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We consider the following impulsive boundary value problem, x′′(t) = f (t,x,x′), t ∈
J \ {t1, t2, . . . , tk},�x(ti)= Ii(x(ti),x′(ti)),�x′(ti)= Ji(x(ti),x′(ti)), i= 1,2, . . . ,k, x(0)= 0,
x′(1) =∑m−2

j=1 αjx′(ηj). By using the coincidence degree theory, a general theorem con-
cerning the problem is given. Moreover, we get a concrete existence result which can be
applied more conveniently than recent results. Our results extend some work concerning
the usual m-point boundary value problem at resonance without impulses.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In the few past years, boundary value problems for impulsive differential equation have
been studied (see [1, 5, 7]). They discussed the existence of solutions for first-order im-
pulsive equations by the use of upper and lower solution methods. Dong [3] researched
the periodic boundary value problem for second-order impulsive equations. Liu and
Yu [6] considered the boundary value condition x′(0) = 0, x(1) =∑m−2

j=1 αjx(ηj) with
∑m−2

j=1 αj = 1 by making use of the coincidence degree which was developed by Gaines
and Mawhin [4].

We are concerned with the m-point boundary value problem for the nonlinear impul-
sive differential equation:

x′′(t)= f
(
t,x(t),x′(t)

)
, t ∈ J ′,

Δx
(
ti
)= Ii

(
x
(
ti
)
, x′

(
ti
))

, Δx′
(
ti
)= Ji

(
x
(
ti
)
,x′
(
ti
))

, i= 1,2, . . . ,k,
(1.1)

associated with the boundary value condition

x(0)= 0, x′(1)=
m−2∑

j=1

αjx
′(ηj

)
, (1.2)
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2 Second-order impulsive different equation BVP at resonance

where J = [0,1], 0 < t1 < t2 < ··· < tk < 1, J ′ = J \ {t1, t2, . . . , tk}. x ∈ R, f : J ×R×R→ R,
Ii : R×R→ R, Ji : R×R→ R are continuous, 0 < η1 < η2 < ··· < ηm−2 < 1,�x(ti)= x(ti +
0)− x(ti), �x′(ti)= x′(ti + 0)− x′(ti), i= 1,2, . . . ,k,

∑m−2
j=1 αj = 1, αj > 0, j = 1,2, . . . ,m−

2. A map x : J → R is said to be solution of (1.1)–(1.2), if it satisfies
(1) x(t) is twice continuously differentiable for t ∈ J ′, both x(t+ 0) and x(t− 0) exist

at t = ti, and x(ti)= x(ti− 0), i= 1,2, . . . ,k;
(2) x(t) satisfies the relations (1.1)–(1.2).

We will use the continuation theorem of coincidence degree [2] to show a general
theorem for the existence of solutions to the problem (1.1)–(1.2) and then use it to get
concrete existence conditions in Section 3. This paper is motivated by [2, 3, 6, 8, 9].

2. Preliminary lemmas

At first, we recall some notations and present a series of useful lemmas with respect to the
problem (1.1)–(1.2) that is important in the proof of our results. Consider an operator
equation

Lx =Nx, (2.1)

where L : domL∩X → Z is a linear operator, N : X → Z is a nonlinear operator, X and Z
are Banach spaces. If dimKerL = dim(Z/ ImL) <∞, and ImL is closed in Z, then L will
be called a Fredholm mapping of index zero. And at the same time, there exist continu-
ous projectors P : X → X and Q : Z → Z such that ImP = KerL, ImL = KerQ. It follows
that L|domL∩KerP : domL∩KerP → ImL is reversible. We denote the inverse of this map
by Kp.

Let Ω be an open and bounded subset of X . The map N will be called L-compact on
Ω if QN(Ω) is bounded and Kp(I −Q) : Ω→ X is compact. Since ImQ is isomorphic to

KerL, there exists an isomorphism Ĵ : ImQ→ KerL.

Lemma 2.1 (continuation theorem [4]). Suppose that L is a Fredholm operator of index
zero and N is L-compact on Ω, where Ω is an open bounded subset of X . If the following
conditions are satisfied:

(i) for each λ∈ (0,1), every solution x of

Lx = λNx (2.2)

is such that x /∈ ∂Ω;
(ii) QNx �= 0 for x ∈ ∂Ω∩KerL, and deg(IQN ,Ω∩KerL,0) �= 0, where Q : Z → Z is a

continuous projector with ImL= KerQ, Ĵ : Z/ ImL→ KerL is an isomorphism. Then
the operator equation (2.1) has at least one solution in domL∩Ω.

In the following, in order to obtain the existence theorem of (1.1)–(1.2) we first intro-
duce the following:

(i) X = PC1[J ,R] = {x : J → R | x(t) is twice continuously differentiable for t ∈ J ′,
there exist x′(ti + 0), x′(ti− 0) and x(ti)=x(ti− 0), x′(ti)=x′(ti− 0), i= 1,2, . . . ,
k and (1.2) is satisfied};
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(ii) Z = PC[J ,R]×R2k = {y : J → R | y(t) is continuous for t ∈ J ′, there exist y(ti −
0), y(ti + 0), and y(ti− 0)= y(ti), i= 1,2, . . . ,k}×R2k.

Let ‖x‖∞= supt∈J |x(t)| for x∈PC[J ,R] and x∈PC1[J ,R]. ‖x‖X=max{‖x‖∞,‖x′‖∞}.
And for every z = (y,c)∈ Z, denote its norm by

‖z‖ =max
{

sup
t∈J

∣
∣y(t)

∣
∣,‖c‖

}

. (2.3)

We can prove that X and Z are Banach spaces. Let domL = {x : J → R | x(t) is twice
differentiable for t ∈ J ′}∩X ,

L : domL−→ Z, x 
−→ (
x′′(t),�x

(
t1
)
, . . . ,�x

(
tk
)
,�x′

(
t1
)
, . . . ,�x′

(
tk
))

,

N : X −→ Z, x 
−→ (
f
(
t,x(t), x′(t)

)
, I1
(
x
(
t1
)
, x′

(
t1
))

, . . . ,Ik
(
x
(
tk
)
,x′
(
tk
))

,

J1
(
x
(
t1
)
,x′
(
t1
))

, . . . , Jk
(
x
(
tk
)
,x′
(
tk
)))

.

(2.4)

Then problem (1.1)–(1.2) can be written as Lx =Nx, x ∈ domL.

Lemma 2.2. Assume that L is defined as above and
∑m−2

j=1 αj = 1. Then L is a Fredholm
mapping of index zero. Furthermore, for the problem (1.1)–(1.2),

KerL= {x(t)∈ X : x(t)= ct, c ∈ R}, (2.5)

ImL= {(y,a1,a2, . . . ,ak,b1, . . . ,bk
)

: x′′(t)= y(t),�x
(
ti
)= ai,�x′

(
ti
)= bi,

i= 1,2, . . . ,k, for some x(t)∈ domL
}

=
{
(
y,a1,a2, . . . ,ak,b1,b2, . . . ,bk

)∈PC [0,1]×R2k :
m−2∑

j=1

αj

[∫ 1

ηj

y(s)ds+
∑

ti>ηj

bi

]

=0

}

.

(2.6)

Proof. Firstly, it is easily seen that (2.5) holds. Next we will show that (2.5) holds. Since
problem

x′′(t)= y(t), t ∈ J ′,

�x
(
ti
)= ai, �x′

(
ti
)= bi

(2.7)

has solution x(t) satisfying (1.2) if and only if

m−2∑

j=1

αj

[∫ 1

ηj

y(s)ds+
∑

ti>ηj

bi

]

= 0. (2.8)

In fact, if (2.7) has solution x(t) such that (1.2), then from (2.7) we have

x(t)= x(0) + x′(0)t+
∫ t

0

∫ s

0
y(τ)dτ ds+

∑

ti<t

bi
(
t− ti

)
+
∑

t>ti

ai. (2.9)

Thus

x′(t)= x′(0) +
∫ t

0
y(s)ds+

∑

t>ti

bi. (2.10)
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In view of (1.2), we have

x(0)= 0, x′
(
ηj
)= x′(0) +

∫ ηj

0
y(s)ds+

∑

ηj>ti

bi,

0= x′(1)−
m−2∑

j=1

αjx
′(ηj

)=
m−2∑

j=1

αj

[∫ 1

ηj

y(s)ds+
∑

ti>ηj

bi

]

.

(2.11)

Hence, (2.8) holds.
On the other hand, if (2.8) holds setting

x(t)= ct+
∫ t

0

∫ s

0
y(τ)dτ ds+

∑

ti<t

bi
(
t− ti

)
+
∑

t>ti

ai, (2.12)

where c ∈ R is an arbitrary constant, then it is clear that x(t) is a solution of (2.7) and
satisfies (1.2). Hence, (2.5) holds.

Take the projector Q : Z → Z as follows:

Q
(
y,a1, . . . ,ak,b1, . . . ,bk

)=
(

2
∑m−2

j=1 αj
(
1−η2

j

)

m−2∑

j=1

αj

[∫ 1

ηj

y(τ)dτ +
∑

ti>ηj

bi

]

· t,0, . . . ,0

)

(2.13)

and for (y,a1,a2, . . . ,ak,b1,b2, . . . ,bk)∈ Z. Let

z = (y1,a1,a2, . . . ,ak,b1,b2, . . . ,bk
)

= (y,a1, . . . ,ak,b1,b2, . . . ,bk
)−Q

(
y,a1,a2, . . . ,ak,b1, . . . ,bk

)
,

(2.14)

then z ∈ ImL. Thus, we have

dim(Z/ ImL)= dimImQ = 1= dimKerL, (2.15)

moreover by the Ascoli-Arzela theorem, L is a Fredholm mapping of index zero. �

3. Main results

By applying Lemma 2.1, a general theorem for the existence of solutions to the problem
(1.1)–(1.2) is obtained. And concrete existence conditions for the same problem are also
obtained.

For any subset G⊂ R2, let

Ω= {x ∈ X
∣
∣
(
x(t),x′(t)

)∈G,
(
x
(
t+
i

)
,x′
(
t+
i

))∈G, ∀t ∈ J , i= 1,2, . . . ,k},
Ω∩KerL= {x = ct | (ct,c)∈G, ∀t ∈ J

}=G1, Ĝ1 =
{
c ∈ R : ct ∈G1

}
.

(3.1)
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Theorem 3.1. Assume that the following conditions are satisfied:
(1) let G ⊂ R2 be an open bounded subset such that for every λ ∈ (0,1), each possible

solution x(t) of the auxiliary system

x′′(t)= λ f
(
t,x,x′

)
, t ∈ J ′,

�x
(
ti
)= λIi

(
x
(
ti
)
,x′
(
ti
))

,

�x′
(
ti
)= λJi

(
x
(
ti
)
,x′
(
ti
))

, i= 1,2, . . . ,k,

x(0)= 0, x′(1)=
m−2∑

j=1

αjx
′(ηj

)

(3.2)

satisfies x /∈ ∂Ω;
(2) h(c) �= 0, for c ∈ ∂Ĝ1, deg(h,Ĝ1,0) �= 0, where h is defined by

h(c)= 2
∑m−2

j=1 αj
(
1−η2

j

) ·
m−2∑

j=1

αj

[∫ 1

ηj

f (τ,cτ,c)dτ +
∑

ti>ηj

Ji
(
cti,c

)
]

. (3.3)

Then the BVP (1.1)–(1.2) has at least one solution x(t) satisfying (x(t),x′(t))∈G, for t ∈ J .

Proof. By Lemma 2.2, we know that L is a Fredholm operator of index zero, and the
problem (3.2) can be written as Lx = λNx. Set

Ω= {x ∈ X :
(
x(t),x′(t)

)∈G,
(
x
(
ti + 0

)
,x′
(
ti + 0

))∈G, ∀t ∈ J , i= 1, . . . ,k
}
. (3.4)

Then Ω is open and bounded. To use Lemma 2.1, we show at first N is L-compact on Ω.
Defining a projector

P : X −→ KerL, P
(
x(t)

)= x′(0)t, (3.5)

then Kp : ImL→ KerP∩domL can be written in

Kpz = Kp
(
y,a1, . . . ,ak,b1, . . . ,bk

)=
∫ t

0

∫ s

0
y(τ)dτ ds+

∑

ti<t

bi
(
t− ti

)
+
∑

ti<t

ai. (3.6)
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In fact, we have KpL = I − P, thus for any x ∈ domL, KpLx = x− x′(0)t, so (3.6) holds.
Again from (2.13) and (3.6), we have

QNx =
(

2
∑m−2

j=1 αj
(
1−η2

j

) ·
m−2∑

j=1

αj

[∫ 1

ηj

f
(
τ,x(τ),x′(τ)

)
dτ

+
∑

ti>ηj

Ji
(
x
(
ti
)
,x′
(
ti
))
]

· t,0, . . . ,0

)

,

Kp(I −Q)Nx =
∫ t

0

∫ s

0
f
(
τ,x(τ),x′(τ)

)
dτ ds+

∫ t

0

∑

ti<s

Ji
(
x
(
ti
)
,x′
(
ti
))
ds

+
∑

ti<t

Ii
(
x
(
ti
)
,x′
(
ti
))−

∫ t

0

∫ s

0

2
∑m−2

j=1 αj
(
1−η2

j

)

·
m−2∑

j=1

αj

[∫ 1

ηj

f
(
τ,x(τ),x′(τ)

)
dτ +

∑

ti>ηj

Ji
(
x
(
ti
)
,x′
(
ti
))
]

· sdsdt.

(3.7)

By using the Ascoli-Arzela theorem, we can prove that QN(Ω) is bounded and Kp(I −
Q)N : Ω→ X is compact, thus N is L-compact on Ω.

At last, we will prove that (i), (ii) of Lemma 2.1 are satisfied. Note that x ∈ ∂Ω, if
and only if (x(t),x′(t)) ∈ G, for t ∈ J , and either (x(s),x′(s)) ∈ ∂G, for some s ∈ J , or
(x(ti0 + 0),x′(ti0 + 0)) ∈ ∂G, for some i0 = {1,2, . . . ,k}, then the assumption (i) follows
from condition (1).

Let Ĵ : ImQ→ KerL : (ct,0, . . . ,0)→ ct be the isomorphism. Then

ĴQNx = 2
∑m−2

j=1 αj
(
1−η2

j

) ·
m−2∑

j=1

αj

[∫ 1

ηj

f
(
τ,x(τ),x′(τ)

)
dτ +

∑

ti>ηj

Ji
(
x
(
ti
)
,x′
(
ti
))
]

· t.

(3.8)

Take an isomorphism g : G1 → R, g(ct)= c,

h(c)= g
(
ĴQNg−1c

)= 2
∑m−2

j=1 αj
(
1−η2

j

) ·
m−2∑

j=1

αj

[∫ 1

ηj

f (τ,cτ,c)dτ +
∑

ti>ηj

Ji
(
cti,c

)
]

,

g(Ω∩ kerL)= Ĝ1,
(3.9)

then

deg
{
ĴQN ,Ω∩ kerL,0

}= deg
{
gĴQNg−1,g

(
Ω∩ kerL

)
,g(0)

}= deg
{
h,Ĝ1,0

} �= 0
(3.10)

in view of (2), h(c) �= 0, for c ∈ ∂Ĝ1, then ĴQNx �= 0, x ∈ ∂Ω∩KerL, that is, condition
(2) yields (ii) of Lemma 2.1, and the proof is finished. �
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Remark 3.2. A similar result is given in [3] for the periodic boundary value problems
(see Theorem 3.1 therein). However, there is something wrong in its proof. For a subset
G⊂ R2n, define

Ω= {x ∈ X :
(
x(t),x′(t)

)∈G for t ∈ [0,T];
(
x
(
ti + 0

)
,x′
(
ti + 0

))∈G, for i= 1,2, . . . ,k
}
.

(3.11)

Then Ω∩KerL = {x ∈ Rn : (x,0) ∈ G}, which is not the set G1 = {x ∈ Rn : there exists
y ∈ R such that (x, y)∈G} defined by the author.

For example, take G= {(x, y)∈ R2 : x2 + (y− 1)2 < 4}. We have

Ω∩KerL= {x ∈ R : x2 + 1 < 4
}= (−√3,

√
3
)
,

G1 =
{
x ∈ R : x2 < 4

}= (−2,2)
(3.12)

since KerL = R. So the proof of Theorem 1 in [3] is not correct. The same problem ap-
pears in the proof of Theorem 1 in [6].

Let

a1 = max
|y|≤M, |x|≤Mt1

∣
∣I1(x, y)

∣
∣,

a2 = max
|y|≤M, |x|≤Mt2+a1

∣
∣I2(x, y)

∣
∣,

a3 = max
|y|≤M, |x|≤Mt3+a1+a2

∣
∣I3(x, y)

∣
∣··· ,

ak = max
|y|≤M, |x|≤Mtk+

∑k−1
l=1 al

∣
∣Ik(x, y)

∣
∣.

(3.13)

Since x(t)= ∫ t0 x′(s)ds +
∑

ti<t Ii(x(ti),x′(ti)), if |x′(t)| ≤M, t ∈ J , then

|x(t)| ≤M +
k∑

i=1

ai := M̂. (3.14)

Theorem 3.3. Let f : J ×R×R→ R be a continuous function and suppose that there exists
a constant M > 0 such that

y f (t,x, y) > 0, yJi(x, y) > 0, (3.15)

for |y| ≥M, (t,x)∈ J × [−M̂,M̂], i= 1,2, . . . ,k.
Then BVP(1.1)–(1.2) with

∑m−2
j=1 αj = 1 has at least one solution x(t)∈ PC1[0,1].
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Proof. Let

f ∗(t,x, y)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (t,x, y), |x| ≤ M̂,

f (t,M̂, y), x > M̂,

f (t,−M̂, y), x <−M̂,

J∗i (x, y)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ji(x, y), |x| ≤ M̂,

Ji(M̂, y), x > M̂,

Ji(−M̂, y), x <−M̂.

(3.16)

Suppose x(t) is a solution to BVP (3.2). We show at first that ‖x′‖ <M, when λ∈ (0,1).
Otherwise, there is t0 ∈ [0,1] such that ‖x′‖ = |x′(t0)| = supt∈J |x′(t)| ≥M.

Without loss of generality we suppose that x′(t0)≥M.
If t0 /∈ {ti, i= 1,2, . . . ,k}∪{0,1}, then one has

x′
(
t0
)= sup

t∈J
x′(t)≥M, x′′

(
t0
)≤ 0. (3.17)

However, by condition (3.15), x′′(t0)= λ f ∗(t0,x(t0),x′(t0)) > 0, a contradiction.
If t0 ∈ {ti, i= 1,2, . . . ,k}, say t0 = ti, then J∗i (x(ti),x′(ti)) > 0 and hence

x′
(
t+
i

)= x′
(
ti
)

+ λJ∗i
(
x
(
ti
)
, x′

(
ti
))

> x′
(
ti
)

(3.18)

which contradicts the assumption x′(ti)= supt∈J x
′(t).

If t0 = t+
i := ti + ε, then there is σ ∈ (0, ti+1 − ti), (if i = k, ti+1 is replaced by 1), such

that x′(t) > M, t ∈ (ti, ti + σ). Since x′′(t) = λ f ∗(t,x(t),x′(t)), t ∈ (ti, ti + σ), x′′(t+
i ) =

λ f ∗(ti,x(t+
i ),x′(t+

i )) > 0, then

x′
(
ti + σ

)= x′
(
t+
i

)
+
∫ ti+σ

ti
x′′(s)ds > x′

(
t+
i

)
(3.19)

which contradicts x′(t+
i )= supt∈J x

′(t).

If t0 = 1, since
∑m−2

j=1 αj = 1, αj ∈ (0,1), and x′(1)=∑m−2
j=1 αjx′(ηj) yield that

x′(1)= x′
(
η1
)= ··· = x′

(
ηm−2

)= sup
t∈J

x′(t) (3.20)

which is the case we have discussed in case 1.
If t0 = 0, x′(0) = supt∈J |x(t)| ≥M, then x′′(0) = λ f (0,x(0),x′(0)) > 0. So there is a

σ > 0 small enough, such that x′′(t) > 0, t ∈ (0,σ), which yields

x′(σ)= x′(0) +
∫ σ

0
x′′(s)ds > x′(0), (3.21)

a contraction.
So ‖x′‖ <M holds for all cases.
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Since x(t)= ∫ t0 x′(s)ds+
∑

ti<t Ii(x(ti),x′(ti)), and |x′(t)| ≤M, t ∈ J , then

∣
∣x(t)

∣
∣≤Mt+

k∑

i=1

ai ≤M +
k∑

i=1

ai = M̂ (3.22)

and in turn the prior bound is obtained. Let Ω = {x ∈ X | ‖x‖X < M̂ + 1}. We have x /∈
∂Ω.

By the proof of Theorem 3.1, we know that h(c)= gĴQNg−1c,

h(c)= 0⇐⇒ gĴQNg−1c = 0⇐⇒ ĴQNct = 0⇐⇒QNct = 0⇐⇒Nct ∈ ImL, (3.23)

one has x ∈ {x = ct : |ct| < M̂ + 1, t ∈ J , |c| < M̂ + 1} = {ct : |c| < M̂ + 1} and
Ĝ1 = (−M̂ − 1,M̂ + 1). When c = M̂ + 1 or c = −(M̂ + 1) by condition (3.15), it holds
that

sgnc·
m−2∑

j=1

αj

[∫ 1

ηj

f (τ,cτ,c)dτ +
∑

ti>ηj

Ji
(
cti,c

)
]

> 0, (3.24)

c ∈ ∂Ĝ1 = {−M̂− 1,M̂ + 1}.
Obviously,

sgnc·h(c)= sgnc·gĴQNg−1(ct)

= sgnc· 2
∑m−2

j=1 αj
(
1−η2

j

) ·
m−2∑

j=1

αj

[∫ 1

ηj

f (τ,cτ,c)dτ +
∑

ti>ηj

Ji
(
cti,c

)
]

> 0

(3.25)

for c ∈ ∂Ĝ1 = {−M̂− 1,M̂ + 1}. Then

deg
{
gĴQNg−1,Ĝ1,0

}= deg
{
h, (−M̂− 1,M̂ + 1),0

}= 1. (3.26)

Hence, the conditions of Theorem 3.1 are satisfied and the proof of Theorem 3.3 is com-
pleted. �

Finally, we present an example to check our result.

Example 3.4. Consider the boundary value problem

x′′(t)= x′(t)
[
t2 + ln

(
2 + x2(t)

)
+ x′2(t)

]
+ 3t sin

(
x(t) + 1

)
, t ∈ [0,1], t �= 1

2
,

�x
(

1
2

)

= sinx
(

1
2

)

, �x′
(

1
2

)

= x′
(

1
2

)[

1 + x′2
(

1
2

)]

−
[

2 + cosx
(

1
2

)]

, t = 1
2

,

x(0)= 0, x′(1)= x′
(

1
3

)

,

(3.27)

where f (t,x,x′) = x′(t)[t2 + ln(2 + x2(t)) + x′2(t)] + 3t sin(x(t) + 1), I(x,x′) = sinx(t),
J = x′(t)[1 + x′2(t)]− [2 + cosx(t)].
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In this example, we note that tk = 1/2, k = 1, α= 1, ηj = 1/3, j = 1.
We choose a constant M > 0 large enough, let

a= max
|x′|<M, |x|≤Mt1

∣
∣I(x,x′)

∣
∣= max

|x′|<(1/2)M, |x|≤M

∣
∣
∣
∣sinx

(
1
2

)∣
∣
∣
∣= 1. (3.28)

Since x(t)= ∫ t0 x′(s)ds+ I(x,x′)= ∫ t0 x′(s)ds+ sinx(1/2),

∣
∣x(t)

∣
∣≤M + 1 := M̂. (3.29)

When |x′| ≥M, (t,x)∈ J × [−M̂,M̂], obviously

x′ · f (t,x,x′)= x′2(t)
[
t2 + ln

(
2 + x2(t)

)
+ x′2(t)

]
+ x′(t)

[
3t sin

(
x(t) + 1

)]
> 0,

x′ · J = x′2(t)
[
1 + x′2(t)

]− x′(t)
[
2 + cosx(t)

]
> 0,

(3.30)

that is to say, the condition of Theorem 3.3 is satisfied. The BVP (3.27) has at least one
solution.
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