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1. Introduction

Consider the Cauchy’s functional equation, hereby called CFE,

f

⎛
⎝

A∑

j=1

ujαj

⎞
⎠=

A∑

j=1

f
(
ujαj

)
. (1.1)

Under various assumptions on A and α′j s, Pisot and Schoenberg [8] solved for monotone
solutions of (1.1). In a subsequent paper [9], they treated the case where the domain of
solutions is a subset of Rn with the following main result. Let α1,α2, . . . ,αA be elements of
Rn (n < A) satisfying the following conditions:

(1) every set of n elements among the αi is linearly independent over R,
(2) the elements α1,α2, . . . ,αA are rationally independent, that is, linearly indepen-

dent overQ.
Let S = {∑A

j=1ujαj | uj ∈N0, the set of nonnegative integers}, B a Banach space and f :
S→ B. If f is a uniformly continuous solution of the CFE (1.1), then f (x) admits a unique
representation of the form f (x) = λ(x) +

∑A
m=1ϕm(x), where λ is a linear function from

Rn into B, and each ϕm (m= 1,2, . . . ,A) is a function from Rm = {umαm +
∑A

j=1, j �=mkjαj |
um ∈N0, kj ∈ Z} into B satisfying

(1) ϕm(0)= 0,
(2) ϕm(x+αj)= ϕm(x) ( j �=m, x ∈ Rm),
(3) ϕm is a uniformly continuous function on Rm into B.

Studying both of Pisot’s and Schoenberg’s works, we observe two significant features,
first, that their method of proof in [9], both beautiful and powerful, can be extended to
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wider classes of functional equations and second, that the rational independence can be
replaced by denseness, even though the two conditions are not equivalent. We illustrate
these observations by solving similar, but different, CFEs in the complex field together
with relevant examples and several remarks relating them with the classical complex CFE
(see [1]) and in particular with an old theorem of Erdös about monotone additive func-
tions (see [4]). Our main results say roughly that solutions of complex CFEs, uniformly
continuous over some dense subsets and additive with respect to certain real or complex
base elements, consist generally of two parts, one linear and the other periodic, and the
periodic part disappears if each of its elements has a natural dense subdomain.

2. Case of real base elements

In this section, we solve the CFE (1.1) with real base elements αj and Gaussian integer
coefficients.

Theorem 2.1. Let A∈N, A≥ 2, and α1,α2, . . . ,αA ∈R be such that the set

S+ =
{ A∑

m=1

(
um + ivm

)
αm | um,vm ∈N0

}
(2.1)

is dense in C. If f : S+ → C is a uniformly continuous solution of the functional equation

f

( A∑

m=1

(
um + ivm

)
αm

)
=

A∑

m=1

{
f
(
umαm

)
+ f

(
ivmαm

)}
, (2.2)

then f can be uniquely written as

f (x)= λ(x) +
A∑

m=1

ϕm(x), (2.3)

where λ : C→ C is an R-linear function and ϕm (m= 1,2, . . . ,A) is a complex-valued func-
tion defined on

Sm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
uma + iumb

)
αm +

A∑

j=1
j �=m

(
kja + ikjb

)
αj

∣∣uma,umb ∈N0; kja,kjb ∈ Z

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(⊇ S+) (2.4)

satisfying
(1) ϕm(0)= 0,
(2) ϕm(x+αj)= ϕm(x+ iαj)= ϕm(x) ( j �=m and x ∈ Sm),
(3) ϕm is uniformly continuous on Sm.

Proof. Let f be a uniformly continuous solution of (2.2). There are three major steps in
the proof. First, we show that the two limits limN→∞ f (Nαm)/N and limN→∞ f (iNαm)/iN
exist. Then we define an R-linear function λ : C→ C and show that λ is uniformly con-
tinuous on S+. Finally, the periodic functions ϕm are constructed.
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Step 1. Let ε > 0. By the uniform continuity of f , there exists δ > 0 such that

∀z,w ∈ S+, |z−w| < δ =⇒ ∣∣ f (z)− f (w)
∣∣ < ε. (2.5)

Since S+ is dense in C, there are x, y ∈ S+ such that |x− y| < δ. Write

x =
A∑

m=1

(
cma + icmb

)
αm, y =

A∑

m=1

(
dma + idmb

)
αm, (2.6)

where all cma,cmb,dma,dmb ∈N0. Set qmτ = cmτ −dmτ (m= 1,2, . . . ,A), τ ∈ {a,b}, and split
{1,2, . . . ,A} into any two disjoint nonempty sets I and J with I ∪ J = {1,2, . . . ,A}.

We claim that for each M ∈N, we have

∣∣∣∣∣
∑

t∈I

{
f
((
cta + ictb

)
αt
)− f

((
dta + idtb

)
αt
)}

+
1
M

∑

j∈J
η ja
{
f
((
wja +M

∣∣qja

∣∣)αj
)− f

(
wjaαj

)}

+
1
M

∑

j∈J
η jb
{
f
(
i
(
wjb +M

∣∣qjb

∣∣)αj
)− f

(
iwjbαj

)}
∣∣∣∣∣ < ε,

(2.7)

where, for j ∈ J , wja, wjb are any nonnegative integers, ηjτ = 1 if qjτ ≥ 0, ηjτ = −1 if
qjτ < 0 (τ ∈ {a,b}).

To prove this inequality, define c(k)
jτ , d(k)

jτ for τ ∈ {a,b}, j ∈ J , and k ∈N as follows:

if qjτ ≥ 0, set c(k)
jτ =wjτ + kqjτ , d(k)

jτ =wjτ + (k− 1)qjτ ;

if qjτ < 0, set c(k)
jτ =wjτ + (k− 1)

∣∣qjτ

∣∣, d(k)
jτ =wjτ + k

∣∣qjτ

∣∣.
(2.8)

We see that c(k)
jτ ,d(k)

jτ ∈N0 and qjτ = c(k)
jτ −d(k)

jτ . Now

∣∣∣∣∣

{∑

t∈I

(
cta + ictb

)
αt +

∑

j∈J

(
c(k)
ja + ic(k)

jb

)
αj

}
−
{∑

t∈I

(
dta + idtb

)
αt +

∑

j∈J

(
d(k)
ja + id(k)

jb

)
αj

}∣∣∣∣∣

=
∣∣∣∣∣

A∑

m=1

(
qma + iqmb

)
αm

∣∣∣∣∣=
∣∣∣∣∣

A∑

m=1

(
cma + icmb

)
αm−

A∑

m=1

(
dma + idmb

)
αm

∣∣∣∣∣= |x− y| < δ,

(2.9)

which, by the uniform continuity condition (2.5) and the CFE (2.2), yields

∣∣∣∣∣
∑

t∈I

{
f
((
cta + ictb

)
αt
)− f

((
dta + idtb

)
αt
)}

+
∑

j∈J

{
f
(
c(k)
ja αj

)
− f

(
d(k)
ja αj

)}
+
∑

j∈J

{
f
(
ic(k)

jb αj

)
− f

(
id(k)

jb αj

)}∣∣∣∣∣ < ε.

(2.10)
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In the last two sums, split J into two pairs of disjoint subsets

J = Ja+ ∪ Ja− , J = Jb+ ∪ Jb− , (2.11)

where Ja+ = { j ∈ J | qja ≥ 0}, Ja− = { j ∈ J | qja < 0}, Jb+ = { j ∈ J | qjb ≥ 0}, and Jb− =
{ j ∈ J | qjb < 0}. Thus

∑

j∈J

{
f
(
c(k)
ja αj

)
− f

(
d(k)
ja αj

)}
=
∑

j∈Ja+

{
f
(
c(k)
ja αj

)
− f

(
d(k)
ja αj

)}

+
∑

j∈Ja−

{
f
(
c(k)
ja αj

)
− f

(
d(k)
ja αj

)}
,

(2.12)

and we also have a similar expression for b in place of a but with purely imginary argu-
ments. Note that

M∑

k=1

∑

j∈Ja+

{
f
(
c(k)
ja αj

)
− f

(
d(k)
ja αj

)}

=
∑

j∈Ja+

M∑

k=1

{
f
((
wja + kqja

)
αj
)− f

((
wja + (k− 1)qja

)
αj
)}

=
∑

j∈Ja+

{
f
((
wja +Mqja

)
αj
)− f

(
wjaαj

)}
,

(2.13)

and similarly,

M∑

k=1

∑

j∈Ja−

{
f
(
c(k)
ja αj

)
− f

(
d(k)
ja αj

)}
=
∑

j∈Ja−

{
f
(
wjaαj

)− f
((
wja +M

∣∣qja

∣∣)αj
)}

,

M∑

k=1

∑

j∈Jb+

{
f
(
ic(k)

jb αj

)
− f

(
id(k)

jb αj

)}
=
∑

j∈Jb+

{
f
(
i
(
wjb +Mqjb

)
αj
)− f

(
iwjbαj

)}
,

M∑

k=1

∑

j∈Jb−

{
f
(
ic(k)

jb αj

)
− f

(
id(k)

jb αj

)}
=
∑

j∈Jb−

{
f
(
iwjbαj

)− f
(
i
(
wjb +M

∣∣qjb

∣∣)αj
)}
.

(2.14)

Using these equations, summing over k = 1,2, . . . ,M in (2.10) and dividing by M, the
claim (2.7) follows. For each m, by the denseness of S+, there exist qka,qkb ∈ N0 (k =
1,2, . . . ,A; k �=m) and qma,qmb ∈N such that |(q1a + iq1b)α1 + ···+ (qAa + iqAb)αA| < δ,
and so componentwise |q1aα1 + ···+ qAaαA| < δ and |iq1bα1 + ···+ iqAbαA| < δ. From
(2.2), (2.7) with x = q1aα1 + ··· + qAaαA, y = 0, J = {m}, and I = {1,2, . . . ,A}\{m},
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we deduce
∣∣∣∣∣
∑

t∈I
f
(
qtaαt

)
+

1
M

{
f
((
wma +Mqma

)
αm
)− f

(
wmaαm

)}
∣∣∣∣∣ < ε, (2.15)

and similarly, with x = iq1bα1 + ···+ iqAbαA, we deduce
∣∣∣∣∣
∑

t∈I
f
(
iqtbαt

)
+

1
M

{
f
(
i(wmb +Mqmb

)
αm
)− f

(
iwmbαm

)}
∣∣∣∣∣ < ε. (2.16)

For each u,v ∈N, by the division algorithm, we can write u= wa +Maqma and v = wb +
Mbqmb, where 0≤wa < qma and 0≤wb < qmb. We see that if u,v→∞, then Ma and Mb →
∞. This allows us to consider in (2.15) and (2.16) the values of wma and wmb in the same
ranges as wa and wb, respectively. Letting M→∞ in (2.15), we have

∣∣∣∣∣
∑

t∈I
f
(
qtaαt

)
+ qmaL

∣∣∣∣∣≤ ε, (2.17)

where L is any one of the possible limits of the sequence { f (uαm)/u}.
We now show that L is unique. Suppose that L1, L2 are any two limits of the sequence.

From (2.17), we get |qma||L1−L2|≤2ε, and so L1=L2. This implies that limN→∞ f (Nαm)/
N = λmR exists. The existence of limN→∞ f (iNαm)/iN = λmI is similarly derived from
(2.16).

Step 2. For each x ∈ C, if x = ∑A
m=1(xma + ixmb)αm (xma,xmb ∈ R), define λ(x) =∑A

m=1(xmaλmR + ixmbλmI). The representation of any x ∈ C with respect to α1,α2, . . . ,αA
above is clearly always possible but certainly not unique. We first verify that λ is in-
deed well defined. To do so, it suffices to show that if 0 =∑A

m=1(xma + ixmb)αm, then∑A
m=1(xmaλmR + ixmbλmI)= 0. There are two possible cases.

Case 1. xmτ = 0 for all m∈ {1,2, . . . ,A} and all τ ∈ {a,b}. This case is trivial.

Case 2. There exists xm′τ′ �= 0 for some m′ ∈ {1,2, . . . ,A} and τ′ ∈ {a,b}.
From Dirichlet’s diophantine approximation theorem (see [5, Chapter I]), for each

ν∈N, there are t(ν),k(ν)
mτ ∈ Z with t(ν) > 0 such that

∣∣t(ν)xmτ − k(ν)
mτ

∣∣ < 1
ν

(m= 1,2, . . . ,A; τ = a,b), (2.18)

with k(ν)
mτ := 0 if xmτ = 0. Note that we may choose t(ν) →∞ as ν→∞, so that for xmτ �= 0,

we must have |k(ν)
mτ| →∞ as ν→∞. From the representation of 0, we get

∣∣∣∣∣
A∑

m=1

(
k(ν)
ma + ik(ν)

mb

)
αm

∣∣∣∣∣=
∣∣∣∣∣

A∑

m=1

(
k(ν)
ma + ik(ν)

mb

)
αm− t(ν)

A∑

m=1

(
xma + ixmb

)
αm

∣∣∣∣∣

=
∣∣∣∣∣

A∑

m=1

{(
k(ν)
ma− t(ν)xma

)
+ i
(
k(ν)
mb− t(ν)xmb

)}
αm

∣∣∣∣∣≤
2
ν

A∑

m=1

∣∣αm
∣∣.

(2.19)
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Thus

lim
ν→∞

∣∣∣∣∣
A∑

m=1

(
k(ν)
ma + ik(ν)

mb

)
αm

∣∣∣∣∣= 0. (2.20)

From (2.18), using the fact that xm′τ′ �= 0, we arrive at

lim
ν→∞

k(ν)
mτ

k(ν)
m′τ′

= xmτ

xm′τ′
. (2.21)

Clearly, for each m= 1,2, . . . ,A, we have sgnk(ν)
mτ = sgnxmτ when ν is sufficiently large. Let

U+
a = {m | xma > 0}, U−

a = {m | xma < 0}, U+
b = {m | xmb > 0}, and U−

b = {m | xmb < 0}.
Rewriting (2.20) as

lim
ν→∞

∣∣∣∣∣∣∣

⎛
⎜⎝
∑

t∈U+
a

k(ν)
ta αt +

∑

t∈U+
b

ik(ν)
tb αt

⎞
⎟⎠−

⎛
⎜⎝
∑

s∈U−
a

∣∣∣k(ν)
sa

∣∣∣αs +
∑

s∈U−
b

i
∣∣∣k(ν)

sb

∣∣∣αs

⎞
⎟⎠

∣∣∣∣∣∣∣
= 0, (2.22)

using uniform continuity, (2.2), and f (0)= 0, we get as ν→∞,

∣∣∣∣∣

{ ∑

t∈U+
a

f
(
k(ν)
ta αt

)
+
∑

t∈U+
b

f
(
ik(ν)

tb αt
)}
−
{ ∑

s∈U−
a

f
(∣∣∣k(ν)

sa

∣∣∣αs
)

+
∑

s∈U−
b

f
(
i
∣∣∣k(ν)

sb

∣∣∣αs
)}∣∣∣∣∣−→ 0,

(2.23)

and so
∣∣∣∣∣∣∣
∑

t∈U+
a

f
(
k(ν)
ta αt

)

k(ν)
m′τ′

· k
(ν)
ta

k(ν)
ta

+
∑

t∈U+
b

f
(
ik(ν)

tb αt
)

k(ν)
m′τ′

· ik
(ν)
tb

ik(ν)
tb

−
∑

s∈U−
a

f
(∣∣∣k(ν)

sa

∣∣∣αs
)

k(ν)
m′τ′

·
∣∣∣k(ν)

sa

∣∣∣
∣∣∣k(ν)

sa

∣∣∣
−
∑

s∈U−
b

f
(
i
∣∣∣k(ν)

sb

∣∣∣αs
)

k(ν)
m′τ′

·
i
∣∣∣k(ν)

sb

∣∣∣

i
∣∣∣k(ν)

sb

∣∣∣

∣∣∣∣∣∣∣
−→ 0,

(2.24)

which, by (2.21) and Step 1, yields

∣∣∣∣∣
∑

t∈U+
a

λtR
xta
xm′τ′

+
∑

t∈U+
b

λtI
ixtb
xm′τ′

−
∑

s∈U−
a

λsR

∣∣xsa
∣∣

xm′τ′
−
∑

s∈U−
b

λsI
i
∣∣xsb

∣∣
xm′τ′

∣∣∣∣∣= 0. (2.25)

Thus
∑A

m=1(xmaλmR + ixmbλmI) = 0, that is, λ(0) = 0, which shows that λ is a function.
That λ is linear over R, and so uniformly continuous on S+, is easily checked.

Step 3. Define the function ω : S+ → C by ω(x)= f (x)− λ(x).
Then ω is uniformly continuous and satisfies (2.2) on S+ as f and λ are. Moreover, by

Step 1 and the linearity of λ, we have

lim
N→∞

ω
(
Nαm

)

N
= 0= lim

N→∞
ω
(
iNαm

)

iN
. (2.26)
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For each m= 1,2, . . . ,A, define ϕm : Sm (⊇ S+)→ C by
(1) ϕm(0)= 0,
(2) ϕm(x+αj)= ϕm(x+ iαj)= ϕm(x) for all j �=m, x ∈ Sm,
(3) ϕm

(
(uma + iumb)αm

)= ω
(
(uma + iumb)αm

)
.

To confirm the shape of solution, note that for x =∑A
m=1(xma + ixmb)αm ∈ S+, we have

f (x)= λ(x) +ω(x)= λ(x) +
A∑

m=1

ω
((
xma + ixmb

)
αm
)

= λ(x) +
A∑

m=1

ϕm
((
xma + ixmb

)
αm
)= λ(x) +

A∑

m=1

ϕm(x).

(2.27)

Finally, to complete the proof, we are left only to show that ϕm is uniformly continuous
on Sm. Fix m and let ε > 0. Since ω is uniformly continuous on S+, there exists δ∗ > 0 such
that for all x, y ∈ S+, |x− y| < δ∗ ⇒ |ω(x)−ω(y)| < ε. Let

ζ = (uma + iumb
)
αm +

A∑

j=1
j �=m

(
kja + ikjb

)
αj , η = (vma + ivmb

)
αm +

A∑

j=1
j �=m

(
l ja + il jb

)
αj

(2.28)

be elements of Sm with |ζ − η| < δ∗. For each j �=m, rewrite qja + iq jb = (kja + ikjb)−
(l ja + il jb). Choose uja,ujb,vja,vjb ∈N0 so that qja + iq jb = (uja + iujb)− (vja + iv jb). Let

x = (uma + iumb)αm +
∑A

j=1, j �=m(uja + iujb)αj , and y = (vma + ivmb)αm +
∑A

j=1, j �=m(vja +
iv jb)αj . Then

|x− y| =

∣∣∣∣∣∣∣∣∣

{(
uma + iumb

)
αm−

(
vma + ivmb

)
αm
}

+
A∑

j=1
j �=m

(
qja + iq jb

)
αj

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

{(
uma + iumb

)
αm−

(
vma + ivmb

)
αm
}

+
A∑

j=1
j �=m

((
kja + ikjb

)− (l ja + il jb
))
αj

∣∣∣∣∣∣∣∣∣

= |ζ −η| < δ∗.
(2.29)

Applying (2.7) with f = ω, I = {m}, J = {1,2, . . . ,A}\{m}, wja =wjb = 0, and qjτ = ujτ −
vjτ (τ = a,b), we get

∣∣∣∣∣ω
((
uma + iumb

)
αm
)−ω

((
vma + ivmb

)
αm
)

+
1
M

∑

j∈J
η ja
{
ω
(
M
∣∣qja

∣∣αj
)− 0

}
+

1
M

∑

j∈J
η jb
{
ω
(
iM
∣∣qjb

∣∣αj
)− 0

}
∣∣∣∣∣ < ε.

(2.30)
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Since the sequences ω(M|qja|αj)/M and ω(iM|qjb|αj)/M are subsequences of ω(Nαj)/N
and ω(iNαj)/N , respectively, by (2.26), we have

lim
M→∞

ω
(
M
∣∣qja

∣∣αj
)

M
= 0= lim

M→∞
ω
(
iM
∣∣qjb

∣∣αj
)

M
( j ∈ J). (2.31)

Letting M→∞ in (2.30) and using (2.31), we get

∣∣ω((uma + iumb
)
αm
)−ω

((
vma + ivmb

)
αm
)∣∣≤ ε. (2.32)

As ϕm(ζ) = ϕm((uma + iumb)αm) = ω((uma + iumb)αm) and similarly ϕm(η) = ω((vma +
ivmb)αm), we deduce that |ϕm(ζ)− ϕm(η)| ≤ ε, that is, ϕm is uniformly continuous on
Sm, which completes the proof. �

Corollary 2.2. Let A∈N, A≥ 2, and α1,α2, . . . ,αA ∈R be such that
(1) S+ = {∑A

m=1(um + ivm)αm | um,vm ∈N0} is dense in C,
(2) Tm = {

∑A
j=1, j �=m(uj + iv j)αj | uj ,vj ∈ Z} (m= 1, . . . ,A) is dense in Sm.

If f : S+ → C is a uniformly continuous solution of the CFE (2.2), then f is an R-linear
function; in particular f (z) = az + bz̄, where a, b are arbitrary complex constants and z̄
denotes the complex conjugate of z.

Proof. The first part will follow from Theorem 2.1 if we show that each ϕm vanishes iden-
tically. This is immediate from the facts that elements of Sm can be approximated ar-
bitrarily closely by elements of Tm, while ϕm is continuous on Sm and vanishes identi-
cally on Tm. The second part follows from the linearity of λ, viz, if z = x + iy ∈ C, then
f (z)= λ(z)= xλ(1) + yλ(i). �

Corollary 2.2 may be regarded as an extension of a special case of the classical complex
CFE: f (z1 + z2)= f (z1) + f (z2), whose general solution is of the form f (z)= az+ bz̄; see
[1, Proposition 2 in Chapter 5].

The next two propositions provide examples for Theorem 2.1 and Corollary 2.2. For
convenience, we make use of the following notation: Z[i] denotes the ring of Gaussian
integers, whileN0[i] denotes the subset of Gaussian integers both of whose real and imag-
inary parts are nonnegative.

Proposition 2.3. Let A∈N, A≥ 2, and α1,α2, . . . ,αA ∈ R. If there are two rationally in-
dependent α′j s whose ratio is a negative real number, then S+ := α1N0[i] + α2N0[i] + ···+
αAN0[i] is dense in C.

Proof. Suppose that αm and αn are rationally independent and αm/αn < 0. Then both are
nonzero and at least one of them is irrational. Consider here the case where αm is irra-
tional > 0 and αn < 0; other cases can be similarly handled. Let r1 + ir2 ∈ C and ε > 0. By
Kronecker’s theorem, see [5, Chapter II], there are infinitely many natural numbers u1, v1

and integers u2, v2 such that |u1(αm/|αn|)− u2 − r1/|αn|| < ε/2|αn|, |v1(αm/|αn|)− v2 −
r2/|αn|| < ε/2|αn|. We can choose these integers so that u1αm− r1 > 0, v1αm− r2 > 0, and
so u2, v2 are also positive. Thus |(u1 + iv1)αm + (u2 + iv2)αn− (r1 + ir2)| ≤ |u1αm +u2αn−
r1|+ |v1αm + v2αn− r2| < ε, yielding the denseness of S+ in C. �
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Let us note in passing that in Proposition 2.3, denseness only requires rational inde-
pendence of two base elements, which to a certain extent indicates that the two concepts,
denseness and rational independence, are not totally equivalent.

Proposition 2.4. Let A ∈N, A ≥ 3, and α1,α2, . . . ,αA ∈ R. If the α′j s are pairwise ratio-
nally independent, then each Tm =

∑n
j=1, j �=mαjZ[i] (m= 1, . . . ,A) is dense in C.

Proof. It suffices to show that αkZ[i] +αlZ[i] (l,k �=m) is dense in C. Let r1 + ir2 ∈ C and
ε > 0. Again by Kronecker’s theorem, there are infinitely many u1,v1 ∈N and u2,v2 ∈ Z
such that |u1(αk/αl)− u2 − r1/αl| < ε/2|αl| and |v1(αk/αl)− v2 − r2/αl| < ε/2|αl|. Thus
|(u1 + iv1)αk + (u2 + iv2)αl − (r1 + ir2)| < ε. �

The combined result of Corollary 2.2 and Proposition 2.4 can be regarded as a com-
plex counterpart to [8, Theorem 2.1], which states roughly that for A = 3, n = 1, if α1,
α2, α3 are positive and all the possible ratios αk/αj (k �= j) are irrational, then increasing
functions which are solutions of the CFE (1.1) are first degree monomials.

Comparing the condition of “Q-linearly independence” in Pisot and Schoenberg (see
[9]) with our condition of being “dense in C,” a natural question is whether they are
related. The following examples show otherwise.

Example 2.5. (1) Let α1 = 1, α2 =
√

2. Clearly, both are Q-linearly independent. Each
element of S+, as defined in Theorem 2.1, is of the form (u1 +u2

√
2) + i(v1 + v2

√
2), whose

real and imaginary parts are nonnegative real numbers, which shows that S+ cannot be
dense in C.

(2) Let α1 = 1, α2 =
√

2 and α3 =−
√

2. Then α1, α2, α3 are Q-linearly dependent, and
by Proposition 2.3, the corresponding set S+ is dense in C.

(3) Let α1 = 1, α2 =−
√

2. Then α1, α2 areQ-linearly independent, and the correspond-
ing S+ is dense in C by Proposition 2.3.

(4) Let α1 =
√

2, α2 =−
√

2. Then α1, α2 areQ-linearly dependent and the correspond-
ing S+ is not dense in C.

3. Case of complex base elements

Using the same proofs as in Theorem 2.1 and Corollary 2.2, solutions of similar CFE with
complex base elements αj and rational integer coefficients can accordingly be derived. We
merely state the results omitting the proofs.

Theorem 3.1. Let A ∈ N, A ≥ 3, and α1,α2, . . . ,αA ∈ C be such that the set R+ :=
{∑A

m=1umαm | um ∈ N0} is dense in C. If f : R+ → C is a uniformly continuous function
satisfying

f

( A∑

m=1

umαm

)
=

A∑

m=1

f
(
umαm

)
, (3.1)

then f can be uniquely written as f (x) = λ(x) +
∑A

m=1ϕm(x), where λ : C→ C is an R-
linear function and each ϕm (m= 1,2, . . . ,A) is a complex-valued function defined on Rm :=
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{umαm +
∑A

j=1, j �=mkjαj | um ∈N0; kj ∈ Z}(⊇ R+) satisfying
(1) ϕm(0)= 0,
(2) ϕm(x+αj)= ϕm(x) ( j �=m and x ∈ Rm),
(3) ϕm is uniformly continuous on Rm.

Corollary 3.2. Let the hypotheses be as in Theorem 3.1 but assume further that A≥ 3 and
R′m := {∑A

j=1, j �=mujαj | uj ∈ Z} (m= 1, . . . ,A) is dense in Rm. If f : R+ → C is a uniformly
continuous solution of (3.1), then f is an R-linear function; in particular, f (z) = az + bz̄,
where a, b are arbitrary complex constants and z̄ denotes the complex conjugate of z.

The next proposition gives us classes of examples for Theorem 3.1 and Corollary 3.2.

Proposition 3.3. Let a, b, q1, q2, q3, and q4 be real numbers
(1) If 1, q1/a, q2/b are rationally independent, then aZ+ ibZ+ (q1 + iq2)Z is dense in C.

(2) If 1, q1/a, q2/b are rationally independent and q1/a, q2/b, −ab are all negative, then
aN0 + ibN0 + (q1 + iq2)N0 is dense in C.

(3) If q3/a, q4/b ∈R \Q, then aZ+ ibZ+ q3Z+ iq4Z is dense in C.

(4) If q3/a, q4/b ∈R− \Q and ab > 0, then aN0 + ibN0 + q3N0 + iq4N0 is dense in C.

(5) If (i) 1, q1/a, q2/b are rationally independent,

(ii) 1, q1/q3, q2/q4 are rationally independent,

(iii) q3/a, q4/b ∈R \Q,
(iv) either q1/a, q2/b, −ab or q3/a, q4/b, −ab are all negative,

then aN0 + ibN0 + (q1 + iq2)N0 + q3N0 + iq4N0 is dense in C.
Furthermore, α1 = a, α2 = ib, α3 = q1 + iq2, α4 = q3, α5 = iq4 satisfy the conditions set

out in Corollary 3.2.

Proof. Let r + is∈ C and ε > 0.
(1) By the multidimentional Kronecker theorem, see [5, Chapter 2], there are in-

finitely many n ∈ N and p1, p2 ∈ Z such that |n(q1/a)− p1 − r/a| < ε/|a| and
|n(q2/b)−p2−s/b|<ε/|b|. Hence |− p1(a)−p2(ib)+n(q1 + iq2)−(r + is)|<2ε.

(2) By Kronecker’s theorem, there are infinitely many integers n∈N, p1, p2 ∈ Z such
that |n(q1/|a|)− p1− r/|a|| < ε/|a| and |n(q2/|b|)− p2− s/|b|| < ε/|b|. Clearly,
we can choose them in such a way that both n(q1/|a|)− r/|a| and n(q2/|b|)−
s/|b| > 0, which makes p1, p2 positive.

The proofs of (3) and (4) are analogous to those of (1) and (2), respectively.
(5) The former part follows from (2) while the latter follows readily from (1) and (3).

�

The condition of R+ being dense in C implies that the base elements α′j s neccessarily
span the R-vector space C as followed from the next proposition.

Proposition 3.4. Let α1,α2, . . . ,αA ∈ C. If R+ := {∑A
m=1umαm | um ∈ N0} is dense in C,

then there exist k �= l such that αk, αl are R-linear independent.

Proof. Assume, without loss of generality, that each αm �= 0. Suppose that each pair of α′j s
is R-linearly dependent. Then there are rk ∈ R−{0} such that αk = rkα1 (k = 2, . . . ,A).
Hence R+ = α1[N0 + r2N0 + ···+ rAN0] which cannot be dense in C. �
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As in the case of real base elements, the notions of “Q-linear independence” and
“denseness” are not equivalent in the complex base elements case either, as seen in the
following examples.

Example 3.5. (1) Let α1= 1+ i
√

2, α2= 1+ i
√

3. Each element of R+, as defined in Theorem
3.1, is of the form (u+ v) + i(u

√
+v
√

3), whose real part is an integer which makes R+ not
dense in C, while α1 and α2 are clearlyQ-linearly independent.

(2) Let α1 = −1, α2 = −i, α3 =
√

2 + i
√

3, and α4 = 1 + i. Clearly, α1, α2, α3 are Q-
linearly dependent. By Proposition 3.3(2), R+ is dense in C.

(3) Let α1 =−1, α2 =−i, and α3 =
√

2 + i
√

3. By Proposition 3.3(2), R+ is dense in C,
and α1, α2, α3 areQ-linearly independent.

(4) Let α1 =−1, α2 =−i, and α3 = 1 + i. Here α1, α2, α3 are Q-linearly dependent and
R+ is not dense in C.

We end this paper with two final remarks.
(i) In Theorem 3.1, the number of base elements α′s which makes R+ dense in C can-

not be fewer than three. This is seen by noting that any set R+ generated by twoR-linearly
independent base elements is made up only of lattice points spanned by the two α′s, and
is clearly not dense in C. This fact was already mentioned in [9, page 130].

(ii) At the beginning of [8], a question similar to an old theorem of Erdös [4] (see also
[2, 3, 6, 7, 10, 11]) is posed whether the functional equation F(pu1

1 ··· pukk ) = F(pu1
1 ) +

··· + F(pukk ), where p1, . . . , pk are distinct primes and u1, . . . ,uk are natural numbers,
under some natural conditions such as monotonicity or continuity, has only solutions
of the form F(n) = C logn. Using the transformation F(ez) = f (z), Theorem 3.1 and
Corollary 3.2 provide some answers to their complex counterparts.
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