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The purpose of the paper is to develop a new method for obtaining explicit formulas
for the error of approximation of bivariate functions by sums of univariate functions.
It should be remarked that formulas of this type have been known only for functions
defined on a rectangle with sides parallel to coordinate axes. Our method, based on a
maximization process over closed bolts, allows the consideration of functions defined on
a hexagon or octagon with sides parallel to coordinate axes.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

It is well known that the approximation of functions of several variables by simple com-
binations of univariate functions is of both theoretical and practical significance. This
type of approximation has arisen, for example, in connection with the classical functional
equations [5], the numerical solution of certain elliptic PDE boundary value problems
[4], and dimension theory [15].

Consider the above-mentioned approximation in its simplest form, that is, an approx-
imation of a continuous function f (x, y) defined on a compact set Q ⊂ R2 by functions
from the manifold

D = {ϕ(x) +ψ(y)
}

, (1.1)

where ϕ(x), ψ(y) are defined and continuous on the projections ofQ onto the coordinate
axes x and y, respectively. The error in this approximation is defined as the distance from
f to D:

E( f ,Q)= dist( f ,D)= inf
(ϕ+ψ)∈D

‖ f −ϕ−ψ‖C(Q). (1.2)

A function ϕ0(x) +ψ0(y) from D, if it exists, is called an extremal element or a best
approximation if

E( f ,Q)= ∥∥ f −ϕ0−ψ0
∥
∥. (1.3)
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2 Approximation by sums of univariate functions

In some applications, one may be interested in computational techniques for the er-
ror of approximation. Diliberto and Straus [6] were the first to establish a formula for
E( f ,R), where R is a rectangle with sides parallel to coordinate axes. Their formula con-
tains the supremum over all closed lightning bolts (for this terminology, see [1, 8, 9, 11,
13]). Later the same formula was established by other authors differently in rectangular
case (see [13]) and for more general sets (see [9, 11]). Although the formula is valid for
all continuous functions, it is not easily calculable. Some authors have been seeking easily
calculable formulas for the approximation error by considering not the whole space but
some subsets of continuous functions. For example, Rivlin and Sibner [14] showed that
for a function f (x, y) with the continuous nonnegative derivative ∂2 f /∂x∂y on a rectan-
gle R= [a1,b1]× [a2,b2] the approximation error can be calculated using the formula

E( f ,R)= 1
4

[
f
(
a1,a2

)
+ f
(
b1,b2

)− f
(
a1,b2

)− f
(
b1,a2

)]
. (1.4)

Babaev [2] generalized this result and proved that the formula is valid for a continuous
function f (x, y) with the nonnegative difference Δh1h2 f . Formulas of this type for some
special classes of bivariate functions were established by the author in [10].

It should be said that the known techniques for obtaining the formulas of this type
considerably use a geometrical structure of the rectangle R, the fact that R is a Cartesian
product of two line segments.

Our purpose is to develop a new method for obtaining explicit formulas providing
precise and easy computation of E( f ,Q) on some simple polygons Q with sides paral-
lel to coordinate axes. By simple polygons we mean polygons with the total number of
vertices not more than 8. This method is based on the herein developed bolts maximiza-
tion process and can be used in alternative proofs of the known results from [2, 10, 14].
First, we show efficiency of the method in the example of a hexagon with sides parallel
to coordinate axes. Then we formulate two theorems, which can be proved in a similar
way, and touch some aspects of the question about the case of an arbitrary polygon with
sides parallel to coordinate axes. The condition posed on sides of polygons is essential for
our method. This has several reasons, which get clear through the proof of Theorem 2.1.
Here we are able to explain one of these reasons: by [8, Theorem 3], a continuous func-
tion f (x, y) defined on a polygon with sides parallel to coordinate axes has an extremal
element, the existence of which is required by our method. Now, let K be a rectangle (not
speaking about polygons) with sides not parallel to coordinate axes. Does any function
f ∈ C(K) have an extremal element? No one knows (see [8]).

In the sequel, all the considered polygons are assumed to have sides parallel to coordi-
nate axes.

2. The maximization process

Let H be a closed hexagon. It is clear that H can be uniquely represented in the form

H = R1∪R2, (2.1)

where R1, R2 are rectangles and there does not exist any rectangle R such that R1 ⊂ R⊂H
or R2 ⊂ R⊂H .
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A bolt of lightning (see [1]) inH is a finite ordered subset p = {p1, p2, . . . , pn} ofH such
that pi �= pi+1, each line segment pi pi+1 (unit of the bolt) is parallel to the coordinate axis
x or y, and two adjacent units pi pi+1 and pi+1pi+2 are perpendicular. A bolt of lightning
p is said to be closed if pnp1⊥p1p2 (in this case, n is an even number). We associate each
closed bolt p = {p1, p2, . . . , p2n} with the following functional:

l( f , p)= 1
2n

2n∑

k=1

(−1)k−1 f
(
pk
)
. (2.2)

Denote by M(H) the class of continuous functions f (x, y)∈ C(H) satisfying the con-
dition

f
(
x1, y1

)
+ f
(
x2, y2

)− f
(
x1, y2

)− f
(
x2, y1

)≥ 0 (2.3)

for any rectangle [x1,x2]× [y1, y2]⊂H .

Theorem 2.1. Let H be a hexagon and let (2.1) be its representation. Let f (x, y)∈M(H).
Then

E( f ,H)=max
{∣∣l( f ,h)

∣
∣,
∣
∣l
(
f ,r1

)∣∣,
∣
∣l
(
f ,r2

)∣∣}, (2.4)

where h, r1, r2 are closed bolts formed by vertices of the polygons H , R1, R2, respectively.

Proof. Without loss of generality, we may assume that the rectangles R1 and R2 are of the
following form:

R1 =
[
a1,a2

]× [b1,b3
]
, R2 =

[
a1,a3

]× [b1,b2
]
, a1 < a2 < a3, b1 < b2 < b3. (2.5)

Introduce the notation

f11 = f
(
a1,b1

)
, f12 =− f

(
a1,b2

)
, f13 =− f

(
a1,b3

)
;

f21 =− f
(
a2,b1

)
, f22 =− f

(
a2,b2

)
, f23 = f

(
a2,b3

)
;

f31 =− f
(
a3,b1

)
, f32 = f

(
a3,b2

)
.

(2.6)

It is clear that

∣
∣l
(
f ,r1

)∣∣= 1
4

(
f11 + f13 + f23 + f21

)
,

∣
∣l
(
f ,r2

)∣∣= 1
4

(
f11 + f12 + f32 + f31

)
,

∣
∣l( f ,h)

∣
∣= 1

6

(
f11 + f13 + f23 + f22 + f32 + f31

)
.

(2.7)

Let p = {p1, p2, . . . , p2n} be any closed bolt. We group the points p1, p2, . . . , p2n by put-
ting

p+ =
{
p1, p3, . . . , p2n−1

}
, p− =

{
p2, p4, . . . , p2n

}
. (2.8)

First, assume that l( f , p) ≥ 0. We apply the following algorithm, hereafter called the
maximization process over closed bolts, to the bolt p.
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Step 1. Consider sequentially units pi pi+1 (i= 1,2n, p2n+1= p1) with the vertices pi(xi, yi),
pi+1(xi+1, yi+1) having equal abscissae: xi = xi+1. Then we have four cases.

(1) pi ∈ p+ and yi+1 > yi. In this case, replace the unit pi pi+1 by a new unit qiqi+1 with
vertices qi = (a1, yi), qi+1 = (a1, yi+1).

(2) pi ∈ p+ and yi+1 < yi. In this case, replace the unit pi pi+1 by a new unit qiqi+1 with
vertices qi = (a2, yi), qi+1 = (a2, yi+1) if b2 < yi ≤ b3 or with vertices qi = (a3, yi),
qi+1 = (a3, yi+1) if b1 ≤ yi ≤ b2.

(3) pi ∈ p− and yi+1 < yi. In this case, replace pi pi+1 by a new unit qiqi+1 with vertices
qi = (a1, yi), qi+1 = (a1, yi+1).

(4) pi ∈ p− and yi+1 > yi. In this case, replace pi pi+1 by a new unit qiqi+1 with vertices
qi = (a2, yi), qi+1 = (a2, yi+1) if b2 < yi+1 ≤ b3 or with vertices qi = (a3, yi), qi+1 =
(a3, yi+1) if b1 ≤ yi+1 ≤ b2.

Since f ∈M(H), it is not difficult to verify that

f
(
pi
)− f

(
pi+1

)≤ f
(
qi
)− f

(
qi+1

)
for cases (1) and (2),

− f (pi
)

+ f
(
pi+1

)≤− f (qi
)

+ f
(
qi+1

)
for cases (3) and (4).

(2.9)

It is clear that after Step 1 the bolt p is replaced by the ordered set q = {q1,q2, . . . ,q2n}.
We say not a bolt but an ordered set because of a possibility of coincidence of some suc-
cessive points qi, qi+1 (this, e.g., may happen if the first case takes place for units pi−1pi
and pi+1pi+2). Exclude simultaneously successive and coincident points from q. Then we
obtain some closed bolt, which we denote by q′ = {q′1,q′2, . . . ,q′2m}. It is not difficult to un-
derstand that all points of the bolt q′ are located on straight lines x = a1, x = a2, x = a3.

From inequalities (2.9) and the fact that 2m≤ 2n, we deduce that

l( f , p)≤ l( f ,q′). (2.10)

Step 2. Consider sequentially units q′i q
′
i+1 (i = 1,2m, q′2m+1 = q′1) with the vertices q′i =

(x′i , y
′
i ), q′i+1 = (x′i+1, y′i+1) having equal ordinates: y′i = y′i+1. Then we have four cases.

(1) q′i ∈ q′+ and x′i+1 > x
′
i . In this case, replace the unit q′i q

′
i+1 by a new unit p′i p

′
i+1 with

vertices p′i = (x′i ,b1), p′i+1 = (x′i+1,b1).
(2) q′i ∈ q′+ and x′i+1 < x

′
i . In this case, replace the unit q′i q

′
i+1 by a new unit p′i p

′
i+1

with vertices p′i = (x′i ,b2), p′i+1 = (x′i+1,b2) if x′i = a3 and with vertices p′i = (x′i ,b3),
p′i+1 = (x′i+1,b3) if x′i = a2.

(3) q′i ∈ q′− and x′i+1 < x
′
i . In this case, replace q′i q

′
i+1 by a new unit p′i p

′
i+1 with vertices

p′i = (x′i ,b1), p′i+1 = (x′i+1,b1).
(4) q′i ∈ q′− and x′i+1 > x

′
i . In this case, replace q′i q

′
i+1 by a new unit p′i p

′
i+1 with ver-

tices p′i = (x′i ,b2), p′i+1 = (x′i+1,b2) if x′i+1 = a3 and with vertices p′i = (x′i ,b3), p′i+1 =
(x′i+1,b3) if x′i+1 = a2.

It is easy to see that after Step 2 the bolt q′ is replaced by the bolt p′ = {p′1, p′2, . . . , p′2m}
and

l( f ,q′)≤ l( f , p′). (2.11)
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From (2.10) and (2.11), we deduce that

l( f , p)≤ l( f , p′). (2.12)

It is clear that each point of the set p′+ coincides with one of the points (a1,b1), (a2,b3),
(a3,b2) and each point of the set p′− coincides with one of the points (a1,b2), (a1,b3),
(a2,b1), (a2,b2), (a3,b1). Denote by mij the number of points of the bolt p′ coinciding
with the point (ai,bj), i, j = 1,3, i+ j �= 6. By (2.6), we can write

l( f , p′)= 1
2m

∑

i, j=1,3
i+ j≤5

mij fi j . (2.13)

On the straight line x = ai or y = bi, i= 1,3, the number of points of the set p′+ is equal
to the number of points of the set p′−. Hence,

m11 =m12 +m13 =m21 +m31, m23 =m22 +m21 =m13, m32 =m31 =m12 +m22.
(2.14)

From these equalities, we deduce that

m11 =m12 +m21 +m22, m13 =m21 +m22,

m23 =m21 +m22, m31 =m12 +m22.
(2.15)

Consequently,

2m=
∑

i, j=1,3
i+ j≤5

mij = 4m12 + 4m21 + 6m22. (2.16)

Considering (2.15) and (2.16) in (2.13) and taking (2.7) into account, we obtain

l( f , p′)= 4m12
∣
∣l
(
f ,r2

)∣∣+ 4m21
∣
∣l
(
f ,r1

)∣∣+ 6m22
∣
∣l( f ,h)

∣
∣

4m12 + 4m21 + 6m22

≤max
{∣∣l
(
f ,r1

)∣∣,
∣
∣l
(
f ,r2

)∣∣,
∣
∣l( f ,h)

∣
∣}.

(2.17)

Therefore, due to (2.12),

l( f , p)≤max
{∣∣l
(
f ,r1

)∣∣,
∣
∣l
(
f ,r2

)∣∣,
∣
∣l( f ,h)

∣
∣}. (2.18)

Note that in the beginning of the proof the bolt p has been chosen so that l( f , p)≥ 0.
Let now p = {p1, p2, . . . , p2n} be any closed bolt such that l( f , p) ≤ 0. Since l( f , p′′) =
−l( f , p)≥ 0 for the bolt p′′ = {p2, p3, . . . , p2n, p1},we obtain from (2.18) that

−l( f , p)≤max
{∣∣l
(
f ,r1

)∣∣,
∣
∣l
(
f ,r2

)∣∣,
∣
∣l( f ,h)

∣
∣}. (2.19)
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From (2.18) and (2.19), we deduce on the strength of arbitrariness of p that

sup
p⊂H

{∣∣l( f , p)
∣
∣}=max

{∣∣l
(
f ,r1

)∣∣,
∣
∣l
(
f ,r2

)∣∣,
∣
∣l( f ,h)

∣
∣}, (2.20)

where the sup is taken over all closed bolts of the hexagon H .
The hexagon H satisfies all the conditions of [8, Theorem 3] on the existence of a best

approximation. By [9, Theorem 2], we obtain

E( f ,H)= sup
p⊂H

{∣∣l( f , p)
∣
∣}. (2.21)

From (2.20) and (2.21), we finally conclude that

E( f ,H)=max
{∣∣l
(
f ,r1

)∣∣,
∣
∣l
(
f ,r2

)∣∣,
∣
∣l( f ,h)

∣
∣}. (2.22)

�

Corollary 2.2. Let a function f (x, y) have the continuous nonnegative derivative ∂2 f /
∂x∂y on H . Then the formula (2.4) is valid.

The proof is very simple and can be obtained by integrating the inequality ∂2 f /∂x∂y ≥
0 over an arbitrary rectangle [x1,x2]× [y1, y2]⊂H and applying the above-proven theo-
rem.

Remark 2.3. As seen from the proof of Theorem 2.1, we considerably use the powerful
apparatus—bolts of lightning and results closely connected with this notion. Direct gen-
eralization of these results (and therefore Theorem 2.1) from our case to the case of ap-
proximation of a function f (x1, . . . ,xn) by sums

∑n
i=1ϕi(xi) is quite difficult on the simple

ground that there is not yet any suitable definition of a bolt of lightning in n-dimensional
case. All attempts made to solve this problem were not complete and contained gaps in
the proof (see [7, 11, 12]). It should be noted that this interesting problem is still open.

3. E-bolts

The main idea in the proof of Theorem 2.1—the closed bolts maximization principle—
can be successfully used in obtaining formulas of type (2.4) for functions f (x, y) defined
on another simple polygons. The following two theorems include the cases of some oc-
tagons and can be proved in a similar way.

Theorem 3.1. Let a1 < a2 < a3 < a4, b1 < b2 < b3 and let Q be an octagon of the following
form:

Q=
4⋃

i=1

Ri, (3.1)

where R1 = [a1,a2]× [b1,b2], R2 = [a2,a3]× [b1,b2], R3 = [a3,a4]× [b1,b2], R4 = [a2,a3]
× [b2,b3].

Let f ∈M(Q). Then

E( f ,Q)=max
{∣∣l( f ,q)

∣
∣,
∣
∣l
(
f ,r123

)∣∣,
∣
∣l
(
f ,r124

)∣∣,
∣
∣l
(
f ,r234

)∣∣,
∣
∣l
(
f ,r24

)∣∣}, (3.2)
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where q, r123, r124, r234, r24 are closed bolts formed by the vertices of polygonsQ, R1∪R2∪R3,
R1∪R2∪R4, R2∪R3∪R4, and R2∪R4, respectively.

Theorem 3.2. Let a1 < a2 < a3 < a4, b1 < b2 < b3 and let Q be an octagon of the following
form:

Q=
3⋃

i=1

Ri, (3.3)

where R1 = [a1,a4]× [b1,b2], R2 = [a1,a2]× [b2,b3], R3 = [a3,a4]× [b2,b3].
Let f ∈M(Q). Then

E( f ,Q)=max
{∣∣l( f ,r)

∣
∣,
∣
∣l
(
f ,r12

)∣∣,
∣
∣l
(
f ,r13

)∣∣}, (3.4)

where r, r12, r13 are closed bolts formed by the vertices of polygons R = [a1,a4]× [b1,b3],
R1∪R2, R1∪R3, respectively.

Although the closed bolts maximization process can be applied to bolts of an arbi-
trary polygon, some combinatorial difficulties arise when grouping values at points of
a maximized bolt (a bolt obtained after maximization process) as we have done it in the
proof of Theorem 2.1 (see (2.13)–(2.18)). While we cannot give a complete answer to this
problem, we can describe the points of a polygon F with which points of maximized bolts
coincide and state a conjecture concerning the approximation error.

Let F = A1A2 ···A2n be a polygon with sides, as mentioned in the introduction, par-
allel to coordinate axes. The vertices A1,A2, . . . ,A2n in the given order form a closed bolt
of lightning, which we denote by rF . The length [rF] of the bolt rF is a number of points
forming rF . In our case, [rF]= 2n.

Definition 3.3. Let F and S be polygons with sides parallel to coordinate axes. The closed
bolt rF is an e-bolt (extended bolt) of S if rF ⊂ S and there does not exist any polygon F′

such that F ⊂ F′, rF′ ⊂ S, [rF′]≤ [rF].

For example, in Theorem 3.2, the octagon Q has 3e-bolts. They are r, r12, and r13.
In Theorem 3.1, the octagon Q has 5e-bolts, which are q, r123, r124, r234, and r24. The
polygon S2n =

⋃n−1
i=1 Ri, where Ri = [ai,ai+1]× [b1,bn+1−i], i= 1,n− 1, a1 < a2 < ··· < an,

b1 < b2 < ··· < bn, has exactly 2n−1− 1e-bolts. It is not difficult to observe that the set of
points of a closed bolt obtained after maximization process is a subset of the set of points
of all e-bolts. This condition and Theorems 2.1, 3.1, and 3.2 justify the statement of the
following conjecture.

Conjecture 3.4. Let S be any polygon with sides parallel to coordinate axes and f (x, y)∈
M(S). Then

E( f ,S)=max
h∈SB

{∣∣l( f ,h)
∣
∣}, (3.5)

where SB is a set of all e-bolts of the polygon S.
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4. Error estimates

Theorem 2.1 enables us to consider classes wider than M(H) and establish sharp esti-
mates for the approximation error.

Theorem 4.1. Let H be a hexagon and let (2.1) be its representation. The following sharp
estimates are valid for a function f (x, y) having the continuous derivative ∂2 f /∂x∂y on H :

A≤ E( f ,H)≤ BC+
3
2

(
B
∣
∣l(g,h)

∣
∣−∣∣l( f ,h)

∣
∣), (4.1)

where

B = max
(x,y)∈H

∣
∣
∣
∣
∂2 f (x, y)
∂x∂y

∣
∣
∣
∣, g = g(x, y)= x · y,

A=max
{∣∣l( f ,h)

∣
∣,
∣
∣l
(
f ,r1

)∣∣,
∣
∣l
(
f ,r2

)∣∣}, C=max
{∣∣l(g,h)

∣
∣,
∣
∣l
(
g,r1

)∣∣,
∣
∣l
(
g,r2

)∣∣},
(4.2)

h, r1, r2 are closed bolts formed by vertices of the polygons H , R1, and R2, respectively.

Remark 4.2. Equation (4.1)-type inequalities were established in [2] for the approxima-
tion of a function f (x) = f (x1, . . . ,xn), defined on a parallelepiped with sides parallel
to coordinate axes, by sums

∑n
i=1ϕi(x\xi). For the approximation of bivariate functions,

Babaev’s result contains only rectangular case. On the other hand, this type of approxi-
mation is not a generalization of the type of approximation considered here, as functions
ϕi(x\xi)= ϕi(x1, . . . ,xi−1,xi+1, . . . ,xn) are not univariate (see Remark 2.3).

Remark 4.3. Estimates (4.1) are easily calculable in contrast to those established in [3] for
any continuous function defined on certain domains, which are different from a polygon
with the number of sides more than 4.

To prove Theorem 4.1, we need the following lemmas.

Lemma 4.4. Let X be a normed space and let F be a subspace of X . The following inequalities
are valid for any element x = x1 + x2 from X :

∣
∣E
(
x1
)−E(x2

)∣∣≤ E(x)≤ E(x1
)

+E
(
x2
)
, (4.3)

where

E(x)= E(x,F)= inf
y∈F
‖x− y‖. (4.4)

Lemma 4.5. If f ∈M(H), then

∣
∣l
(
f ,ri
)∣∣≤ 3

2

∣
∣l( f ,h)

∣
∣, i= 1,2. (4.5)

Lemma 4.4 is obvious. To prove Lemma 4.5, note that for any f ∈M(H),

6
∣
∣l( f ,h)

∣
∣= 4

∣
∣l
(
f ,ri
)∣∣+ 4

∣
∣l
(
f ,r3

)∣∣, i= 1,2, (4.6)

where r3 is a closed bolt formed by the vertices of the rectangle R3 =H\Ri.
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Proof. It is not difficult to verify that if ∂2u/∂x∂y≥0 onH for some u(x,y), ∂2u(x,y)/∂x∂y
∈ C(H), then u ∈ M(H) (see the proof of Corollary 2.2). Set f1 = f + Bg. Since
∂2 f1/∂x∂y ≥ 0 on H , f1 ∈M(H). By Lemma 4.5,

∣
∣l
(
f1,ri

)∣∣≤ 3
2

∣
∣l
(
f1,h

)∣∣, i= 1,2. (4.7)

Theorem 2.1 implies that

E
(
f1,H

)=max
{∣∣l
(
f1,h

)∣∣,
∣
∣l
(
f1,r1

)∣∣,
∣
∣l
(
f1,r2

)∣∣}. (4.8)

We deduce from (4.7) and (4.8) that

E
(
f1,H

)≤ 3
2

∣
∣l
(
f1,h

)∣∣. (4.9)

First, let the closed bolt h start at the point (a1,b1). Then it is clear that

E
(
f1,H

)≤ 3
2
l
(
f1,h

)
. (4.10)

By Lemma 4.4,

E( f ,H)−E(Bg,H)≤ E( f1,H
)
. (4.11)

Inequalities (4.10) and (4.11) yield

E( f ,H)≤ BE(g,H) +
3
2
l
(
f1,h

)
. (4.12)

Since the functional l( f ,h) is linear,

l
(
f1,h

)= l( f ,h) +Bl(g,h). (4.13)

Considering this expression of l( f1,h) in (4.12), we get

E( f ,H)≤ BE(g,H) +
3
2
Bl(g,h) +

3
2
l( f ,h). (4.14)

Now set f2 = Bg − f . Then ∂2 f2/∂x∂y ≥ 0 on H . It can be shown, by the same way as
(4.14) has been obtained, that

E( f ,H)≤ BE(g,H) +
3
2
Bl(g,h)− 3

2
l( f ,h). (4.15)
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From (4.14) and (4.15), it follows that

E( f ,H)≤ BE(g,H) +
3
2
Bl(g,h)− 3

2

∣
∣l( f ,h)

∣
∣. (4.16)

Note that since g ∈M(H) and h starts at the point (a1,b1), l(g,h)≥ 0.
Let now h start at a point such that l(u,h)≤ 0 for any u∈M(H), hence for g, f1, and

f2. Then applying the same techniques from the beginning of the proof up to (4.16), we
obtain

E( f ,H)≤ BE(g,H)− 3
2
Bl(g,h)− 3

2

∣
∣l( f ,h)

∣
∣, (4.17)

where l(g,h)≤ 0. From (4.16), (4.17) and the fact that E(g,H)= C (in view of Theorem
2.1), it follows that

E( f ,H)≤ BC+
3
2

(
B
∣
∣l(g,h)

∣
∣−∣∣l( f ,h)

∣
∣). (4.18)

The upper bound in (4.1) has been established. Notice that it is attained by f = g = xy.
Proof of the lower bound in (4.1) is simple. One of the obvious properties of the func-

tional l( f , p) is that |l( f , p)| ≤ E( f ,H) for any continuous function f on H and a closed
bolt p. Hence,

A=max
{∣∣l( f ,h)

∣
∣,
∣
∣l
(
f ,r1

)∣∣,
∣
∣l
(
f ,r2

)∣∣}≤ E( f ,H). (4.19)

Notice that by Theorem 2.1 the lower bound in (4.1) is attained by any function from
M(H). �

Remark 4.6. In view of Theorems 3.1 and 3.2 and the ideas set forth in Section 3, it is pos-
sible to establish sharp estimates of type (4.1) for bivariate functions defined on another
simple polygons with sides parallel to coordinate axes.
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