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We analyze the representation of An as a linear combination of Aj , 0 ≤ j ≤ k− 1, where
A is a k× k matrix. We obtain a first-order asymptotic approximation of An as n→∞,
without imposing any special conditions on A. We give some examples showing the ap-
plication of our results.
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1. Introduction

In a recent article [1], Abu-Saris and Ahmad showed how to compute the powers of a
matrix without having to compute its eigenvalues. Their main result was the following.

Theorem 1.1. If A is a k× k matrix with characteristic polynomial

P(x)= xk +
k−1∑

j=0

ajx
j , (1.1)

then

An =
k−1∑

j=0

bj(n)Aj , n≥ k, (1.2)

where

bj(k)=−aj , 0≤ j ≤ k− 1, b−1(n)= 0, n≥ k,

bj(n+ 1)= bj−1(n)− ajbk−1(n), n≥ k, 0≤ j ≤ k− 1.
(1.3)

The purpose of this paper is to find an asymptotic representation for the numbers
bj(n) as n→∞, which using (1.2) will give an asymptotic representation of An for large
n. Since the coefficients bj(n) depend only on P(x), our estimates will be valid for similar
matrices.
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2 Asymptotic analysis of powers of matrices

The asymptotic behavior of powers of matrices has been considered before by other
authors. In [6, 7], Gautschi computed upper bounds for An and ‖An‖, where ‖A‖ is a
norm of A. Estimates of ‖An‖ were also studied in [2, 3, 12, 15, 16].

In [5], Friedland and Schneider considered the matrix

B(m) = Am
(
I + ···+Aq−1), m≥ 1, (1.4)

where A is a nonnegative matrix and q is a certain positive integer. They proved a theorem
on the growth of B(m) under the assumption that the spectral radius of A is equal to
one. Powers of nonnegative matrices were also analyzed by Lindqvist [9]. Rothblum [11]
obtained Cesaro asymptotic expansions of

∑N
i=0A

i, where A is a complex matrix with
spectral radius less than or equal to one.

This paper is organized as follows: in Section 2 we find an integral representation for
the exponential generating function Gj(z) of the coefficients bj(n). We obtain exact for-
mulas for Gj(z) and bj(n) in the special case of the matrix A having k distinct eigenvalues.
We conclude the section with some examples.

In Section 3 we give an exact representation and a first-order asymptotic approxima-
tion for bj(n), as n→∞. We consider the cases of simple and multiple eigenvalues. Our
formulas are relatively easy to implement and offer very accurate estimates of bj(n), and
therefore of An, for large n. We present some examples for different cases of P(x).

2. Generating function

In this section, we will find an exponential generating function for the coefficients bj(n).
First, let us define the spectral radius ρ(A) of the matrix A by

ρ(A)=max
{|λ| | P(λ)= 0

}
. (2.1)

Theorem 2.1. Let Gj(z) be defined by

Gj(z)=
∑

n≥0

bj(n+ k)
zn

n!
. (2.2)

Then,

Gj(z)=− 1
2πi

∫ c+i∞

c−i∞
sk− j−1 pj(s)

P(s)
ezsds, (2.3)

where c > ρ(A) and

pj(s)=
j∑

l=0

als
l, 0≤ j ≤ k− 1, (2.4)

p−1(s)= 0, and P(s) is the characteristic polynomial of A defined in (1.1).

Proof. If we use (1.3) in (2.2), we obtain

G′j =Gj−1− ajGk−1, Gj(0)=−aj , 0≤ j ≤ k− 1, (2.5)
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with G−1(z) = 0. Since (2.5) is a system of first order, linear ODEs with constant coeffi-
cients, we have [4]

Gj(z)=
k−1∑

l=0

ql(z)exp
(
μlz

)
, (2.6)

for some polynomials ql(z) and complex numbers μl.
Taking the Laplace transform of Gj(z),

Lj(s)=
∫∞

0
Gj(z)e−zsdz (2.7)

(which by (2.6) is well defined) in (2.5), we get

sLj + aj = Lj−1− ajLk−1, 0≤ j ≤ k− 1, (2.8)

and L−1(z)= 0.
The system of linear equations (2.8) has a unique solution given by

Lj(s)=−sk− j−1 pj(s)

P(s)
, 0≤ j ≤ k− 1, (2.9)

where pj(s) is defined in (2.4). Inverting the Laplace transform in (2.9), the theorem
follows. �

Remark 2.2. Since

lim
|s|→∞

Lj(s)= 0, 0≤ j ≤ k− 1, (2.10)

we can replace the Bromwich contour in (2.3) with a circle � of radius R > ρ(A) positively
oriented (i.e., counterclockwise), centered at the origin [8]

Gj(z)=− 1
2πi

∫

�
sk− j−1 pj(s)

P(s)
ezsds. (2.11)

Corollary 2.3. If

P(s)= (
s− λ1

)(
s− λ2

)···(s− λk
)
, (2.12)

where the eigenvalues λi are all distinct, then

Gj(z)=−
k∑

l=1

(
λl
)k− j−1 pj

(
λl
)

P′
(
λl
) exp

(
λlz

)
, (2.13)

bj(n)=−
k∑

l=1

(
λl
)n− j−1 pj

(
λl
)

P′
(
λl
) . (2.14)
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Proof. Applying the residue theorem to (2.11), we obtain

Gj(z)=−
∑

P(λ)=0

Res
[
sk− j−1 pj(s)

P(s)
ezs;λ

]
(2.15)

which in turn gives (2.13) after computing

Res
[
sk− j−1 pj(s)

P(s)
ezs;λl

]
= lim

s→λl
sk− j−1pj(s)ezs

(
s− λl

)

P(s)

= (
λl
)k− j−1

pj(λl)exp
(
λlz

)
lim
s→λl

(
s− λl

)

P(s)

= (
λl
)k− j−1

pj
(
λl
)

exp
(
λlz

) 1
P′

(
λl
) ,

(2.16)

where in the last step we have used L’Hopital’s theorem.
Writing (2.13) as

Gj(z)=−
k∑

l=1

(
λl
)k− j−1 pj

(
λl
)

P′
(
λl
)
∑

n≥0

(
λl
)n zn

n!
(2.17)

and changing the order of summation, we have

Gj(z)=
∑

n≥0

[
−

k∑

l=1

(
λl
)n+k− j−1 pj

(
λl
)

P′
(
λl
)
]
zn

n!
, (2.18)

which implies that

bj(n+ k)=−
k∑

l=1

(
λl
)n+k− j−1 pj

(
λl
)

P′
(
λl
) . (2.19)

�

Example 2.4. In [1] the authors considered the following examples.
(1) P(x)= x3− 7x2 + 16x− 12= (x− 2)2(x− 3).

Using (2.9) we have

L0(s)= 12s2

(s− 2)2(s− 3)
,

L1(s)= −16s2 + 12s
(s− 2)2(s− 3)

,

L2(s)= 7s2− 16s+ 12
(s− 2)2(s− 3)

,

(2.20)

and after inverting, we obtain

G0(z)=−12(8 + 4z)e2z + 108e3z,

G1(z)= 4(23 + 10z)e2z− 108e3z,

G2(z)=−4(5 + 2z)e2z + 27e3z.

(2.21)
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Expanding in series, we get

G0(z)=−96
∑

n≥0

2n
zn

n!
− 48

∑

n≥0

2n−1n
zn

n!
+ 108

∑

n≥0

3n
zn

n!
(2.22)

and from (2.2), we conclude that

b0(n+ 3)=−96× 2n− 48× 2n−1n+ 108× 3n (2.23)

or

b0(n)=−96× 2n−3− 48× 2n−4(n− 3) + 108× 3n−3

=−3(1 +n)× 2n + 4× 3n.
(2.24)

Similar calculations give

b1(n)=
(

4 +
5
2
n
)
× 2n− 4× 3n,

b2(n)=−
(

1 +
1
2
n
)
× 2n + 3n,

(2.25)

in agreement with the results shown in [1].
(2) P(x)= x3− 5x2 + 6x = x(x− 2)(x− 3).

We can apply (2.14) directly and obtain

b0(n)= 0,

b1(n)= 3
2
× 2n− 2

3
× 3n,

b2(n)=−1
2
× 2n +

1
3
× 3n.

(2.26)

(3) P(x)= x5− 5x4 + 10x3− 20x2− 15x− 4= (x− 4)(x4− x3 + 6x2 + 4x+ 1).
Although (as the authors noted) MAPLE is unable to compute the zeros of P(x) exactly,
it can provide us with very accurate numerical approximations

λ1 = 4,

λ2 = 0.8090169944 + 2.489898285i,

λ3 = 0.8090169944− 2.489898285i,

λ4 =−0.3090169944 + 0.2245139883i,

λ5 =−0.3090169944− 0.2245139883i.

(2.27)
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On the other hand, if Mathematica is used (thanks to one of the anonymous referees for
bringing this point to our attention), the roots can be determined exactly:

λ1 = 4,

λ2,3 = 1 +
√

5
4

± i
2
√

2

√
25 + 11

√
5,

λ4,5 = 1−√5
4

± i
2
√

2

√
25− 11

√
5.

(2.28)

Using (2.27) or (2.28) in (2.14), we get

bj(n)= Cj

305
4n−

5∑

l=2

(
λl
)n− j−1 pj

(
λl
)

P′
(
λl
) (2.29)

with

C0 = 1, C1 = 4, C2 = 6, C3 =−1, C4 = 1. (2.30)

Note that for 0≤ j ≤ 4, we have

5∑

l=2

(
λl
)n− j−1 pj

(
λl
)

P′
(
λl
) =O

(∣∣λ2
∣∣n)=O

(
2.618n

)
(2.31)

as n→∞.

Example 2.5. Let A be the matrix

A=
(

1 2
−1 −1

)
(2.32)

with characteristic polynomial

P(x)= x2 + 1= (x− i)(x+ i). (2.33)

Using (2.14), we have

b0(n)= cos
(
π

2
n
)

,

b1(n)= sin
(
π

2
n
)

,
(2.34)

and from (1.2) we get

An =

⎛
⎜⎜⎜⎝

cos
(
π

2
n
)

+ sin
(
π

2
n
)

2sin
(
π

2
n
)

−sin
(
π

2
n
)

cos
(
π

2
n
)
− sin

(
π

2
n
)

⎞
⎟⎟⎟⎠ . (2.35)
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In particular, we have

An =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I , n≡ 0(4),

A, n≡ 1(4),

−I , n≡ 2(4),

−A, n≡ 3(4),

(2.36)

where I denotes the identity matrix.

Example 2.6. This example appeared in [10]. Let A be the matrix

A=
(

1 1
1 0

)
(2.37)

with characteristic polynomial

P(x)= x2− x− 1= (x−α)(x−β), (2.38)

where

α= 1
2

(
1 +
√

5
)

, β = 1
2

(
1−√5

)
. (2.39)

Then, from (2.14), we have

b0(n)= 1√
5

(
αn−1−βn−1)= fn−1,

b1(n)= 1√
5

(
αn−βn

)= fn,
(2.40)

where fn is the nth Fibonacci number. Thus,

An =
(
fn + fn−1 fn

fn fn−1

)
=

(
fn+1 fn
fn fn−1

)
. (2.41)

3. Asymptotic analysis

We begin by finding an integral representation of the coefficients bj(n).

Lemma 3.1. The numbers bj(n) can be represented as

bj(n)=− 1
2πi

∫

�
sn− j−1 pj(s)

P(s)
ds, (3.1)

where � is a circle of radius R > ρ(A) positively oriented centered at the origin, and the
polynomials pj(s) were defined in (2.4).

Proof. Since the power series

ezs =
∑

n≥0

sn
zn

n!
(3.2)
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converges uniformly on |s| ≤ R, we can interchange integration and summation [13] in
(2.11) and obtain

Gj(z)=
∑

n≥0

[
− 1

2πi

∫

�
sn+k− j−1 pj(s)

P(s)
ds

]
zn

n!
. (3.3)

Then, (2.2) implies that

bj(k+n)=− 1
2πi

∫

�
sn+k− j−1 pj(s)

P(s)
ds, 0≤ j ≤ k− 1, (3.4)

and the result follows. �

Remark 3.2. An alternative method for approximating the coefficients bj(n) is to write
(3.1) as

bj(n)=−Rn− j

2π

∫ 2π

0
exp

[
it(n− j)

] pj
(

Reit )

P
(

Reit ) dt (3.5)

with R > ρ(A) and to compute the integral (3.5) numerically. This approach offers the
advantage of avoiding the computation of the eigenvalues of A.

We now have all the necessary elements to establish our main theorem.

Theorem 3.3. Let

ρ(A)= |λ| > |λ2| > ··· > |λr| (3.6)

be the eigenvalues of the matrix A, that is,

P(x)= (x− λ)m
(
x− λ2

)m2 ···(x− λr
)mr (3.7)

with r ≤ k. Then,

bj(n)∼−λn−m− j p j(λ)

P(m)(λ)
nm−1m, n−→∞, (3.8)

where

P(m)(λ)= dmP

dsm

∣∣∣∣
s=λ

. (3.9)

Proof. To find an asymptotic approximation of (3.1), we will use a modified version of
Darboux’s method [14]. From (3.7) we have

sn− j−1 pj(s)

P(s)
∼ pj(λ)

g(λ)
sn− j−1

(s− λ)m
, s−→ λ, (3.10)

where

g(x)= (
x− λ2

)m2 ···(x− λr
)mr . (3.11)
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Using the binomial theorem, we have

sn− j−1 =
∞∑

l=0

(
n− j− 1

l

)
(s− λ)lλn− j−1−l . (3.12)

Therefore,

bj(n)=− 1
2πi

∫

�
sn− j−1 pj(s)

P(s)
ds∼− pj(λ)

g(λ)
1

2πi

∫

�

sn− j−1

(s− λ)m
ds

=− pj(λ)

g(λ)

(
n− j− 1
m− 1

)
λn− j−m ∼− pj(λ)

g(λ)
nm−1

(m− 1)!
λn− j−m, n−→∞.

(3.13)

To find the value of g(λ), we use L’Hopital’s theorem,

g(λ)= lim
s→λ

P(s)
(s− λ)m

= lim
s→λ

P(m)(s)
m!

= P(m)(λ)
m!

. (3.14)

Replacing (3.14) in (3.13), we obtain (3.8). �

Remark 3.4. Note that when m= 1, we recover the leading term in (2.14).

If more than one eigenvalue has absolute value equal to the spectral radius of A, the
asymptotic behavior of bj(n) can be obtained by adding the contributions from each
eigenvalue. We state this formally in the following corollary.

Corollary 3.5. If

ρ(A)= ∣∣λ1
∣∣= ∣∣λ2

∣∣= ··· = ∣∣λr
∣∣, (3.15)

with respective multiplicities m1,m2, . . . ,mr , then

bj(n)∼−
r∑

l=1

(
λl
)n−ml− j p j

(
λl
)

P(ml)
(
λl
)nml−1ml, n−→∞. (3.16)

In the case when

m1 = ··· =md >md+1 ≥md+2 ≥ ··· ≥mr , (3.17)

one has

bj(n)∼−nm1−1m1

d∑

l=1

(
λl
)n−m1− j p j

(
λl
)

P(m1)
(
λl
) , n−→∞. (3.18)

Therefore, in the case of several eigenvalues located on the circle |s| = ρ(A), the dom-
inant term in (3.16) will correspond to the eigenvalue(s) with the greatest multiplicity.

Example 3.6. We now consider the case of more than one eigenvalue having absolute
value equal to ρ(A). Let

P(x)= x4 + x3− 15x2− 9x+ 54= (x− 2)(x− 3)(x+ 3)2. (3.19)
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In this case, λ1 =−3, m1 = 2, λ2 = 3, m2 = 1, and k = 4. From (3.18), we have

b0(n)∼−1
5
n(−3)n, b1(n)∼ 1

10
n(−3)n,

b2(n)∼ 1
45

n(−3)n, b3(n)∼− 1
90

n(−3)n.

(3.20)

The exact values are

b0(n)=−1
5
n(−3)n +

21
50

(−3)n− 1
2

3n +
27
25

2n,

b1(n)= 1
10

n(−3)n− 83
300

(−3)n− 1
12

3n +
9

25
2n,

b2(n)= 1
45

n(−3)n +
2

225
(−3)n +

1
9

3n− 3
25

2n,

b3(n)=− 1
90

n(−3)n +
11

900
(−3)n +

1
36

3n− 1
25

2n.

(3.21)

As we observed before, the main contribution comes from the eigenvalue of maximum
multiplicity, in this case λ1 =−3.

Example 3.7. Finally, let us consider the case of complex eigenvalues of multiplicity great-
er than one located on the circle |s| = ρ(A). Let

P(x)= x5− 9x4 + 34x3− 66x2 + 65x− 25

= (x− 1)
[
x− (2 + i)

]2[
x− (2− i)

]2
.

(3.22)

In this case, λ1 = 2 + i, m1 = 2, λ2 = 2− i, m2 = 2, and k = 5. From (3.18), we obtain

b0(n)∼ 1
4

(√
5
)n
n
[

cos(θn)− 7sin(θn)
]
,

b1(n)∼− 1
10

(√
5
)n
n
[
2cos(θn)− 39sin(θn)

]
,

b2(n)∼− 1
10

(√
5
)n
n
[
2cos(θn) + 31sin(θn)

]
,

b3(n)∼ 1
10

(√
5
)n
n
[
2cos(θn) + 11sin(θn)

]
,

b4(n)∼− 1
20

(√
5
)n
n
[

cos(θn) + 3sin(θn)
]
,

(3.23)

with

θ = arctan
(

1
2

)
. (3.24)
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The exact values are

b0(n)= 1
4

(√
5
)n[

(n− 21)cos(θn) + (−7n+ 22)sin(θn)
]

+
25
4

,

b1(n)=− 1
10

(√
5
)n[

2(n− 50)cos(θn) + (−39n+ 125)sin(θn)
]− 10,

b2(n)=− 1
10

(√
5
)n[

(2n+ 65)cos(θn) + (31n− 100)sin(θn)
]

+
13
2

,

b3(n)= 1
10

(√
5
)n[

2(n+ 10)cos(θn) + (11n− 35)sin(θn)
]− 2,

b4(n)=− 1
20

(√
5
)n[

(n+ 5)cos(θn) + (3n− 10)sin(θn)
]

+
1
4
.

(3.25)

Acknowledgment

The author wishes to express his gratitude to the anonymous referees who provided him
with invaluable suggestions and comments that greatly improved the first draft of the
paper.

References

[1] R. Abu-Saris and W. Ahmad, Avoiding eigenvalues in computing matrix powers, The American
Mathematical Monthly 112 (2005), no. 5, 450–454.

[2] N. Borovykh, D. Drissi, and M. N. Spijker, A bound on powers of linear operators, with relevance
to numerical stability, Applied Mathematics Letters 15 (2002), no. 1, 47–53.

[3] N. Borovykh and M. N. Spijker, Resolvent conditions and bounds on the powers of matrices, with
relevance to numerical stability of initial value problems, Journal of Computational and Applied
Mathematics 125 (2000), no. 1-2, 41–56.

[4] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems,
John Wiley & Sons, New York, 2005.

[5] S. Friedland and H. Schneider, The growth of powers of a nonnegative matrix, SIAM Journal on
Algebraic and Discrete Methods 1 (1980), no. 2, 185–200.

[6] W. Gautschi, The asymptotic behaviour of powers of matrices, Duke Mathematical Journal 20
(1953), no. 1, 127–140.

[7] , The asymptotic behaviour of powers of matrices. II, Duke Mathematical Journal 20
(1953), no. 3, 375–379.

[8] W. R. LePage, Complex Variables and the Laplace Transform for Engineers, Dover, New York,
1980.

[9] B. H. Lindqvist, Asymptotic properties of powers of nonnegative matrices, with applications, Linear
Algebra and Its Applications 114/115 (1989), 555–588.

[10] K. H. Rosen, Elementary Number Theory and Its Applications, 4th ed., Addison-Wesley, Mas-
sachusetts, 2000.

[11] U. G. Rothblum, Expansions of sums of matrix powers, SIAM Review 23 (1981), no. 2, 143–164.
[12] P. Stavinoha, Convergence of Lp-norms of a matrix, Aplikace Matematiky 30 (1985), no. 5, 351–

360.
[13] N. M. Temme, Special Functions. An Introduction to the Classical Functions of Mathematical

Physics, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1996.



12 Asymptotic analysis of powers of matrices

[14] R. Wong, Asymptotic Approximations of Integrals, Classics in Applied Mathematics, vol. 34,
SIAM, Pennsylvania, 2001.

[15] N. J. Young, Analytic programmes in matrix algebras, Proceedings of the London Mathematical
Society. Third Series 36 (1978), no. 2, 226–242.

[16] , Norms of powers of matrices with constrained spectra, Linear Algebra and Its Applica-
tions 23 (1979), 227–244.

Diego Dominici: Department of Mathematics, State University of New York at New Paltz,
75 S. Manheim Boulevard, Suite 9, New Paltz, NY 12561-2443, USA
E-mail address: dominicd@newpaltz.edu

mailto:dominicd@newpaltz.edu

	1. Introduction
	2.  Generating function
	3. Asymptotic analysis
	Acknowledgment
	References

