and 5.6 are special cases of more general results in [1] and for even more
general results, see [7].
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Theorem 5.7. If n, r, and α∈N, then

∞∑

n=1

c(α)(n,r)
n

=−
∑

d|n
μα

(
r

d

)
logd, (5.25)

whenever r is α-powerful.

Proof. From Theorem 5.6, for real s > 1, we have

∞∑

n=1

c(α)(n,r)
ns

= ζ(s)
∑

d|r
d1−sμα

(
r

d

)
= ζ(s)

∑

d|r
μα

(
r

d

)
e(1−s) logd

= ζ(s)
∑

d|r
μα

(
r

d

){
1 +

(1− s) logd
1!

+
(1− s)2 log2d

2!
+ ···

}
.

(5.26)

Since lims→1+ ζ(s)(s− 1)= 1 and

∑

d|r
μα

(
r

d

)
= μα−1(r)=

∏

p|r
(−1)υp(r)

(
α− 1
υp(r)

)
= 0 (5.27)

for r being α-powerful, we have

lim
s→1

ζ(s)φ(α)
1−s(r)= lim

s→1+
ζ(s)(1− s)

∑

d|r
μα

(
r

d

)
logd =−

∑

d|r
μα

(
r

d

)
logd, (5.28)

and the desired result follows. �

6. Inverse and reciprocity law

Recall that an arithmetic function of one variable f possesses a Dirichlet inverse, f −1, if
and only if f (1) �= 0. In order to find the inverse of a GRS, which is a function of two
variables, we resort to the technique of Haukkanen [9] which involves the use of princi-
pal functions. We now briefly review Haukkanen’s technique. If f and g are arithmetic
functions of one variable, by f : g we mean the arithmetic function of two variables

( f : g)(m,n)= f (m)g(n) (m,n∈N). (6.1)

The Dirichlet convolution of two arithmetic functions F, G of two variables is defined by

(F ∗∗G)(m,n)=
∑

d|m

∑

e|n
F(d,e)G

(
m

d
,
n

e

)
. (6.2)

The identity under the Dirichlet convolution of arithmetic functions of two variables is
I : I , where I denotes the identity relative to the Dirichlet convolution of arithmetic func-
tions of one variable. The Dirichlet inverse of an arithmetic function, F, of two variables
is the unique arithmetic function of two variables, F∗∗−1, enjoying the properties that
F∗∗−1 ∗∗F = F ∗∗F∗∗−1 = I : I . It is easily shown that such Dirichlet inverse exists if
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and only if F(1,1) �= 0, and in such case, we have

(F ∗∗G)∗∗−1 = F∗∗−1∗∗G∗∗−1. (6.3)

In particular,

( f : g)∗∗−1 = f −1 : g−1. (6.4)

For an arithmetic function of one variable, f , its principal function, P( f ), which is an
arithmetic function of two variables, is defined as

P( f )(m,n)=
⎧
⎨
⎩
f (n), if m= n,

0, otherwise.
(6.5)

Clearly, P( f ∗ g)= P( f )∗∗P(g) and (P( f ))∗∗−1 = P( f −1). The sum of the form

S(m,n)=
∑

d|gcd(m,n)

f (d)g
(
m

d

)
h
(
n

d

)
(6.6)

can also be written as

S= P( f )∗∗(g : h). (6.7)

If f (1), g(1), and h(1) are all nonzero, then S is invertible and

S∗∗−1 = P
(
f −1)∗∗(g−1 : h−1), (6.8)

that is,

S∗∗−1(m,n)=
∑

d|gcd(m,n)

f −1(d)g−1
(
m

d

)
h−1

(
n

d

)
. (6.9)

Theorem 6.1. The Dirichlet inverse of the GRS c(α)(m,n) is

c(α)∗∗−1 = P
(
ζ−1

1

)∗∗(μ : μ−α
)
. (6.10)

In other words,

c(α)∗∗−1(m,n)=
∑

d|gcd(m,n)

ζ−1
1 (d)μ

(
m

d

)
μ−α

(
n

d

)
. (6.11)

Proof. Since c(α)(m,n)=∑d|gcd(m,n)dμα(n/d), we have c(α) = P(ζ1)∗∗(ζ0 : μα). Thus,

c(α)∗∗−1 = P
(
ζ−1

1

)∗∗(ζ−1
0 : μ−1

α

)= P
(
ζ−1

1

)∗∗(μ : μ−α
)
. (6.12)
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Moreover,

c(α)∗∗−1(m,n)=
∑

d|m

∑

e|n
P
(
ζ−1

1

)
(d,e)

(
μ : μ−α

)(m
d

,
n

e

)

=
∑

d|gcd(m,n)

ζ−1
1 (d)μ

(
m

d

)
μ−α

(
n

d

)
.

(6.13)

�

Following [21], a reciprocity law is a relation involving an arithmetic function of two
variables which possesses a symmetry in the variables. In the classical case, Ramanujan
sums satisfy the following reciprocity law [21, Theorem 88, page 184]: for all n,r ∈N, we
have

μ
(
γ(r)

)

r∗
c
(
nr∗,r

)= μ
(
γ(n)

)

n∗
c
(
n∗r,n

)
, (6.14)

where γ(r) is the largest square-free divisor of the integer r > 1, γ(1) := 1, and r∗ :=
r/γ(r). The validity of this law follows directly from the symmetric identity

μ(r)c(n,r)= μ(n)c(r,n) (6.15)

which holds for square-free integers n, r. The following examples show that both (6.14)
and (6.15) do not hold for general GRSs.

Examples 6.2. (1) (μ2(γ(8))/4)c(2)(12 · 4,8)=−1 �= −4= (μ2(γ(12))/2)c(2)(2 · 8,12).
(2) μ3(2)c(3)(6,2)= 3 �= 27= μ3(6)c(3)(2,6).

We now investigate when such a reciprocity law exists. Analyzing (6.15), we get the fol-
lowing.

Lemma 6.3. Let n,r ∈N and α∈ C. For a square-free r ∈N, then

μα(r)c(α)(n,r)=
∏

p|r
p|n

{(
μα(p)

)2
+ pμα(p)

}∏

p|r
p�n

(
μα(p)

)2
. (6.16)

Proof. For a fixed n ∈ N, since c(α)(n,r) and μα(r) are multiplicative functions of r, for
square-free r, we have

μα(r)c(α)(n,r)=
∏

p|r

∑

d|gcd(n,p)

μα(p)μα

(
p

d

)
d =

∏

p|r
p|n

{(
μα(p)

)2
+ pμα(p)

}∏

p|r
p�n

(
μα(p)

)2
.

(6.17)
�

From Lemma 6.3, we see clearly that in order to get a relation like (6.15), the nonsym-
metric term

∏
p|r
p�n

(μα(p))2 must take the same value when n and r are interchanged. This

can happen only in two situations, namely,
(1) α= 1 or
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(2) n and r have the same prime divisors, and the number of primes dividing n but
not dividing r is the same as the number of primes dividing r but not dividing n.

Since the case α = 1 corresponds to the classical Ramanujan sum and its reciprocity is
already well-known [21, Section IX.2], in the rest of this section, we concentrate on de-
riving a reciprocity law in the case α �= 1. In this situation, to ensure symmetry, the same
result as in Lemma 6.3 must also hold for square-free n. Taking into account the fact that
μα(n) = μα(r) for n, r both square-free and have the same number of prime factors, we
immediately deduce the following.

Proposition 6.4. Let n,r ∈N and α∈ C\{1}. If n and r are square-free and have the same
number of prime factors, then

c(α)(n,r)= c(α)(r,n), (6.18)

provided μα(r) and μα(n) are both nonzero.

Our reciprocity law reads now.

Theorem 6.5. Let α∈ C\{1}. If the positive integers r and s have their unique prime rep-
resentations of the form

n= pa1
1 ··· patt q11 ···q1s, r = pb1

1 ··· pbtt q21 ···q2s, (6.19)

where pi, q1 j , q2k are distinct primes, ai, bj positive integers, t, s nonnegative integers, then

φ(α)
1

(
pa1

1 ··· patt
)
c(α)(nr∗,r

)= φ(α)
1

(
pb1

1 ··· pbtt
)
c(α)(n∗r,n

)
, (6.20)

provided that φ(α)
1 (q11 ···q1s) and φ(α)

1 (q21 ···q2s) are both nonzero.

Proof. Using the above notation, from the shape of their prime factorizations, we easily
checked that 〈nr∗,r〉 is a unitary pair and so Corollary 2.6 yields

c(α)(nr∗,r
)= μα

(
q21 ···q2s

)
φ(α)

1

(
pa1

1 ··· patt
)
, (6.21)

provided that φ(α)
1 (q21 ···q2s) �= 0. Similarly, provided that φ(α)

1 (q11 ···q1s) �= 0, we have

c(α)(n∗r,n
)= μα

(
q11 ···q1s

)
φ(α)

1

(
pb1

1 ··· pbtt
)
. (6.22)

Since μα(q11 ···q1s)= μα(q21 ···q2s), the result follows. �

Theorem 6.5 reduces to Proposition 6.4 when both n and r are square-free.

7. Dependence of GRSs

It is shown in [16] that the Souriau-Hsu-Möbius functions, μα, of finitely many param-
eters α, are C-algebraically independent if and only if such parameters are Z-linearly in-
dependent. In this section, we ask the same question for GRSs. Since a GRS is a function
of two variables, which is multiplicative in the second variable; we look at this question
for a GRS considered with respect to this second variable while keeping the first variable
fixed. The answer is affirmative in one direction.
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Theorem 7.1. Let k ∈N, n ∈N0 be fixed integers, and α1, . . . ,αk ∈ C. If α1, . . . ,αk are Z-
linearly independent, then c(α1)(n,·), . . . ,c(αk)(n,·) are C-algebraically independent.

Proof. Assume to the contrary that c(α1)(n,·), . . . ,c(αk)(n,·) are C-algebraically dependent.
By [17, Theorem 4], there exist j1, . . . , jk ∈ Z not all zero such that

Q = (c(α1)(n,·)) j1 ∗···∗ (c(αk)(n,·)) jk (7.1)

vanishes onN′ =N\ a semigroup generated by finitely many primes. Let p ∈N′ be prime
such that p � n. Then

0=Q(p)= (c(α1)(n,·)) j1 ∗···∗ (c(αk)(n,·)) jk (p)

= j1c
(α1)(n, p) + ···+ jkc

(αk)(n, p)

=− j1α1−···− jkαk.

(7.2)

Since α1, . . . ,αk are Z-linearly independent, we must have j1 = ··· = jk = 0, which is a
contradiction. �

Theorem 7.1 does not hold if the C-algebraically independence is replaced by inde-
pendence over a subring of the ring of all arithmetic functions because by the result (1)
of Lemma 1.2, we know that c(α−1)(m,n) = (c(α)(m,·)∗ ζ0)(n), while α and α− 1 are Z-
linearly independent for irrational α.

The question about the converse of Theorem 7.1 needs more analysis as the answer
depends closely on the first variable. For at least one specific value of the first variable, the
converse is true.

Theorem 7.2. Let k ∈N and α1, . . . ,αk ∈ C. If c(α1)(1,·), . . . ,c(αk)(1,·) are C-algebraically
independent, then α1, . . . ,αk are Z-linearly independent.

Proof. Suppose that α1, . . . ,αk are Z-linearly dependent. We may assume without loss of
generality that there are i1, . . . , ik−1 ∈ Z such that αk = i1α1 + ···+ ik−1αk−1. By the result
(5) of Lemma 1.2,

c(αk)(1,·)= μαk = μi1α1+···+ik−1αk−1 = μi1α1 ∗···∗μik−1αk−1

= μi1α1
∗···∗μik−1

αk−1
= (c(α1)(1,·))i1 ∗···∗ (c(αk−1)(1,·))ik−1 ,

(7.3)

and so c(α1)(1,·), . . . ,c(αk)(1,·) are C-algebraically dependent. �

In general, the converse of Theorem 7.1 is not true as shown in the following example.
Take n= 2, α= 1, and β = 2. Clearly, α and β are Z-linearly dependent. Let q be an odd
prime. Using an algebraic independence test of Shapiro and Sparer [20, Theorem 5], by
considering the Jacobian

J
(
c(1)(2,·),c(2)(2,·);2,q

)
(1)=

∣∣∣∣
c(1)(2,2)υ2(2) c(2)(2,2)υ2(2)

c(1)(2,q)υq(q) c(2)(2,q)υq(q)

∣∣∣∣=
∣∣∣∣

1 0

−1 −2

∣∣∣∣=−2 �=0,

(7.4)
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we conclude that c(1)(2,·) and c(2)(2,·) are C-algebraically independent. This example
also shows that the converse of Popken [17, Theorem 4], the result that was used in the
proof of Theorem 7.1 above which states that if multiplicative functions f1, . . . , fn are C-
algebraically dependent, then there exist i1, . . . , in ∈ Z, not all zero such that f i11 ∗ ··· ∗
f inn = 0 on the set N′ =N\ semigroup generated by finitely many primes, is not generally
true.

Since the converse of Theorem 7.1 depends on the first variable, instead of asking for
the converse relative to GRSs with a fixed first variable, it seems more appropriate to
consider the mean value with respect to the first variable of any GRS and in this case we
have indeed a valid converse.

Theorem 7.3. Let k,r ∈N be fixed. Then 1,α1, . . . ,αk ∈ C are Z-linearly independent if and
only if M(c(·,r)), M(c(α1)(·,r)), . . . ,M(c(αk)(·,r)) are C-algebraically independent.

Proof. This is an immediate consequence of Theorem 4.1 above and [16, Theorem 11].
�

8. Applications

In this section, we give two applications of GRSs. First, we extend, in two different ways
[12, Theorem 1] which gives an interesting characterization of completely multiplicative
functions using Ramanujan sums. Second, we discuss a relation between a GRS and the
solutions of certain congruences established by Wang and Hsu [24].

Theorem 8.1. Let f be a nonzero multiplicative arithmetic function whose associated
Dirichlet series is F(s)=∑n≥1 f (n)/ns. Let c(α)(n,m) be the GRS of order α∈ C\{0}.

(i) If f is completely multiplicative, then for each m∈N,

∑

n≥1

f (n)c(α)(n,m)
ns

= (F(s)
)α∑

n≥1

f (n)M(α)(m,n)
ns

, (8.1)

where M(α)(m,n)=∑r|gcd(m,n) rμα(m/r)μα−1(n/r).
(ii) If f satisfies (8.1) for all m∈N, then f is completely multiplicative.

Proof. (i) Assume f is completely multiplicative. Using f −α = μα f , we get

(
F(s)

)−α =
∑

n≥1

(
μα f

)
(n)

ns
. (8.2)

Thus

(
μα f

)∗ ( f c(α)(·,m)
)
(n)=

∑

d|n
μα(d) f (d) f

(
n

d

)
c(α)

(
n

d
,m
)
= f (n)

∑

d|n
μα(d)

∑

r|m
r|n/d

rμα

(
m

r

)

= f (n)
∑

r|m
r|n

rμα

(
m

r

) ∑

d|n/r
μα(d)= f (n)

∑

r|m
r|n

rμα

(
m

r

)
μα−1

(
n

r

)
,

(8.3)
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that is,

(
F(s)

)−α∑

n≥1

f (n)c(α)(n,m)
ns

=
∑

n≥1

f (n)
ns

∑

r|m
r|n

rμα

(
m

r

)
μα−1

(
n

r

)
. (8.4)

(ii) Assume f satisfies (8.1). Then

(
f −α∗ f c(α)(·,m)

)
(n)= f (n)

∑

r|gcd(m,n)

rμα

(
m

r

)
μα−1

(
n

r

)
. (8.5)

We assert that f −α(pa)= (μα f )(pa) for all primes p and a∈N.
To see this, when a= 1, substituting m= 1 and n= p in (8.5), the left-hand side is

f −α(1) f (p)c(α)(p,1) + f −α(p) f (1)c(α)(1,1)= f (p) + f −α(p), (8.6)

while the right-hand side is

f (p)
∑

r|(1,p)

rμα

(
1
r

)
μα−1

(
p

r

)
=−(α− 1) f (p). (8.7)

Equating both sides, we get f −α(p)=−α f (p)= (μα f )(p).
When a= 2, substituting n= p2 and m= pi(i∈N0), in (8.5), the left-hand side is

(
f −α∗ f c(α)(·, pi))(p2)=(−1)i

(
α

i

)
f −α

(
p2)+(−1)i+1

(
α

1

)
f (p) f (p)

[(
α

i

)
−
(

α

i− 1

)
p

]

+ (−1)i
(
α

0

)
f (1) f

(
p2)

[(
α

i

)
−
(

α

i− 1

)
p+

(
α

i− 2

)
p2

]
,

(8.8)

while the right-hand side is

f
(
p2) ∑

r|gcd(pi,p2)

rμα

(
pi

r

)
μα−1

(
p2

r

)

= (−1)i f
(
p2)

[(
α

i

)(
α− 1

2

)
+ p

(
α

i− 1

)(
α− 1

1

)
+ p2

(
α

i− 2

)]
.

(8.9)

Equating both sides leads to

(
α

i

)
f −α

(
p2)= f

(
p2)

[(
α

i

)(
α− 1

2

)
+ p

(
α

i− 1

)(
α− 1

1

)
+ p2

(
α

i− 2

)]

+

(
α

1

)
f (p) f (p)

[(
α

i

)
−
(

α

i− 1

)
p

]

+ (−1)

(
α

0

)
f (1) f

(
p2)

[(
α

i

)
−
(

α

i− 1

)
p+

(
α

i− 2

)
p2

]
.

(8.10)
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Putting i= 0 in (8.10) and simplifying, we get

(
α

1

)
f −α

(
p2)= f

(
p2)

[(
α

1

)(
α− 1

2

)
−
(
α

1

)]
+

(
α

1

)(
α

1

)
f (p) f (p). (8.11)

Putting i= 1 in (8.10), we get

(
α

1

)
f −α

(
p2)= f

(
p2)

[(
α

1

)(
α− 1

2

)
+ p

(
α

0

)(
α− 1

1

)]

+

(
α

1

)
f (p) f (p)

[(
α

1

)
−
(
α

0

)
p

]
+ (−1) f

(
p2)

[(
α

1

)
−
(
α

0

)
p

]
.

(8.12)

Equating (8.11) and (8.12) and simplifying, we get
(
α
1

)
f (p2)=

(
α
1

)
f (p) f (p). Since α �= 0,

this gives f (p2)= f (p) f (p). Substituting this into (8.11), we get

f −α
(
p2)= f

(
p2)

[(
α− 1

2

)
+

(
α− 1

1

)]
= f

(
p2)

(
α

2

)
= (μα f

)(
p2). (8.13)

For a∈N, assume that

f −α
(
p j
)= (μα f

)(
p j
)
, f

(
p j
)= f (p) j for 1≤ j ≤ a− 1. (8.14)

Then for fixed m∈N, we have

(
f −α∗ f c(α)(·,m)

)(
pa
)= f −α

(
pa
)
μα(m) +

(
α

a− 1

)
(−1)a−1 f

(
pa−1) f (p)c(α)(p,m) + ···

+

(
α

1

)
(−1) f (p) f

(
pa−1)c(α)(pa−1,m

)
+ f

(
pa
)
c(α)(pa,m

)
.

(8.15)

Putting m= pi(1≤ i≤ a− 1) in (8.15) and simplifying, we get

f
(
pa
) ∑

r|gcd(pi,pa)

rμα

(
pi

r

)
μα−1

(
pa

r

)

= (−1)a+i f
(
pa
)
[(

α

i

)(
α− 1
a

)
+p

(
α

i− 1

)(
α− 1
a− 1

)
+···+pi

(
α

0

)(
α− 1
a− i

)]
.

(8.16)
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Putting n= pa in (8.5) and simplifying, we get

(
α

i

)
f −α

(
pa
)= (−1)a f

(
pa
)
[(

α

i

)(
α− 1
a

)
+ p

(
α

i− 1

)(
α− 1
a− 1

)
+ ···+ pi

(
α

0

)(
α− 1
a− i

)]

+ (−1)a
(

α

a− 1

)
f
(
pa−1) f (p)

[(
α

i

)
−
(

α

i− 1

)
p

]
+ ···

+(−1)2

(
α

1

)
f (p) f

(
pa−1)

[(
α

i

)
−
(

α

i−1

)
p+···+(−1)a−1

(
α

i−a+1

)
pa−1

]

+ (−1)

(
α

0

)
f
(
pa
)
[(

α

i

)
−
(

α

i− 1

)
p+ ···+ (−1)a

(
α

i− a

)
pa
]
.

(8.17)

Putting i= 0 in (8.17), we get
(
α

0

)
f −α

(
pa
)= (−1)a f

(
pa
)
(
α

0

)(
α− 1
a

)
+ (−1)a f

(
pa−1) f (p)

(
α

a− 1

)(
α

0

)
+ ···

+ (−1)2 f (p) f
(
pa−1)

(
α

1

)(
α

0

)
+ (−1) f

(
pa
)
(
α

0

)(
α

0

)
.

(8.18)

Multiplying (8.18) by α, we get
(
α

1

)
f −α

(
pa
)= (−1)a f

(
pa
)
(
α

1

)(
α− 1
a

)
+ (−1)a f

(
pa−1) f (p)

(
α

a− 1

)(
α

1

)

+ (−1)2 f (p) f
(
pa−1)

(
α

1

)(
α

1

)
+ (−1) f

(
pa
)
(
α

0

)(
α

1

)
.

(8.19)

Taking i= 1 in (8.17), we get

(
α

1

)
f −α

(
pa
)= (−1)a f

(
pa
)
[(

α

1

)(
α− 1
a

)
+ p

(
α

0

)(
α− 1
a− 1

)]

+ (−1)a
(

α

a− 1

)
f
(
pa−1) f (p)

[(
α

1

)
−
(
α

0

)
p

]
+ ···

+ (−1)

(
α

0

)
f
(
pa
)
[(

α

1

)
−
(
α

0

)
p

]
.

(8.20)

Subtracting (8.19) from (8.20) and simplifying, we arrive at

f
(
pa
)
[(

α− 1
a− 1

)
+(−1)a

(
α

0

)]
= f (p)a

[(
α

a− 1

)
−
(

α

a− 2

)
+···+(−1)a

(
α

1

)]
.

(8.21)
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Now we need yet another identity
(
α− 1
a− 1

)
=
(

α

a− 1

)
−
(

α

a− 2

)
+ ···+ (−1)a

(
α

1

)
+ (−1)a+1

(
α

0

)
, (8.22)

which follows from iterating the identity
(
α−1
a−1

)
=
(

α
a−1

)
−
(
α−1
a−2

)
. Using this identity with

(8.21), we get

f
(
pa
)
[(

α− 1
a− 1

)
+ (−1)a

(
α

0

)]
= f (p)a

[(
α− 1
a− 1

)
+ (−1)a

]
. (8.23)

If
(
α−1
a−1

)
�= (−1)a−1, then f (pa)= f (p)a. Substituting this last relation into (8.18), we

get

f −α
(
pa
)= (−1)a f (p)a

[(
α− 1
a

)
+

(
α− 1
a− 1

)]
= (−1)a f (p)a

(
α

a

)
= (μα f

)(
pa
)
. (8.24)

Since f and μα are multiplicative, then f −α and μα f are also multiplicative. We have
shown then by induction that f −α(pa) = (μα f )(pa) and f (pa) = f (p)a for any prime p
and a∈N, that is, that f −α = μα f and f is completely multiplicative.

If
(
α−1
a−1

)
= (−1)a−1, then both α− a+ 1 and a− 1 are nonzero. Thus

(
α−1
a−2

)
�= (−1)a.

Substituting i= 2 in (8.17) and simplifying, we get
(
α

2

)
f −α

(
pa
)

=
(
α

2

)[
(−1)a f

(
pa
)
(
α− 1
a

)
+(−1)a f

(
pa−1) f (p)

(
α

a− 1

)
+···+ (−1) f

(
pa
)
(
α

0

)]

+ (−1)a f
(
pa
)
p

[(
α

1

)(
α− 1
a− 1

)
+ p

(
α

0

)(
α− 1
a− 2

)
+

(
α

1

)(
α

0

)
(−1)a− (−1)ap

(
α

0

)]

+ f (p)a
{
−
(
α

1

)
p(−1)a

[(
α

a− 1

)
−
(

α

a− 2

)
+

(
α

a− 3

)
−···+ (−1)a

(
α

1

)]

+

(
α

0

)
p2(−1)a−1

[(
α

a− 2

)
−
(

α

a− 3

)
+ ···+ (−1)a+1

(
α

1

)]}
.

(8.25)

Multiplying (8.18) by
(
α
2

)
, we get

(
α

2

)
f −α

(
pa
)=

(
α

2

)[
(−1)a f

(
pa
)
(
α− 1
a

)
+ (−1)a f

(
pa−1) f (p)

(
α

a− 1

)

+ ···+ (−1) f
(
pa
)
(
α

0

)]
.

(8.26)
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Equating (8.25) and (8.26) yields

(−1)a f
(
pa
)
{(

α

1

)[(
α− 1
a− 1

)
+ (−1)a

]
+ p

[(
α− 1
a− 2

)
− (−1)a

]}

= (−1)a f (p)a
{(

α

1

)[(
α− 1
a− 1

)
+ (−1)a

]
+ p

[(
α− 1
a− 2

)
− (−1)a

]}
.

(8.27)

Since
(
α−1
a−1

)
= (−1)a−1, and

(
α−1
a−2

)
�= (−1)a, we get f (pa)= f (p)a, that is, f is completely

multiplicative. �

There is another proof of (ii) when α( �= 0) is not an odd integer ≥ 3 using [14, Theo-
rem 12] which runs as follows: since f satisfies (8.1), we have as before

(
f −α∗ f c(α)(·,m)

)
(n)= f (n)

∑

r|gcd(m,n)

rμα

(
m

r

)
μα−1

(
n

r

)
. (8.28)

Choose m∈N such that gcd(m,n)= 1 and μα(m) �= 0. From

(
f −α∗ f cα(·,m)

)
(n)=

∑

d|n
f −α(d) f

(
n

d

)
c(α)

(
n

d
,m
)

=
∑

d|n
f −α(d) f

(
n

d

)
μα(m)= μα(m) f −(α−1)(n),

f (n)
∑

r|gcd(m,n)=1

rμα

(
m

r

)
μα−1

(
n

r

)
= f (n)μα(m)μα−1(n)= μα(m)(μα−1 f )(n),

(8.29)

we deduce

μα(m) f −(α−1)(n)= μα(m)
(
μα−1 f

)
(n). (8.30)

Thus μα(m) �= 0 implies f −(α−1) = μα−1 f , and so f is completely multiplicative by [14,
Theorem 1.2].

Theorem 8.1(ii) is false when α= 0, for then (8.1) gives

(
f c(0)(·,m)

)
(n)= f (n)

∑

r|gcd(m,n)

rμ0

(
m

r

)
μ−1

(
n

r

)
, (8.31)

that is, f (n)
∑

d|gcd(n,m)dI(m/d)= f (n)
∑

r|gcd(m,n) rI(m/r), which holds for any arithmetic
function f .

In Theorem 8.1, putting f = ζ0 so that F = ζ(s), we obtain

(
ζ(s)

)−α∑

n≥1

c(α)(n,m)
ns

=
∞∑

n=1

M(α)(m,n)
ns

, (8.32)

which seems remarkably similar to Theorems 5.2 and 5.3.
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The function M(α)(m,n) in Theorem 8.1 is interesting because it is an example of an
arithmetic function in two variables which is multiplicative. Recall that an arithmetic
function f (m,n) in two variables is said to be multiplicative in m, n if f (m,n) f (m′,n′)=
f (mm′,nn′) whenever gcd(mn,m′n′)= 1. We see that

M(α)(mm′,nn′)=
∑

r|gcd(mm′,nn′)

rμα

(
mm′

r

)
μα−1

(
nn′

r

)

=
∑

r|gcd(m,n)
r′|gcd(m′,n′)

rr′μα
(
m

r

)
μα

(
m′

r′

)
μα−1

(
n

r

)
μα−1

(
n′

r′

)

=M(α)(m,n)M(α)(m′,n′).

(8.33)

Theorem 8.2. Let f be a nonzero multiplicative function whose associated Dirichlet series
is F(s)=∑n≥1( f (n)/ns). Let c(α)(m,n) be the GRS of order α∈ C.

(i) If f is completely multiplicative, then for each m∈N,

F(s)
∑

n≥1

f (n)c(α)(m,n)
ns

=
∑

n≥1

c(α−1)(m,n)
ns

f (n). (8.34)

(ii) If (8.34) holds for all m∈N, then f is completely multiplicative.

Proof. (i) Assume that f is completely multiplicative. Then

F(s)
∑

n≥1

f (n)c(α)(m,n)
ns

=
∑

n≥1

1
ns
∑

d|n
f (d)c(α)(m,d) f

(
n

d

)

=
∑

n≥1

f (n)
ns

∑

d|n
c(α)(m,d)=

∑

n≥1

c(α−1)(m,n)
ns

f (n).

(8.35)

(ii) Assume that (8.34) holds for all m ∈ N. For each prime p and for each integer
a≥ 2, it is enough to show that f (pa)= f (p)a.

We first treat the case a = 2. If α = 0, putting m = p, and equating the coefficients at
n= p2 in (8.34), we get

∑

d|p2

f (d)c(α)(p,d) f
(
p2

d

)
= f

(
p2)c(α−1)(p, p2). (8.36)

Solving this equation gives f (p)2 = f (p2). If α �= 0, putting m= 1, and equating the co-
efficients at n in (8.34), we get

∑

d|n
f (d)μα(n) f

(
n

d

)
= f (n)μα−1(n) (n∈N). (8.37)
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Substituting n= p2 into (8.37), we get

f (1)μα(1) f
(
p2)+ f (p)μα(p) f (p) + f

(
p2)μα

(
p2) f (1)= f

(
p2)μα−1

(
p2). (8.38)

Solving this equation gives α f (p2)= α f (p)2. Since α �= 0, we have f (p2)= f (p)2.
Now consider a ≥ 2. We proceed by induction. Assuming that f (p j) = f (p) j for all

1≤ j ≤ a− 1 and substituting n= pa in (8.37), we get

f (1)μα(1) f
(
pa
)

+ f (p)μα(p) f
(
pa−1)+ ···+ f

(
pa
)
μα
(
pa
)
f (1)= f

(
pa
)
μα−1

(
pa
)
,

(8.39)

which after simplification leads to

f
(
pa
)
[(

α− 1
a− 1

)
− (−1)a−1

]
= f (p)a

[(
α− 1
a− 1

)
− (−1)a−1

]
. (8.40)

If
(
α−1
a−1

)
�= (−1)a−1, then f (pa)= f (p)a.

If
(
α−1
a−1

)
= (−1)a−1, then both α− a+ 1 and a− 1 are nonzero. Consequently,

(
α−1
a−2

)
=

(−1)a−1(a− 1)/(α− a+ 1) �= 0. Putting m= p, and equating the coefficients at n= pa in
(8.34) yields

f
(
pa
)
c(α−1)(p, pa

)=
∑

d|pa
f (d)c(α)(p,d) f

(
pa

d

)
. (8.41)

Solving this equation yields

f
(
pa
)
{

(−1)a−1

(
α− 1
a− 1

)
+ (−1)a−2

(
α− 1
a− 2

)
p− 1

}

= f (p)a
{

(−1)a−1

(
α− 1
a− 1

)
+ (−1)a−2

(
α− 1
a− 2

)
p− 1

}
.

(8.42)

Since
(
α−1
a−1

)
= (−1)a−1, and

(
α−1
a−2

)
�= 0, we get f (pa)= f (p)a, and the proof is complete.

�

Now we extend [12, Theorem 2], which gives a relation between Ramanujan sums and
generalized Mangoldt functions; but note first that for m ∈ N and α ∈ C\{0}, we have
the asymptotic relation

c(α)(n,m)=Om(1) (n−→∞), (8.43)

which follows at once from |c(α)(n,m)| ≤∑k(modm) |μα−1(gcd(k,m))|.
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Theorem 8.3. For a fixed α∈ C, and m,n,k ∈N, if

M(α)(m,n) :=
∑

r|gcd(m,n)

rμα

(
m

r

)
μα−1

(
n

r

)
,

g(α)
k (n) := 1

n

∑

r≥1

μα(r)
r

(
log(nr)

)k
,

(8.44)

then

∑

n≥1

M(α)(m,n)
n

(
log(n)

)k =
∑

n≥1

c(α)(n,m)g(α)
k (n). (8.45)

Proof. Putting f = ζ0 in (8.1) and differentiating (with respect to s) k times, which is valid
by the above asymptotic formula, we get

∞∑

n=1

M(α)(m,n)
ns

(
log(n)

)k =
k∑

i=0

(
k

i

) ∞∑

n=1

c(α)(n,m)
ns

(
log(n)

)k−i ∞∑

r=1

μα(r)
rs

(
log(r)

)i

=
∞∑

n=1

c(α)(n,m)
ns

∞∑

r=1

( k∑

i=0

(
k

i

)
(

log(n)
)k−i(

log(r)
)i
)
μα(r)
r

=
∞∑

n=1

c(α)(n,m)
ns

∞∑

r=1

μα(r)
r

(
log(nr)

)k
.

(8.46)

The desired result follows by letting s→ 1+. �

Putting α= 1, we obtain [12, Theorem 2],

∞∑

n=1

c(n,m)g(1)
k (n)=

∞∑

n=1

M(1)(m,n)
n

(
log(n)

)k =
∑

d|m
μ
(
m

d

)(
log(d)

)k
. (8.47)

Our last application deals with solutions of certain congruences. When n,s,r ∈N, let
N(n,r,s) be the number of solutions (x1, . . . ,xs) ∈ Zs of the congruence n ≡ x1 + ··· +
xs(modr) subject to the conditions gcd(xi,r)= 1 (i=1, . . . ,s). It is well known [15, Chap-
ter 3] that N(n,r,s) is an even function (mod r) in the variable n and N(n,r,s) =
(1/r)

∑
d|r c(r/d,r)s c(n,d). We end this paper by indicating another connection between

a GRS and the number of solutions of certain congruences discovered in [24]. Let a =
(a1,a2, . . . ,ak)∈ Zk. Then, for every prime p, there uniquely exists an r × k matrix Bp(a)
over Zp := {0,1, . . . , p− 1} such that

a≡ (1, p, . . . , pr−1)Bp(a)
(

mod pr
)
. (8.48)

Let n, k ∈N and a= (a1,a2, . . . ,ak)∈ Zk. Then a is said to be rth degree prime to n, written
as (a,n)r = 1, if no row vector of Bp(a) is a zero-vector for each prime divisor p of n.



Vichian Laohakosol et al. 33

LetNr,k(n) denote the number of k-vectors a= (a1,a2, . . . ,ak)∈ Zkn such that (a,n)r=1.
The following proposition is [24, Theorem 2.2].

Proposition 8.4. If α,n,k ∈ N, then Nα,k(n) = φ(α)
k (n). In particular, if n is α-powerful,

then Nα,k(n)= φ(α)
k (n)= nk

∏
p|n(1− p−k)α.

The connection with a GRS can be seen for example by observing from Section 2 that

if k = 1, then c(α)(n,r)= φ(α)
1 (r)=Nα,1(r), whenever r | n.

As for the general case, for p prime, let Ap be a subset of the k-dimensional vector
space Zkp. Then there uniquely exists a completely multiplicative function f with f (p)
being defined by the number of vectors in Ap. For any k-vector a (mod n), we write
(a,n)A = 1 if no row vector of Bp(a) is in Ap, for every prime divisor p of n. The following
proposition is [24, Theorem 2.3].

Proposition 8.5. If α,n,k ∈N and n is α-powerful, then φ
(α, f )
k := ζk ∗ f −α just counts the

number of all k-vectors a= (a1, . . . ,ak) (mod n) such that (a,n)A = 1.
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