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1. Introduction

In this article, we are interested in the following wave coupled system with nonlinear
damping and source acting both interior and on boundary:

U PN u—O(|Vull®, | VvII?) Au—BoAr +a(u —v)+g1(u') =hy % J1(Au)  inQ, t>0,

(1.1)
—O(IVull IVVIP)Av — BsAV +a(v —u) + (V) =0  inQ, t >0, (1.2)
:%:0 ondQ, t >0, (13)
v=0 ono,t>0, (1.4)
O(IVull® | Vv]? )—+ﬁ3 +v+v +g(v')=hy*,(v) onT, t>0, (1.5)
u(0,x) = uO(x), v(0,x) =¥°(x) inQ, (1.6)
' (0,x) =u'(x), v (0,x)=v(x) inQ, (1.7)
where
I (du(t) = fhlu— 1 (u(s)) ds,
(1.8)

hy x o (v J hy(t —5)]2 (v(s))ds,
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2 Existence and uniform decay of solutions

and §; = 0, i = 1,2,3 are constants, Q is a bounded domain in R” with C? boundary
00 =TUo, mes{c} #0andT N7 = O, v is the outward unit normal vector, u’ = du/dt,
u' = d*u/dt?,...,A? is the biharmonic operator, and ®(s) is C! class function like 1 +s.
Moreover g;, h;, Ji, i = 1,2, are functions satisfying some general assumptions.

From the physical background, when ®(s) =1 and , =3 =g1 =g = h; =0, (1.1)
and (1.2) reduce to the so-called Petrovsky equation and wave equation. They are sim-
plified models of elastic plates, beams, vibrating strings, membranes or elastic materials,
and so forth. As an example in engineering, rubber and rubber-like materials are used to
absorb vibration or shield structures from vibration. When dimension n = 2, Oniszczuk
[13] studied the free transverse vibrations of an elastically connected rectangular plate-
membrane systems. This vibratory system model considered comprises a three-layered
structure which is composed of a thin plate, a massless elastic layer modelled as a ho-
mogeneous Winkler-type foundation, and a parallel membrane stretched uniformly by
suitable constant tensions applied at the edges. In this paper, we will consider a class of
generalized plate-membrane-like system showed in (1.1)—(1.7), where ®(s) = 1 +s ap-
pear known as the Kirchhoff-type equation which means we consider the extensible plate
and membrane. In this physical aspect of Kirchhoff-type coefficient, we refer the reader
to Choo and Chung [6] and Ma [12].

So far, many authors have considered the similar viscoelastic problems with damping
and source term acting in the domain or on the boundary. Among them in case of single
equation, we can cite Cavalcanti et al. [5] and Aassila et al. [2]. We also mention the
works connected with viscoelastic effects such as Jiang and Munioz Rivera [9]. Cavalcanti
et al. [4] studied the existence and exponential decay for a Kirchhoff-carrier model with
viscosity. Furthermore, related to blowup of solutions in the domain we can cite the work
of Vitillaro [16] and Georgiev and Todorova [7]. In the case of dissipative coupled systems
of the wave equations, Aassila [1] studied a linear system of compactly coupled wave
equations with nonlinear boundary frictional damping in both equations. He obtained
the decay estimates of energy of the corresponding solutions. Some other coupled systems
with internal damping or with another coupling type can be found in [10, 15].

In the case of ®(s) =1, 8, = B3 = hy = h, = 0, and Dirichlet boundary condition,
Guesmia [8] studied the so-called nonlinear coupled wave equation and Petrovsky sys-
tem. Moreover, when ®(s) = 1, f, = 85 = h; =0, and ], has a concrete form, Bae [3]
studied the similar systems to systems (1.1)—(1.7).

In this paper, we will research existence, uniqueness, and uniform decay of solutions of
systems (1.1)—(1.7). A distinctive character in this paper is to deal with the difficulties ap-
pearing in the proof of existence and exponential decay when Kirchhoff-type coefficients
occur and h; * J1(Au), hy * J(v) appear as the internal and external sources, respectively.
Meanwhile, we use the generalized assumption and remove some restriction on h, com-
pared to [3]. In order to obtain the exponential decay of the energy, we make use of the
perturbed energy method, for instance Komornik and Zuazua [11].

Our paper is organized as follows: in Section 2, we give out an assumption and state
the main result. In Section 3, we exploit the Faedo-Galerkin’s approximation, a priori
estimates, and compactness arguments to obtain the existence of solutions. In Section 4,
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uniqueness is proved under additional assumptions. In Section 5, the exponential decay
of solution is obtained by using the perturbed energy method.

2. Assumptions and main results

Throughout this paper, use the following notation:

(u,v) = L) u(x)v(x)dx, lull? = JQ | u(x) |2dx,

(2.1)
(u,v)r = L u(x)v(x)dr, lullf = L | u(x)|*dr,
and denote V := {v € H'(Q) : v|, = 0}, a closed subspace of H'(Q).
Furthermore, we pointed out some facts to be used later:
IvIZ <wmllAvl®, v e HHQ);
(2.2)

V2 <wllVvIiP, v <wusll VI, v e Hy(Q).

Now we state the main hypothesis in this paper.

(A.1) Assumption on initial condition. Let u’ € H*(Q) n H§(Q), u' € H*(Q) N H}(Q),
and v%,v! € V n H2(Q) verifying the compatibility condition

o ||Vl ||| )7+ﬂa vl g(1) =0 on. (2.3)

(A.2) Assumption on g, i = 1,2. g : R — R, i = 1,2, are nondecreasing C! functions sat-
isfying g;(0) = 0, and there exist positive constants a;,a, such that

arlsl < |gi(s)| <aals|] VseR,i=1,2. (2.4)

(A.3) Assumption on g. g:R — R isa C! function and there exist positive constants a3,
a4, os such that

azls|fs < g(s) < aulslPs  VseR,

(2.5)
as|slP <g'(s) VseR,
where p > 0.
(A.4) Assumption on J;. J;: R — R is a C° function verifying
[Ji(s)| <M;(1+1s]), VseR, (2.6)

where M, is a positive constant.
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(A.5) Assumption on J,. J,: R — R isa C° function such that /,(0) = 0 and there exists a
positive constant M, verifying

|J2(s) = 2(8) | < Ma(ls]” +1t1")|s—t] Vs, tER, (2.7)

where y > 0.

(A.6) Assumption on h;, i = 1,2. Assume that h; € W1(0,00) N W (0, 00) are nonneg-
ative functions verifying

hi(0) =0, hi(t) < —M3hi(t) Vit>1t >0, (2.8)

where Mj3 is a positive constant.

(A.7) Additional assumption on a and h;, i = 1,2. Let a <1/ /ipi; and let h; verify
hi=a- J: h(s)ds>0,  hi=1- J: ha()ds > 0. (2.9)
Next we define the energy E(t)
B = 2 (Il @I+ 1 O + [ FuIP + 9701 + v OI]) + 5 o)

2ol + Bl + 2 (v +wvolP) - | au(t)v(t)dx.( |
2.10

Here, it is easy to see that the energy is nonnegative.
THEOREM 2.1. Let Assumptions (A.1)—(A.6) hold, in which y, p satisfy 0 <y <p < 1/(n—
2)ifn>3,y,p>0ifn=1,2, then problem (1.1)—(1.7) has at least a solution (u,v) : QO — R?
such that
(u,v) € L (0,005 H7 (Q)) X L™ (0, 005 V'),
(u',v") € L*(0,00;Hj (Q)) X L*(0,00; V), (2.11)
(u”,v'") € L (0,00;L*(Q))) x L* (0, 00;L*(Q))).

Furthermore, if y = p, Ms/(y+2) > (a3/2llhall) "D, and Assumption (A.7) holds, the
following decay estimate is obtained:

E(t) < Cexp(~£t) V= to, (2.12)

where C and & are positive constants. In addition, if ] is global Lipschitz, then the solution
is unique.
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3. Existence of solutions

The variational formulations of problem (1.1)—(1.7) are the following:

(", w)+ B (Au, Aw) + (1 + | Vull> + | VvII*) (Vu, Vw) + B2 (Vi , Vw)

+(a(u—v),w)+ (@ (u'),w)

= Lthl(t —5)(Ji(Au(s)),w)ds, we HZ(Q),

(3.1)
Vw)+ (L (IVull?2+ IVVI2) (Vv, Vw) + B3 (V' , Vw) + (a(v — u), w)

+(@(v),w) + (v,w)r + (v, w)r + (g(v'), w)p

t
= L hy(t =) (L (v(s)),w)ds, weV.

We will prove the existence of Theorem 2.1 in 5 steps.

Step 1 (approximate solutions). Let {w;(x)};en be a base of HZ(Q) which is orthonor-
mal in L?(Q), V,, the subspace of H(Q)) generated by the first m vectors of {w;}. Let
{W;(x)}jen be a base of V N H2((2), orthonormal in L*(Q), V,, the subspace of V' n
H?*(Q) generated by the first m vectors of {w i}. We seek the approximate solutions

t x) Zg]m(t)wl(x) t x) Zg]m(t)wj(x) (32)

j=1 j=1

of the following Cauchy problem:

(tp,w) + 1 (At Aw) + (1 +[| Vi + ||va||2) (Vim, VW) + B2 (Vu,,, Vw)

+ (alot o)) + (01 1)) = [ (=)0 () ), w € Vi
(3.3)
(v;,',,w)+<1+||Vum||2+||va||2>(va,Vw)+ﬁ3(VV:n,Vw)+(a(vm—um),w)

’ ’

+ (gZ(Vm)>W) + (Vm’W)r"' (V;mw)r"' (g(Vm)>W)r

= JO ha(t —s) (o (vin(s)),w)pds, we Voo
(3.4)
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satisfying the initial conditions

Um(0) =, = Z (' wj)w; — u®  in Hj(Q),

=1

m
u,(0) = uby = > (ul,wj)w; — u'  in H3(Q),

=1

(3.5)

Vm(0) = ud, = Z (W, wj)w; —* inVnH(Q),

=1

m
V() = vy, = Z (v', W) W; — v! in VnHXQ).

Il
—_

J

According to the ODE theory, we can solve the system (3.3)—(3.5) by Picard’s iteration.
Hence, this system has unique solution on interval [0,T,,] for each m. The following
estimates allow us to extend the solution to the closed interval [0, T'].

Step 2 (the first estimate). Replacing w by u;,(¢) in (3.3) and by v;,,(f) in (3.4), respectively,
and adding the results, we get

d

E{Emaﬂyfllvm W2} + BT 01 + Bal1Fvia 01 + 1, 01

+ (g1 (U, (1)), 1y (1)) + (€2 (v (£)), V7 (8)) + (g (v, (£)), Vi (8)) 56
= L ho(t =) (J2 (vin($)), vy, (£)) pdds + JO hy(t =) (1 (Aum(5)),uy, (1)) ds

+( | Vin(t) | yvm(t)) V;,n(t))r,
where

E, =

P+ 1P + 190 DI + [T + [l OlE) + 5 (O]

(Il (0

+§||vm(t)||2+%||A @)+ <||Vum(t|| +[[Vm () —Joaum(t)vm(tzdx.)
3.7

1
2

In the following we will use C;, i = 0,1,2,..., to denote various positive constants which
may be different in different places.
By the Assumption (A.4), we have

johl(t—s)(h(Aumu)),u;xt))ds
<M1||h1||yom>] (I + 18 (12 + [t ()] ) e (3.8)

< clj At (s)| 2ds + Cs
0
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By (A.5), Holder inequality, and Young’s inequality, we have

(2 (vn(9)), v () = Mol [V O]

(3.9)
= C4(€)||Vm(5)||;i§,r+8||v Hy+zr’

where € > 0 is arbitrary.
From the embedding LP*(T') < LY*2(T) as p > y and (3.9), we obtain

t
jo ha(t =) (12 (vin(5)), Vi (D) pdls
t
<llhalloe (| CoOIm@IEcds+eTlv,0IE,)  G10)

t
e) [ Ivm 5+ eV DI+ Cole),

where d = bT||hy |11 (0,) and b is the embedding constant of LP*2(T') — LY*2(T).
Similarly, we have

([7m( " vm(£) V() = Co@) v (O[5 + el Vi (DI 1

(3.11)
2 ’ 2
< GOm0 + Csle) +el vl

Hence, from (3.8)—(3.11) we get

2
|

G 5 O+ (0 00,06, 0) + a0

+ Bl Ty O + WO + (@2 (viu (D), Vi (8)) + (o — & = ed) [V, (D] 13

t t
<G jo [ At ()2 ds + Gl 1t ()] + Cs L (N[22 s + Cllvm (O35 + Co
(3.12)

According to Assumption (A.2), we know that (g (u;,(t)),u;,(¢)) = 0 and (g2(v,,(£)),
v,,(£)) = 0. Moreover, we can choose € > 0 small enough such that a3 —¢ —ed = Cy > 0.
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Therefore, integrating (3.12) over [0, t], we have

Bt + 5 (0 I3+ e[| 1936, P s [ I1ovi (o]

j||v (s) ||rdS+C0J [V s)llpm

<G ﬂ (5| Pdsde +C |

§)|[ds+Cs ﬂ ()72 st (3.13)
+c7j ()12 s+ Cao

<cuj [ Atin(s)]| ds+c2j et (5)]| ds+c12j [ (5)]1722 s + Cro.

Therefore, from (3.13) and using Gronwall’s lemma we obtain the estimate

1

5 Ul I+ [0+ ||wm<t>||2+||wm<t>||2+||vm<t>||§)

+§||um Ol +—|| V(| N ||A m(B|*+ 5 (lqum DI+ Vv (®)]] )
1 +
_Jﬂaum(t)vm(t)dx+yT2||vm ;grwzj V4, (5)][2ds

t
s [ v @l Pds+ [ 11,9+ Co [ ol cds = L,
(3.14)

where Ly >0 is independent of m and t € [0, T].

Step 3 (the second estimate). First we estimate the initial data u;,(0) and v,,(0) in the
L?*-norm. Choosing w = u,,,(0) in (3.3) and w = v/,,(0) in (3.4), we obtain

)] + Br (Au®, A1 (0)) = (14 |Vt (O)]* + [ Vv (O (A1s, 5 (0))
+Bo (V! , Vil (0) + (au, 1 (0)) — (av®, 1l (0)) + (g1 (), 1l (0)) =
1P = (1 4]Vt O[> + ||V v (0)[]7) (A, ¥12(0)) + B (V¥ Vv (0))
+(av*,v(0)) = (au®,v(0)) + (g2 (v), v (0)) + (v, v2(0)),

+ (VL v (0)p + (g(v'), vip(0)p =0.

[V (0)

(3.15)
Hence from Assumption (A.1), (3.15), it is not hard to get
|| (O[] +[[v (0)]] < Lo, (3.16)

where L, is a positive constant independent of m.
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Differentiating (3.3) and (3.4), replacing w by u,,(¢) and v,,(t), respectively, then add-
ing the results we get

dF (£) + Bal [Vae (D1 + B Vv (0| + v (D)7 + (g1 (D), [t (D))

+ (5 ), v 1) + (& W), [V 7).
—(1+ IV + [V (O]) (Vi (0, Vit (£)) + (Vr3(6), Tvi(8)))

- 2((Vum(t):vu;n(t)) + (vvm(t)>vvm(t)))

t
X (Vi (t), Vit () + (Vv (), Vv, (1)) + L By (t = 5) (]2 (vin(5)), v, (1)) s
+ JO 1y (2= ) (1 (At (5)) 150 (£))ds < Crs(e) (|1, (DI + |9 v, (1))
+e([IVup )| +[[Vv)]*) +j0 Hy(t =) (] (vin(5)), v () s

t
+ L By (t = 8) (T (Aum(s)), uy, (1)) ds,

(3.17)
where we denote that
t>=%||u;;(t)llz+%llA DI+ || 0l +5 IIV (0)*
+ 201 + SO + SOl + 319wl (318)
—f au, (V) (Hdx.
Q

Noticing that (y+1)/(2y+2) + (1/2) = 1, Assumptions (A.5), (A.6), the embedding
HY(Q) < L1(T) for 1 < g < (2n—2)/(n—2), and the first estimate (3.14), we obtain

[RAESIATREIRAGE

, t 242 (y+1)/(2y+2) ., 5 1/2
<Mz||hz\|y(o,w)]0{(fr|vm(s)| dr) (Jrlvm(t)IdF> }ds

< M3 s [, {CulITUn I 10 s

< Ml [ 00 00 s

< Cis(e) + €||V;;;(f)||§-
(3.19)



10  Existence and uniform decay of solutions

Furthermore, noticing Assumption (A.4) and using Schwarz’s inequality we obtain

t t

J 1,(t = ) (1 (B (5)), 3(8))ds = Cug + Crolluls (D] +C18J | At ()] ds

0 0 (3.20)
< Cio+ Cr7lul (1))

Meanwhile, according to Assumption (A.2) we can deduce that (g] (u,(t)), |u,,(t)]?) +

(@ (v, (1)), Vi (£)]?) = 0. Therefore, by (3.19), (3.20), integrating (3.17) over [0,t], mak-
ing use of Gronwall lemma, and the first estimate, and (3.16), we get the second estimate

1 H ’ 1 ’r 1 ’ ’
a1 + £l 1P + Ll + 219w 01 + 2 ol
an o2, Ly ZIV’ 2~tv,, 24 )1
+ 2l + 2l 4 1901 B [ vi@lfas G

~ t ~ t
B L 12 ()| Peds+ B L l[vi2(s)|ds — L} au! (O, (Hdx < Ls,

where f3,, 83, and f34 are positive constants, L3 > 0 is independent of m.

Step 4 (the third estimate). Let m, > m; be two natural numbers and consider y,, :=
Umy — Umy> Zm °= Vi, — Vm, - From the system (3.4), we have

(zpw) + (Vzm, Vw)
+ ([(19 | P+ 199, F) Fv2 = (1t [ +1[ Vv, [[F) V1], F0)
+B3(Vz,, Vw) + (azm, w) — (aym,w) + ([gZ (V;nz) —& (V;nl)])w) (3.22)
+ (2o w)p + (20 W)+ ([§ (V1) = g (Vi) 1, W)y

= L ha(t =) ([J2 (Viny () = 2 (v, (9)) [, w(8)) pds, w e V.

Substituting w = z;,(t) in (3.22), observing that g, g, are nondecreasing, and using the
previous estimates, we get

Iz IP + 92O +allenI + |z (oI}

= (@yn(1),23,(0) + B3l [ V2 (DI + 125 (D) I
< Call Va1V, 1+ [ ot~ ([ 0 5) ~ Bl D (0)pds— (323)
< CalnlIVanl” + 92O + 7l 01

+Coatn) [ a9 Pl (9) ~ o, D s,

where 7 > 0 is arbitrary.
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Moreover from Assumption (A.5) and the first estimate, we have
t
[ 1= 9 P (0 9) = o ) s
! y )2 2
<Gy L (199 I + 199, OI) 9 20 () s (3.24)

t
< C L 1192 (5)||Pds.

Hence integrating (3.23) over (0, t) and using (3.24) we obtain

[z + 19 2m(®)[ +allzm(®) | + [ [zm()][7 ]

Do —

# (B =) [ Iz, @I ds+ 1= [ Iz olfds
t t (3.25)
< (Ca(n)+Cu) Jo ||Vzm(s)||2ds+aJ'0 ||ym(s){|2ds

t
n JO 2,,(5)1Pds + Cas (T) (|21l + |V 2012)-

Hence letting # > 0 small enough, by the first estimate and using Gronwall’s lemma of
integral form (see [14]) we obtain that

I + 192w O + allzm () +llzn (0]
5 , (T 5 (3.26)
< CaoT) (el P+ 19 200] P+ | llyin(5)] ).

Step 5 (passage to the limit). Above two estimates are sufficient to pass to the limit in
the linear terms of problem (3.3), (3.4). In the following we will consider the nonlinear
terms.

Due to the above estimates and using the regularity theory of elliptic boundary prob-
lem, we deduce that

{um (1)} is bounded in L*(0, T; H3 (2)), (3.27)
{ul,(t)} is bounded in L*(0, T; H3(2)), (3.28)
{ul) (1)} is bounded in L*(0, T;L*(Q)), (3.29)
{vm(t)} is bounded in L*(0, T; V), (3.30)
{v/.(t)} is bounded in L*(0,T; V), (3.31)
{v/(t)} is bounded in L*(0, T; L*(Q) N L*(T)). (3.32)

In the following, we will use the same notation to express the subsequences of {v,,(#)}
and {u,,(t)}. Considering the embedding H!'(Q) — L?(T) is continuous and compact and
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using Aubin compactness theorem, we can extract subsequences of {v,,(¢)} and {u,(¢)}
such that

Uy, (t) — u(t) ae.inQ, u,(t) — u'(t) ae.inQ,
Vu(t) — v(t) a.e.in Q, v, (t) — v'(t) ae.inQ, (3.33)
V(t) — v(t) a.e.onl, v (t) — V' (t) ae.onZ,

where we denote Q = QO x (0,T]and X =T x (0, T].
On the other hand, from the first, the second estimate, and assumptions we have

{16}, {g:(v))} are bounded in I(Q), (334)
{hy * J1 (Au,,)} is bounded in L*(Q), (3.35)
{hy % J,(v;n)} is bounded in L(X), (3.36)
{g(v,,)} is bounded in L*(X). (3.37)
Hence, combining (3.33)—(3.37) and Lions’ lemma we deduce that
o (u),) — g(u')  weakly in L*(Q),
2 (v,) — @) weaklyin L*(Q), (3.38)
hy % J, (Vi) — hy % Jo(v)  weakly in L*(X), '
gv,) — g(v')  weakly in L*(2).
Also
hy % Ji (Auy) — x  weakly in L*(Q), (3.39)
where y € L*(Q). Next we will show that y = hy * J; (Au).
From (3.27), (3.29), and (3.32) , we have
u, — u”  weakly in L*(Q), (3.40)
v, — V"' weakly in L*(Q), (3.41)
Au,, — Au - weakly in L*(Q). (3.42)
Moreover from the preceding estimates, we deduce that
U, — u strongly in C°(0, T; H} (Q)),
(3.43)

vm — v strongly in C%0,T; V).
Hence we can pass to the limit in (3.3) to obtain

W BN u— (1+ |Vull?+ 1VvII2)Au—BoAu +a(u—v) + a1 (') =y  in D'(Q).
g X

(3.44)
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But consider that u”, y, (1+ [|Vull?+ [|VvII?)Au, Au', a(u —v), g1(u') € L*(Q), we de-
duce that A>u € L*(Q), and moreover

W +Pi A u— (1+ | Vul 2+ | VI?) Au—BoAu' +a(u —v)+ g (u') = x  in L*(0, T;L*(Q)).
(3.45)

Further, we can easily verify that (1.3) holds in the sense of L2(0, T; L?(9€2)), that is,

u= % =0 inL*(0,T;L*(0Q)). (3.46)

Now considering w = u,, in (3.3) and integrating it over [0, T] we obtain

T T
J (u;;(t),um(t))duj (B1 Aty (1), Aty (1)) dt
0 0
T
+j (1+ 1t + 199l 2) (V) Tt (1))t
0

T T
+ [ Bl 0, V)t [ (an(On()dt (347
0

0
T

T
- L (@ (st ()l + | (310, (6), (1))

0

T ct
_ L JOhl(t—s)(]1(Aum(s)),um(t))dsdt.
Further, from the first and second estimates and using Aubin-lions theorem we infer
Uy — u strongly in L*(0, T;L*(Q)). (3.48)

Thus, using the convergences (3.39), (3.40), and (3.42), we can pass to the limit in (3.47)
and obtain

T
tim [l o]

T

T T
- wrwauoae- | gve 0, vu0)d- | (auto,um)dr

0 0
(3.49)

" JT (av(t),u(t))dt + JT (1+ IV I+ 9v(0)|1F) (Tu(e), Tu(e))dt
0 0

T T
- | @) | goue)ar,

0
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Hence, combining (3.45) and (3.46) into (3.49) and using generalized Green formula,
we obtain

lim JTHAum(t)szt _ JT||Au(t)||2dt. (3.50)
m=c Jo 0

So, from (3.42) and (3.50) we infer that

Aty — Au - strongly in L2 (0, T; L*(QY)). (3.51)
Therefore,
Auy, — Au a.e.in Q, (3.52)
and consequently
Ji(Auy) — J1(Au)  ae.in Q. (3.53)

Combining (3.35) and (3.53), we obtain
hy % Ji (Auy) — x = h1 % J1(Au)  weakly in L*(0, T;L*(Q0)). (3.54)

Therefore, the above convergences are sufficient to pass to the limit in problem (1.1)-
(1.7).

4. Uniqueness of the solution

Let (u3,v1) and (u2,v2) be two solutions of couple system (1.1)—(1.7), then (u,v) := (1 —
Uy, V1 — V) verifies

(u",w)+ B (Au, Aw)

+ ([ (vl P+ [[Vnl*) Ve = ([[Va|[* +[| V02l Vira |, V)

+(Vu, Vw) +Bo(V', Vw) + (au,w) — (av,w) + ([g1 (u]) — g1 (u3) |, w) (4.1)
= L hi(t = s) ([ (Au(s)) = i (Aua(5)) ], w(t))ds,  w € H3(Q),
W w)+ ([ (V] P +199 ) Vo1 = (IV w2l + (199 *) v ], Vw)
+(Vv, Vw) + B3 (Vv Vw) + (av,w) — (au,w) + ([@2(V]) — 22(v)) ], w)
(4.2)

+(v,w)r+ (v, wr + ([gvy) —g(vh) |, w)p

= JO ho(t =) ([2(n1 () = L(va(s) ], w(t)) pds, we V.
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Substituting w = '(t) in (4.1) and w = v'(¢) in (4.2), respectively, meanwhile observ-
ing that g, g;, i = 1,2, are nondecreasing and using the first estimate, we get

A @IP + B lawol P+ J1vulP + 4ol
— (av(1), (1)) +Bo| |Vl (1]
t
< Gy IVullll V|| +L hy(t =) ([J1(Auy(s)) = J1 (Aua(s)) ], u' (¢))ds

C_%7 2 ’ 2 % ’ 2
=1 IVull® +x||Vu' ()] + 5 [l (1)]]

# 3 I 9) Pl an(9) - 1 (o) P,
0

(4.3)
d(1 1 1
L Ol + 5 IovoIP+ Svo I+ 5 vl
— (au(),v' (1) +Bs||VV ()| + ]IV ()|}
t
< CyllVvlIIIVV]] +JO ho(t =) ([Jo(vi () = L (v2(s)) [, v/ (1)) pds
C%9 2 i 2 ’ 2
< Enwn +7]|VV (O] +7Csol|v' (1)1
1 t
¥ EL ot =92 (n () - T (va(9)) | 2ds,
(4.4)
where 7 > 0 is arbitrary.
Furthermore, noticing J; global Lipschitz and Assumption (A.5), we have
t
jo i (- 9) 21 (A () - i (Aua(s)) [ Pds
2 t 2 t 2
< Gl P L | Au(s)|ds < Cso jo | Aus)|ds,
(4.5)

L Iha(t — ) 2 1L () — Ja(va(s) I2ds

t t
< Cys jo Iha(t — )| Vv(s)[Pds < Csq jo 19 v(s)|Ids.
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Hence, integrating (4.3) and (4.4) over (0,t), using (4.5), then adding the results to-
gether we obtain

e I + E sl + 1T uolP+ Sl + B2 ) [ 194 1P

+ IV OIF+ I9vOIP + SIvOI + 3 IO - [ autvods

t t
+ (85— [ 19V Pds+ (1= o) [ [ s (46)
C”J“HVusn|ds+‘b8j|| |d&+cﬁ‘[HA )|[ds
C t C t
-FZ§J;HVVGHPd&+Z§J;HvaﬂPd&

for # > 0 small enough.

Meanwhile, from (3.31) and (3.32), we can deduce that [|v/(¢)|? is continuous on
[0,T], see [14].

Thus, combining the last inequality and using Gronwall’s lemma, we obtain that

[ (1] = [|Au(t)]| =
(4.7)
V' Ol = [[Vv® = [[v®llr = [V Ol =

5. Asymptotic behavior of the solution

In this section, we follow the additional assumptions that appeared in Theorem 2.1. Ac-
cording to the definition of E(t), the derivative of the energy is

E'(t) = — (g (' (1),u' (1) = (@(v'(),v' (1) = (g(v'(1),v' (1))
= BallVat | * = Bsl v = [y ][ (5.1)
t t
+Lhl(t—S)(h(Au(S)),u'(t))alHJ0 hy(t —s) (12 (v(s)),v'(t)) pds
Define
(hOu) (¢ J hi(t=s)||J1 (Au(s)) —u t)|| ds,

(5.2)
(h,0v) (¢ J hy(t = s)||J2(v(s)) — v(t ||rds
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Hence we have

t
|, 1t =)0 (auts).w (6)ds
! d t
—3 0 @+ 500w @+ 3 5 ([ mas) ol | - S lucol
JO ha(t =) (2 (v(s)),v' (1)) ds

t
—%(I@Dv) )+ 4 (hZDv)() %%{(Lhz(s)ds)nv(t)ni}—%hz(t)||v(t)||§.

(5.3)
Define the modified energy
ol B a1 Ll (e Pr Mo e Lo el
e(t) = Sl DI+ Ll du@|"+ v @I + S [IVv@]" + S [[Vul]
t
+ (19O +19vIF) + 3 (a= [ mds) lucolF + S Ivol
X , (5.4)
J au(t)v(t)dx + 5 (1 - L hz(s)ds> v
1 1 .
# 3 (00 O+ () (O + OOl
Consider Assumption (A.7), it is easy to know that e(t) > 0. Moreover,
e'(t) = (g1 (' (), (1) = (&2(v'(),v (1)) —/32||V”'(t)||2
= BllVV @I = (g (), () + —S B0l
(5.5)

+ha(0 (v v,y 1)) 5h1<t>||u<t>||2 S @IVOIR;

+2 (B0 1)+ 5 (B0 (1)~ IV D]

Using Young’s inequality, we know that

) (V@) v, (1) < g0l OIS+ 17 D @velS,  (56)
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where # > 0 is arbitrary. Hence, by Assumptions (A.3) and (A.6) for y = p, we have for all
t >ty that

¢'(1) < (& (W' (D), (1) — (2 (1),V (1) = o[V (1)

= Bl |V (I = (a5 = o (1) [V (][5
M " (5.7)
(28 - Yl - S o ol
~ @IV~ 22 (mTu) ()~ 22 (W) (1)~ [V D).

Choosing 7 = a3/2||hy ||« (then a3 — 17 = a3/2), we deduce

e'(t) = = (g (' (1), (1) = (& (v'(1),V' (1))

= Bal[Vu DI = Bsllvv ol = S v ol

~ @O - 3 OO - SOOI oY
= 22 D) (0~ 22 () )~ [V 0

where & = Ms3/(y+2) — (a3/2|lhall)~@*D > 0. Furthermore, from Assumption (A.7),
we have

E@) < 3 (1w @I+ @I+ 19a@ | + [V v ) + 5ol

+ B+ (I +199(0lF) - [ auttwords
(5.9)
+—<a—J i (s) ds)|| Ol (1-[ o (s) ds)||v OllE
<min{l;,L} e(t).
For every € > 0, we define the perturbed energy by setting
e(t) =e(t)+ey(t), w(t)= (' (t),ul))+ (' (@),v()). (5.10)

LeEMMA 5.1. There exists & > 0 such that

le(t) —e(t)| <eke(t) Vt=0. (5.11)
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Proof. From (2.2) and (5.10), we obtain

W] < @l O]+l Ol
< B (11w O+ vl + Sy O+ JIvvlf)  a2)

< \Jp2e(t).

Hence we have
le:(t) —e(t)| <e&e(t) Vt=0, (5.13)

where & = /3. O

LemMa 5.2. There exist & > 0 and € such that for € € (0,€]
el(t) < —ekse(t). (5.14)

Proof. By using the problem (1.1)—(1.7), we obtain

' () = |l O +|lv @)1 = BillAu®d| = al[u()| = allv(o)]|’ +2JQ au(t)v(t)dx

2
—IVul? = 19vI2 = (19l + 1Vv12) " = V(D)7 — Bo( Vi, Vi) = B5(VV/, V)

= (V' (0,v(®)r = (g(v' (), v(D)r = (&1 (' (), u(t)) = (g2(v'(1)),v(1))
+J0hl(t_5)(]1(Au(5)))u(t))d5+ﬁ) hy(t = 5) (J2(v(s)),v(t)) pds
= e+ 2 OIF + 2 OIF - B - IvuF - L veo?
=2 (IVa@ I+ V@) pa(vVir, V) —ﬁg(Vv',Vv)+Jﬂau(t)v(t)dx
t t
= SV = Sl = 5 [ m@dsluol = 3ol - 5 [ maslivol;
+ 2 O + 5 (D) (0 - (7 (D,v0); — 0 (0),v(O);
— (g ('(1)),u(t)) = (&(v'(1),v(1) + L hy(t =) (J1 (Au(s)), u(t))ds

+ J: ha(t = ) (]2 (v(s)),v(8)) pds + ﬁhz(t)HV(ﬂH;E,r-
(5.15)
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Note that
jo hy(t—5) (1 (Aus)), u(t)) ds

t t
_ L Iy (¢ — ) () (Au(s)) — u(t),u(t))ds+J’0 (¢ — $)||u(e) | Pds

t , (5.16)
< %JO By (t = 9)|[1 (Aus)) — u(®)|ds + %||u(t)||2 JO Iy (s)ds
= 2O @+ 2ol | mes)ds,
0
t
jo h(t = ) (1 ((s)),v(1)) pds
= L ha(t =) (12 (v(s)) — v(1),v(t)) pds + L ha(t = 9)||v(0)|[ds
t ; (5.17)
< % L ha(t = )| (v(s) - v(0)|[2ds + §||v(t)|\§ JO Iy (s)ds
- %(thv)(t)+ %||v(t)||§J0 Iy (s)ds.
Using Sobolev embedding relation (2.2), we obtain
2
|0 )| =ws Tl Ol =Tl + Sl s19

Also by Assumption (A.3), Holder’s inequality, and Young’s inequality we deduce that

(V' (), (1) | < aullv' (1) ||p+2r||V(t Npi,r

<0l Ol 55 e +allv) 5

(5.19)
‘ jgauw(t)dx < a il Aull | V]
<a¥EE (18wl +1VvI?).
Moreover
Ba(Vat (8), Vu(t)) < fon|[Vult ||2+£27||w<t>||2,
(5.20)

Bs (V' (1), V(1)) ﬁsnllvv(t)||+ IIW(t)Hz-
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From Assumption (A.2) and (5.8), we obtain

| — (g1 (' (1)), u(t) = (©(v'(1),v(1)) |

<1 2 l 2 & ! 2 “ 4 2
= ol + Lol + 5 | o @) | o) ds

< n(llau@|P +[[9v(o)?) + (“12;‘2)“2[0 [ (g1 (' () +v (D (v (1) Y
(Hl +H2)0¢2

< n{lau@+[1vvolf) + =

x| =W -ITEOF - glITvOIF - Fliv 0l

@O - 3 OO - SOOI

—%(hlmu)() Ms (o) (1) = |1v t)||]
(5.21)
3J {u'(t 2y |v'(t | }dx
<271 W (Og (W' () +v()g (v (1) dx
< o[ = - BlIVu @ - Bl OIF - 2V OIS (5.22)

~Eh OO~ SOOI - @]

M

2 (D) 1)~ 22 () () - [V O]

Therefore, by (5.16)—(5.22) we obtain

V() < —e(t) + f—;llwu>|lz+ f—;mellz ~ (5 -Ben)Ivuoll

+ izhz(t)”V(t)Hy” —Z(men%nw ||) (3 M)

y+2,I 4’1
X [e’(t)+/32||Vu’(t)||2+/>’3||W(t)||2+ IV (Ol + Ela VO]
3OO+ OO+ 5 (D) 0+ (o) (041 O

(B =B awol - (3 21~ pon - a

L) |9 vio) |
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l t
+ (Ou) (1) + (haOv) (1) — g||u(t)||2 - §||v(t)||2 - E||v(;f)||§ + ||u(t)||2J0 hy(s)ds

t 2
IO |, s+l @I+ 00l OIS+l ol

< —e(t)~Re'(t) - B (R - ﬁ) 1V )| = Bs (R— 4—117)||W(t)||2
> IIVaoI - (2R 600 ) Iy s

ER- m)hz OO~ (3R~ [ mnds) ol

+ 2 Rin(t) j (9)ds) v - (52R=1) (D))

M3R— 1>(h2Dv)(t) - (% n—a v‘M]‘MZ)HAu(t )||?

- %—211—,8317—11—“[/[21#2>||Vv(t)|| (R—_>||V t)||r+’7||" ||£:j,r’
(5.23)

where we denote R= (3/2a; + (p) + pa)a2/41) for convenient. Hence from (5.8), the above
inequality, and noticing y = p, we get

e(t) =€ (t)+ey'(1)
< —ce(t) (1 i)nwmnz ~s(1- ﬁ)nwmnz
- (% o0 )OIl 10— (5 ~ Bon 1T uto
1 + 1 t
(&~ S en) OOl 2~ (S0 - eL (s)ds ) o)
= (30— | matods) ol - (5 ) mw) 0 - (52— &) w0
—e(5 - 21 - an—a ) (llauo | + 190l

(=)ol

(5.24)
hence, if we denote
- . a3 Eily+2) ||h1||L°°(Ooo) ||h2||L°°(0,oo) Ms 4n }
§ = min , , —, s 4 (5.25)
{29(’1) L+ (y+2)y 2||h1||L1(0,oo) 2||h2||L1(0,oo) 274 1
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and choosing ¢ € (0,£], we obtain
e (t) < —e&se(t) (5.26)

for some constant &; > 0. O

Proof of decay. Let us define &€ = min{1/2¢,,€} and consider ¢ € (0,¢]. From Lemma 5.1
we have

(1 -&e)e(t) <e.(t) < (1+&e)e(t), (5.27)
and so
1 3
Ee(t) <el(t) < Ee(t). (5.28)
From (5.28) we get
—efselt) < —e2Eiedt), (5.29)

Hence from (5.29) and Lemma 5.2, we obtain
, 2
e.(t) < —8§E3€£(t). (5.30)

That is,

%(eg(t)exp{%&t}) <0. (5.31)

Integrating the last inequality over [0,t], we get

ec(t) < e.(0) exp{ _ %@t}. (5.32)

From (5.28) and (5.32), we have

e(t) < 3¢(0) exp{ - %&t}. (5.33)
Hence, from (5.9) and (5.33) we obtain

E(t) < min{ll,lz}_le(t) < 3e(0)min{ll,lz}_lexp{ - %%t}, t=ty, Ve € (0,€],
(5.34)
that is,

E(t) < Cexp(—=&t) Vt=ty, (5.35)

where C = 3e(0)min{l;,,} ! and & = (2¢/3)&;.
Therefore we have proved the exponential decay of solutions. O
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