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This paper studies the third problem for the Laplace equation on a bounded planar do-
main with inside cracks. The third condition ∂u/∂n+hu= f is given on the boundary of
the domain. The skip of the function u+ − u− = g and the modified skip of the normal
derivatives (∂u/∂n)+− (∂u/∂n)− +hu+ = f are given on cracks. The solution is looked for
in the form of the sum of a modified single-layer potential and a double-layer potential.
The solution of the corresponding integral equation is constructed.
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1. Introduction

Krutitskii studied in [6] the boundary value problem for the Helmholtz equation out-
side several cuts in the plane. Two boundary conditions were given on the cuts. One of
them specified the jump of the unknown function. Another one of the type of the Robin
condition contained the jump of the normal derivative of an unknown function and the
one-side limit of this function on the cuts. He looked for a solution of the problem in
the form of the sum of a single-layer potential and an angular potential. He reduced the
problem to the solution of a uniquely solvable integral equation. So, he proved the unique
solvability of the problem.

This paper studies the boundary value problem for the Laplace equation in a bounded
planar domain with several cuts inside. The cuts in [6] are smooth open arcs. The cracks
in this paper are arbitrary closed subsets of such sets. The Robin condition is given on
the boundary of the domain. The same conditions as that in [6] are on the cuts. The
case when the jumps of the solution and its normal derivatives are given on cracks is
included. So, this problem is a generalization of the problem studied in [4, 5]. I looked
for a solution in a similar form like in [6] but instead of a single-layer potential, I used
a modified single-layer potential. I reduced the problem to the solution of an integral
equation and constructed the solution of this equation. So, I constructed a solution of
the problem which is a new result even if there are no cuts inside the domain.
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2. Formulation of the problem

Let M ⊂ Rm. We denote by C0(M) the set of all continuous functions on M. If k is a
positive integer, denote by Ck(M) the set of all functions f such that there is continuous
Dα f onM for each multi-index αwith the length at most k. If 0 < β < 1, denote by Cβ(M)
the set of β-Hölder functions on M, that is, the set of continuous functions f on M such
that

sup
x∈M

∣
∣ f (x)

∣
∣+ sup

x,y∈M; x �=y

∣
∣ f (x)− f (y)

∣
∣

|x− y|β <∞. (2.1)

If k is a positive integer and 0 < β < 1, denote by Ck+β(M) the set of all functions f ∈
Ck(M) such that Dα f ∈ Cβ(M) for each multi-index α with the length k.

We say that a bounded open set H ⊂ R2 has Cα boundary ∂H if there exist a finite
number of “local” coordinate systems (xk, yk) (k = 1, . . . ,m) and a finite number of func-
tions ϕk of class Cα, k = 1,2, . . . ,m, defined on (−δ,δ) (where δ > 0) such that

(1) (xk, yk)∈H for |xk| < δ, ϕk(xk)− δ < yk < ϕk(xk),
(2) (xk, yk) /∈ clH , the closure of H , for |xk| < δ, ϕk(xk) < yk < ϕk(xk) + δ,
(3) for every z ∈ ∂H , there exist k (k = 1, . . . ,m) and xk ∈ (−δ,δ) such that z = (xk,

ϕk(xk)) in the corresponding coordinate system.
Let H ,H+ ⊂ R2 be bounded open sets with C1 boundaries and let clH+ ⊂ H , H be

connected. Put H− =H \ clH+. Denote by n(x) (n+(x), n−(x)) the unit exterior normal
of H(H+,H−) at x, respectively. For Γ, the closed subset of ∂H+, put G =H \ Γ. If u is a
function in G, x ∈ ∂G (x ∈ ∂H+, x ∈ ∂H−), denote by u(x) (u+(x), u−(x)) the limit of u
at x with respect to G (H+, H−), respectively. We will study the Robin problem for the
Laplace equation on the cracked open set G.

Let h ∈ C0(∂G), h ≥ 0, f ∈ C0(∂G), g ∈ C0(Γ). We say that a function u in G is a
solution of the problem

Δu= 0 in G,
(
∂u

∂n

)

+hu= f on ∂G \Γ,

u+−u− = g on Γ,
[
∂u

∂n+

]

+
−
[
∂u

∂n+

]

−
+hu+ = f on Γ,

(2.2)

if
(1) u is harmonic in G;
(2) there is an extension of u onto the function from C1(clH+);
(3) there is an extension of u onto the function from C1(clH−);
(4) n(x) ·∇u(x) +h(x)u(x)= f (x) in ∂G \Γ;
(5) u+(x)−u−(x)= g(x) in Γ;
(6) n+(x) · [∇u]+(x)−n+(x) · [∇u]−(x) +h(x)u+(x)= f (x) in Γ.

If h = 0, we will talk about the Neumann problem. In the opposite case, we will talk
about the Robin problem.
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3. Uniqueness

Denote by �k the k-dimensional Hausdorff measure normalized so that �k is the
Lebesgue measure in Rk.

Theorem 3.1. Let h∈ C0(∂G), h≥ 0, f ≡ 0, g ≡ 0, and let u be a solution of the problem
(2.2). Then u is constant in G. If there is x ∈ ∂G so that h(x) > 0, then u= 0 in G.

Proof. u∈ C0(clG) because g ≡ 0. Since n− = −n+ on ∂H+, we get, using Green’s formula
for H+ and H−,

0=
∫

∂H

[

u(n ·∇u) +hu2]d�1 +
∫

Γ
u
{

n+ · [∇u]+−n+ · [∇u]− +hu+
}

d�1

=
∫

∂G
hu2d�1 +

∫

∂H+

u
(

n+ · [∇u]+
)

d�1 +
∫

∂H−
u
(

n− · [∇u]−
)

d�1

=
∫

∂G
hu2d�1 +

∫

G
|∇u|2d�2.

(3.1)

Since h≥ 0, we have
∫

∂G
hu2d�1 = 0,

∫

G
|∇u|2d�2 = 0. (3.2)

Since ∇u = 0 in G, u is constant in each component of G. Since u ∈ C0(H) and H is
connected, there is a constant c such that u = c on H . If there is x ∈ ∂G so that h(x) >
0, then 0 = n+(x) · [∇u]+(x)− n+(x) · [∇u]−(x) + h(x)u+(x) = h(x)c. Therefore, c = 0.

�

4. Necessary conditions for the solvability

Let K be a closed subset of ∂H−. For a function f defined on K , denote fK = f on K ,
fK = 0 on ∂H− \K . We say that f ∈ Cα0 (K) if fK ∈ Cα(∂H−). If 0 < α < 1, denote

‖ f ‖Cα0 (K) = sup
x∈K

∣
∣ f (x)

∣
∣+ sup

x,y∈K ; x �=y

∣
∣ f (x)− f (y)

∣
∣

|x− y|α ,

‖ f ‖C1+α
0 (K) = sup

x∈K

∣
∣ f (x)

∣
∣+

∥
∥
∥
∥

∂ fK
∂τ

∥
∥
∥
∥
Cα0 (K)

,

(4.1)

where τ(x)= (−n2(x),n1(x)) is the unit tangential vector of H− at x.

Proposition 4.1. Let h∈ C0(∂G), h≥ 0, f ∈ C0(∂G), g ∈ C0(Γ), and let u be a solution
of the problem (2.2). Then g ∈ C1

0(Γ). If h∈ C0
0(∂G), then f ∈ C0

0(∂G). If h≡ 0, then
∫

∂G
f d�1 = 0. (4.2)

Proof. Since gΓ = u+−u− in ∂H+ and u+,u− ∈ C1(∂H+), we deduce that gΓ ∈ C1(∂H+). If
h≡ 0, we get, using Green’s theorem and the fact that n− = −n+ on ∂H+,

∫

∂G
f d�1 =

∫

∂H+

n+ · [∇u]+d�1 +
∫

∂H−
n− · [∇u]−d�1 = 0. (4.3)
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Suppose now that h ∈ C0
0(∂H+). Since f∂G = n+ · [∇u]+ − n+ · [∇u]− + hu+ in ∂H+ and

u+,n+,[∇u]+,[∇u]− ∈ C0(∂H+), we get f∂G ∈ C0(∂H+). �

5. Single-layer potentials

Fix R > 0. For f ∈ C0(∂G), define

�R f (x)= (2π)−1
∫

∂G
f (y) log

(
R

|x− y|
)

d�1(y) (5.1)

as the modified single-layer potential with density f . In the case of several sets, we will
write �G

R f . (For R= 1, we get the usual single-layer potential.) Note that �R f differs by
constants. The function �R f is harmonic in R2 \ ∂G.

Lemma 5.1. Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, R > 0. If

f ∈ Cβ0 (∂G), then �R f ∈ C0(R2), �R f ∈ C1(clH+), �R f ∈ C1(clH−), and

sup
x∈G

∣
∣�R f (x)

∣
∣+ sup

x∈G

∣
∣∇�R f (x)

∣
∣≤M‖ f ‖

C
β
0 (∂G)

, (5.2)

where M depends on G, R, and β.

Proof. According to [3, Lemma 2.18], the function �R f is continuous in R2. According
to [10, page 227], we have �R f ∈ C1(clH+), �R f ∈ C1(clH−). Thus �R : f �→ �R f is a

linear operator from C
β
0 (∂G) to C1(clH−). Easy calculation yields that this operator is

closed. According to the closed graph theorem (see [13, Chapter II, Section 6, Theorem
1]), it is bounded, similarly for H+. �

Lemma 5.2. Let H ,H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, R > 0,

h∈ Cβ0 (∂G). If Vh f = hSR f for f ∈ Cβ0 (∂G) is denoted, then Vh is a compact linear operator

on C
β
0 (∂G).

Proof. Lemma 5.1 yields that �R represents a bounded linear operator from C
β
0 (∂G) to

C1(clH−). Since the identity operator is a compact operator from C1(clH−) to Cβ(∂H−),

the operator �R is a compact linear operator from C
β
0 (∂G) to Cβ(∂H−) by [13, Chapter

X, Section 2]. Since h∂G ∈ Cβ(∂H−), the operator H : g �→ hg is a bounded linear operator

in Cβ(∂H−). Since H�R is a compact linear operator from C
β
0 (∂G) to Cβ(∂H−) by [13,

Chapter X, Section 2], the operator Vh is a compact linear operator on C
β
0 (∂G). �

Lemma 5.3. Let ϕ ∈ C0
0(∂G), R > diamG, the diameter of G. If there is y ∈ ∂G such that

ϕ(y) �= 0, then

0 <
∫

∂G
ϕ(x)SRϕ(x)d�1(x) <∞. (5.3)

Proof. Fix x0 in ∂G. Put P(x) = (x− x0)/R, P−1(x) = Rx + x0 for x ∈ R2, G̃ = P(G). For

x ∈ ∂G̃, put ϕ̃(x) = ϕ(P−1(x)). Then ϕ̃ ∈ C0(∂G̃) and �Rϕ(x) = R�G̃
1 ϕ̃(P(x)) for x ∈

G. Denote by � the restriction of �1 onto ∂G̃. Since �G̃
1 |ϕ̃| is continuous in R2 by
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[10, Lemma 4], we conclude that

∫

|ϕ̃|�G̃
1 |ϕ̃|d� <∞, (5.4)

and thus the real measure ϕ̃� has finite energy (see [7, Chapter 1, Section 4]). Since
�1({x ∈ ∂G̃;|ϕ̃(x)| > 0}) > 0, [7, Theorem 1.16] yields

∫

ϕ̃�G̃
1 ϕ̃ d� > 0. (5.5)

Now we use the fact that
∫

∂G
ϕ(x)SRϕ(x)d�1(x)= R2

∫

∂G̃
ϕ̃(x)SG̃1 ϕ̃(x)d�1(x). (5.6)

�

6. Double-layer potentials

If g ∈ C0
0(Γ), denote, for x ∈R2 \Γ,

�g(x)= (2π)−1
∫

Γ
g(y)|x− y|−2n+(y) · (y− x)d�1(y) (6.1)

as the double-layer potential with density g.
If V is a bounded open set with C1 boundary, g ∈ C(∂V), and nV (y) denotes the

exterior unit normal of V at y, define on R2 \ ∂V

�Vg(x)= (2π)−1
∫

∂V
g(y)|x− y|−2nV (y) · (y− x)d�1(y) (6.2)

as the double-layer potential corresponding to V with density g.

Lemma 6.1. Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, g ∈
C

1+β
0 (Γ). Then �g is a harmonic function in R2 \ Γ, �g ∈ C1(clH+), �g ∈ C1(clH−),

[�g]+(x)− [�g]−(x)= g(x) on Γ, n+(x) · [∇�g]+(x)−n+(x) · [∇�g]−(x)= 0 on Γ, and

sup
x∈G

∣
∣�g(x)

∣
∣+ sup

x∈G

∣
∣∇�g(x)

∣
∣≤M‖g‖

C
1+β
0 (∂G)

, (6.3)

where M depends on G, R, and β.

Proof. Easy calculations yield that �g is a harmonic function in R2 \ Γ. Since �g =
�H+g =�H−g, [9, Theorem 1] yields that �g ∈ C0(clH+), �g ∈ C0(clH−), and [�g]+(x)
− [�g]−(x)= g(x) in Γ.

The boundary of H+ is formed by finitely many Jordan curves. Fix one of these curves
T . Denote gT = g on T , gT = 0 elsewhere. Let T be parametrized by the arc length
s : T = {ϕ(s); s ∈ [a,b]}, and H+ is to the right when the parameter s increases on T .
Put f (ϕ(s))=−[g(ϕ)]′(s). Then f ∈ Cβ(T) because g ∈ C1+β(∂H+). For x ∈ R2 \T and
s ∈ [a,b], denote by v(x,ϕ(s)) the increment of the argument of y − x along the curve
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{y = ϕ(t); t ∈ [a,s]}, and

V f (x)= (2π)−1
∫

T
v(x, y) f (y)d�1(y) (6.4)

is the angular potential corresponding to f . Define f = 0 on R2 \T . Since V f is a con-
jugate function to −�H+

1 f (see [10, pages 226-227]), we have ∂V f /∂x1 = −∂�H+
1 f /∂x2,

∂V f /∂x2 = ∂�H+
1 f /∂x1. Lemma 5.1 gives ∇V f ∈ C0(clH+), ∇V f ∈ C0(clH−). Using

boundary properties of single-layer potentials (see [2, Theorem 2.2.13]), we can deduce
that n+(x) · [∇V f ]+(x)−n+(x) · [∇V f ]−(x)= 0 in T . Put g̃ = g − g(ϕ(a)), ĝ = g(ϕ(a))
on T , g̃, ĝ = 0 elsewhere. Since

gT
(

ϕ(s)
)− gT

(

ϕ(a)
)=

∫ s

a

(− f (t)
)

dt =
∫ b

s
f (t)dt, (6.5)

we have �H+ g̃ = V f by [10, page 226]. Therefore �H+ g̃ ∈ C1(clH+), �H+ g̃ ∈ C1(clH−),
and n+(x) · [∇�H+ g̃]+(x)− n+(x) · [∇�H+ g̃]−(x) = 0 in T . According to [9, page 137],
the function �ĝ is constant in the interior of T and in the exterior of T as well. Thus
∇�H+ ĝ = 0 in R2 \ T . So, �gT = �H+ g̃ + �H+ ĝ ∈ C1(clH+) ∩ C1(clH−) and n+(x) ·
+(x)− n+(x) · [∇�gT]−(x) = 0 on ∂H+. Summing over all T , we get �g ∈ C1(clH+),
�g ∈ C1(clH−), and n+(x) · [∇�g]+(x)−n+(x) · [∇�g]−(x)= 0 on Γ.

Since � : g �→�g is a closed linear operator from C
1+β
0 (Γ) to C1(clH+), it is bounded

by the closed graph theorem (see [13, Chapter II, Section 6, Theorem 1]), similarly for
H−. �

7. Reduction of the problem

Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, f ∈ C
β
0 (∂G), h ∈

C
β
0 (∂G), h≥ 0, g ∈ C1+β

0 (Γ). We will look for a solution u of the problem (2.2) in the form

u=�g + v. (7.1)

According to Lemma 6.1 and [9, Theorem 1], the function u is a solution of the problem
(2.2) if and only if the function v is a solution of the problem

Δv = 0 in G,

∂v

∂n
+hv = F on ∂G \Γ,

v+− v− = 0 on Γ,
[
∂v

∂n+

]

+
−
[
∂v

∂n+

]

−
+hv+ = F on Γ,

(7.2)

where

F = f − ∂�g
∂n

−h�g on ∂G \Γ, (7.3)

F(x)= f (x)−h(x)
(

1
2
g(x) +

∫

Γ

n+(y) · (y− x)
2π|x− y|2 g(y)d�1(y)

)

, x ∈ Γ. (7.4)
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F ∈ C
β
0 (∂G) because f ∈ C

β
0 (∂G), h ∈ C

β
0 (∂G), �g ∈ C∞(R2 \ Γ), �g ∈ C1(clH+) by

Lemma 6.1, and

[�g]+(x)= 1
2
g(x) +

1
2π

∫

Γ

n+(y) · (y− x)
|x− y|2 g(y)d�1(y) (7.5)

for x ∈ Γ by [1, Theorem].
We will look for a solution of the problem (7.2) in the form of a modified single-layer

potential �Rw, where w ∈ Cβ0 (∂G) and R > diamG.

Define for w ∈ Cβ0 (∂G), x ∈ ∂H ,

K∗Gw(x)= (2π)−1
∫

∂G
w(y)|x− y|−2n(x) · (y− x)d�1(y). (7.6)

According to [9, Theorem 2],

n(x) ·∇�Rw(x)= w(x)
2

+K∗Gw(x) for x ∈ ∂G \Γ, (7.7)

n+(x) · [∇�Rw
]

+(x)−n+(x) · [∇�Rw
]

−(x)=w(x) in Γ. (7.8)

Since the modified single layer potential �Rw is a harmonic function in G, we get using
Lemma 5.1 that �Rw is a solution of the problem (7.2) if and only if

Th,Rw = F, (7.9)

where

Th,Rw = w

2
+K∗Gw+h�Rw on ∂G \Γ,

Th,Rw =w+h�Rw on Γ.
(7.10)

8. Solvability of the problem

Lemma 8.1. Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, h ∈
C
β
0 (∂G), h≥ 0, R > diamG. Then K∗G is a compact linear operator from C

β
0 (∂G) to Cβ(∂H)

and Th,R is a bounded linear operator in C
β
0 (∂G).

Proof. Fix α∈ (β,γ). Then K∗H is a linear operator from Cβ(∂H) to Cα(∂H) by [11, Theo-
rem 14.IV]. Since K∗H is a bounded linear operator from Cβ(∂H) to C0(∂H) by (7.7) and
Lemma 5.1, the operator K∗H is a closed operator from Cβ(∂H) to Cα(∂H). This gives that

the operator K∗H is a closed linear operator from C
β
0 (∂G) to Cα(∂H). The closed graph

theorem (see [13, Chapter II, Section 6, Theorem 1]) shows that K∗H is a bounded linear

operator from C
β
0 (∂G) to Cα(∂H). Since the identity operator is a compact operator from

Cα(∂H) to Cβ(∂H), the operatorK∗G is a compact linear operator from C
β
0 (∂G) to Cβ(∂H)

by [13, Chapter X, Section 2]. Since K∗G is a bounded linear operator from C
β
0 (∂G) to

Cβ(∂H), the operator T0,R is a bounded linear operator in C
β
0 (∂G). Since Th,R−T0,R is a

bounded linear operator in C
β
0 (∂G) by Lemma 5.2, the operator Th,R is a bounded linear

operator in C
β
0 (∂G). �
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Notation 8.2. Let X be a real Banach space. Denote by complX = {x + iy; x, y ∈ X} the
complexification of X with the norm ‖x+ iy‖ = ‖x‖+ ‖y‖. If T is a bounded linear op-
erator on X , we define T(x + iy) = Tx + iT y as the bounded linear extension of T onto
complX .

Definition 8.3. The bounded linear operator T on the Banach space X is called Fredholm
if α(T), the dimension of the kernel of T , is finite, the range T(X) of T is a closed subspace
of X , and β(T), the codimension of T(X), is finite. The number i(T)= α(T)−β(T) is the
index of T .

Lemma 8.4. Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, h ∈
C
β
0 (∂G), h≥ 0, R > diamG. If λ∈ C, λ �= 1/2, λ �= 1, then Th,R− λI is a Fredholm operator

with index 0 in complC
β
0 (∂G). (Here I denotes the identity operator.)

Proof. Denote L f (x) = f (x)/2 for x ∈ ∂H , L f (x) = f (x) for x ∈ Γ. Then L− λI is a

Fredholm operator in complC
β
0 (∂G). Since T0,R− L is a compact operator in C

β
0 (∂G) by

Lemma 8.1, the operator T0,R− λI is a Fredholm operator with index 0 in C
β
0 (∂G) by [12,

Theorem 5.10]. Since Th,R−T0,R is a compact linear operator in C
β
0 (∂G) by Lemma 5.2,

the operator Th,R − λI is a Fredholm operator with index 0 in C
β
0 (∂G) by [12, Theorem

5.10]. �

Lemma 8.5. Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, R >

diamG, ϕ∈ Cβ0 (∂G). If T2
0,Rϕ= 0, then T0,Rϕ= 0.

Proof. According to Section 7, the modified single-layer potential �RT0,Rϕ is a solution of
the problem (2.2) with h≡ 0, g ≡ 0, and f = T2

0,Rϕ= 0. According to Theorem 3.1, there
is a constant c such that �RT0,Rϕ= c on G. �

According to Section 7, the modified single-layer potential �Rϕ is a solution of the
problem (2.2) with h≡ 0, g ≡ 0, and f = T0,Rϕ. Thus

∫

∂G
T0,Rϕ= 0 (8.1)

by proposition 4.1. Since �RT0,Rϕ = c in G and �RT0,Rϕ is continuous in R2 by Lemma
5.1, we obtain

∫

∂G

(

T0,Rϕ
)

�RTh,Rϕd�1 = c
∫

∂G
T0,Rϕ= 0. (8.2)

According to Lemma 5.3, we have T0,Rϕ= 0 a.e. in ∂G.

Proposition 8.6. Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ,

h∈ C
β
0 (∂G), h≥ 0, h(x) > 0 for some x ∈ ∂G, R > diamG. Then Th,R is continuosly invert-

ible in C
β
0 (∂G). Denote by C

β
0,0(∂G) the space of all f ∈ Cβ0 (∂G) for which (4.2) holds. Then

T0,R is continuously invertible in C
β
0,0(∂G).

Proof. Let ϕ ∈ C
β
0 (∂G) be such that �Rϕ = 0 in G. Then �Rϕ = 0 in ∂G by Lemma 5.1.

According to Lemma 5.3, we have ϕ≡ 0.
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If ϕ∈ C
β
0 (∂G) and Th,Rϕ= 0, then �Rϕ is a solution of the problem (2.2) with f ≡ 0,

g ≡ 0 by Section 7. Since �Rϕ = 0 in G by Theorem 3.1, we have ϕ ≡ 0. Since Th,R is a

Fredholm operator in C
β
0 (∂G) with index 0 by Lemma 8.4, we obtain Th,R(C

β
0 (∂G)) =

C
β
0 (∂G). Thus, Th,R is continuously invertible in C

β
0 (∂G) by [13, Chapter II, Section 6,

Proposition 3] and [13, Chapter II, Section 6, Theorem 1]. �

If ϕ∈ Cβ0 (∂G), then �Rϕ is a solution of the problem (2.2) with h≡ 0, g ≡ 0, and f =
T0,Rϕ (see Section 7). Thus T0,Rϕ∈ C

β
0,0(∂G) by Proposition 4.1. Hence, T0,R(C

β
0 (∂G))⊂

C
β
0,0(∂G) and β(T0,R) ≥ 1. Since T0,R is a Fredholm operator in C

β
0 (∂G) with index 0 by

Lemma 8.4, there is a nontrivial ϕ1 ∈ Cβ0 (∂G) such that T0,Rϕ1 = 0. According to Section 7
and Theorem 3.1, there is a constant c1 such that �Rϕ1 = c1 inG. Since c1 = 0 yields ϕ1 = 0

we deduce that c1 �= 0. If ϕ ∈ C
β
0 (∂G), T0,Rϕ = 0, then Section 7 and Theorem 3.1 imply

that there is a constant c such that �Rϕ = c in G. Since �R(ϕ− (c/c1)ϕ1) = 0 in G, we

obtain that ϕ− (c/c1)ϕ1 ≡ 0. This means that α(T0,R)= 1. Since T0,R(C
β
0 (∂G))⊂ Cβ0,0(∂G),

β(T0,R)= α(T0,R)= 1 shows that T0,R(C
β
0 (∂G))= Cβ0,0(∂G).

According to Lemma 8.5, the operator T0,R is injective in T0,R(C
β
0 (∂G)) = C

β
0,0(∂G).

Since C
β
0,0(∂G) is a T0,R-invariant closed linear subspace of finite codimension in C

β
0 (∂G)

and T0,R is a Fredholm operator with index 0, the restriction of T0,R onto C
β
0,0(∂G) is

a Fredholm operator with index 0 by [8, Proposition 3.7.1.]. Since T0,R is injective in

C
β
0,0(∂G), it is surjective in C

β
0,0(∂G). The closed graph theorem (see [13, Chapter II, Sec-

tion 6, Theorem 1]) gives that T0,R is continuously invertible in C
β
0,0(∂G).

Theorem 8.7. Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, h∈
C
β
0 (∂G), h≥ 0, h(x) > 0 for some x ∈ ∂G, f ∈ Cβ0 (∂G), g ∈ C1+β

0 (Γ). Then there is a unique
solution of the problem (2.2).

Proof. Fix R > diamG. According to Proposition 8.6, there is T−1
h,R in C

β
0 (∂G). Let F be

given by (7.3). Then

u=�g + �RT
−1
h,RF (8.3)

is a solution of the problem (2.2) by Section 7. This solution is unique by Theorem 3.1.
�

Theorem 8.8. LetH ,H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, h≡ 0,

f ∈ C
β
0 (∂G), g ∈ C

1+β
0 (Γ). Then there is a solution of the problem (2.2) if and only if (4.2)

holds. This solution is unique up to an additive constant.

Proof. If there is a solution of the problem (2.2), the relation (4.2) holds by Proposition
4.1. Suppose now that (4.2) holds. Fix R > diamG. Denote by T the restriction of T0,R

onto C
β
0,0(∂G). Then there is T−1 by Proposition 8.6. Let F be given by (7.4). Then u =

�g + �RT−1F is a solution of the problem (2.2) by Section 7. This solution is unique up
to an additive constant by Theorem 3.1. �
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9. Solution of the problem

Lemma 9.1. Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, R >

diamG, h∈ Cβ0 (∂G), h≥ 0, f ∈ complC
β
0 (∂G), f (x) �= 0 for some x ∈ ∂G. If λ is a complex

number such that Th,R f = λ f , then λ≥ 0.

Proof. Take f1, f2 ∈ C
β
0 (∂G) such that f = f1 + i f2. Since �R( f1− i f2)∈ complC1(clH+),

�R( f1 − i f2) ∈ complC1(clH−), �R( f1 − i f2) ∈ complC0(R2) by Lemma 5.1, we get us-
ing Green’s formula that

∫

∂H+

[

�R( f1− i f2)
]

n+ · [∇�R( f1 + i f2)
]

+ =
∫

H+

[∣
∣∇�R f1

∣
∣

2
+
∣
∣∇�R f2

∣
∣

2
]

d�2,
∫

∂H−

[

�R
(

f1− i f2
)]

n− · [∇�R
(

f1 + i f2
)]

− =
∫

H−

[∣
∣∇�R f1

∣
∣

2
+
∣
∣∇�R f2

∣
∣

2
]

d�2.

(9.1)

Summing,
∫

∂G

[

�R
(

f1− i f2
)]

T0,R
(

f1 + i f2
)

d�1 =
∫

G

[∣
∣∇�R f1

∣
∣

2
+
∣
∣∇�R f2

∣
∣

2
]

d�2. (9.2)

Using Fubini’s theorem,

λ
∫

∂G

(

f1�R f1 + f2�R f2
)

d�1 =
∫

∂G

[

�R
(

f1− i f2
)]

Th,R
(

f1 + i f2
)

d�1

=
∫

G

[∣
∣∇�R f1

∣
∣

2
+
∣
∣∇�R f2

∣
∣

2
]

d�1

+
∫

∂G
h
[(

�R f1
)2

+
(

�R f2
)2
]

d�1.

(9.3)

Since

0 <
∫

∂G

(

f1�R f1 + f2�R f2
)

d�1 <∞ (9.4)

by Lemma 5.3 and h≥ 0, we get

λ=
∫

G

[∣
∣∇�R f1

∣
∣

2
+
∣
∣∇�R f2

∣
∣

2
]

d�1 +
∫

∂G h
[(

�R f1
)2

+
(

�R f2
)2
]

d�1
∫

∂G

(

f1�R f1 + f2�R f2
)

d�1
≥ 0. (9.5)

�

Lemma 9.2. Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, R >

diamG, f ∈ complC
β
0 (∂G), f (x) �= 0 for some x ∈ ∂G. If λ is a complex number such that

T0,R f = λ f , then 0≤ λ≤ 1.

Proof. We can suppose that λ �= 0. Lemma 9.1 yields λ > 0 and we thus can suppose that

f ∈ C
β
0 (∂G). Since �Rλ−1 f is a solution of the problem (2.2) with h ≡ 0, g ≡ 0 (see

Section 7), Proposition 4.1 gives that f fulfills (4.2). Since T0,R f = f on Γ, we deduce
from T0,R f = λ f that λ = 1 or f = 0 on Γ. We can restrict ourselves to the case when
f = 0 on Γ.
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Fix r > 0 such that clG ⊂ Ωr(0) ≡ {y ∈ R2;|x| < r} and put V = Ωr(0) \ clG. Then
�R f ∈ C1(clV) by Lemma 5.1. Using Green’s formula,

∫

V

∣
∣∇�R f

∣
∣

2
d�1 =

∫

∂V

(

�R f
)(

n ·∇�R f
)

d�1

=
∫

∂H

(

�R f
)
(

1
2
I −K∗H

)

f d�1 +
∫

∂Ωr (0)

∂�R f

∂n
�R f d�1

= (1− λ)
∫

∂G
f�R f d�1 +

∫

∂Ωr (0)
�R f

∂�R f

∂n
d�1.

(9.6)

Since (4.2) forces �R f (x)= o(1),∇�R f (x)=O(1/|x|) as |x| →∞, we get for r →∞ that
∫

R2\clG

∣
∣∇�R f

∣
∣

2
d�1 = (1− λ)

∫

∂G
f�R f d�1. (9.7)

Using Lemma 5.3, we get

(1− λ)=
∫

R2\clG

∣
∣∇�R f

∣
∣

2
d�1

∫

∂G f�R f d�1
≥ 0. (9.8)

So, λ≤ 1. �

Notation 9.3. Let X be a complex Banach space and let T be a bounded linear operator
on X . Denote by σ(T) the spectrum of T and by r(T)= sup{|λ|; λ∈ σ(T)} the spectral
radius of T .

Lemma 9.4. Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, R >

diamG, h∈ Cβ0 (∂G), h≥ 0. Put Vh f = h�R f for f ∈ complC
β
0 (∂G). Then

r
(

Vh
)≤ sup

x∈∂G
SRh(x). (9.9)

Proof. Let λ ∈ σ(Vh) in complC
β
0 (∂G), λ �= 0. Since Vh is a compact linear operator in

complC
β
0 (∂G) by Lemma 5.2, there is f ∈ complC

β
0 (∂G) such that f (z) �= 0 for some z ∈

∂G and Vh f = λ f (see [13, Chapter X, Section 5, Theorem 2]). Using Fubini’s theorem,
∫

∂G
|λ f | d�1 =

∫

∂G

∣
∣
∣
∣h(x)

∫

∂G
(2π)−1 f (y) log

(
R

|x− y|
)

d�1(y)
∣
∣
∣
∣d�1(x)

≤
∫∫

∂G
h(x)(2π)−1

∣
∣ f (y)

∣
∣ log

(
R

|x− y|
)

d�1(x)d�1(y)

≤
∫

∂G
| f |d�1 sup

x∈∂G
�Rh(x).

(9.10)

Since f ∈ complC
β
0 (∂G) and f (z) �= 0, there is δ > 0 such that | f (x)| > 0 for x ∈Ωδ(z)∩

∂G and �1(Ωδ(z)∩ ∂G) > 0. Dividing the inequality above by
∫ | f |, we obtain

|λ| ≤ sup
x∈∂G

SRh(x). (9.11)
�
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Theorem 9.5. Let H , H+ have boundary of class C1+γ, where 0 < γ < 1. Let 0 < β < γ, h∈
C
β
0 (∂G), h≥ 0, f ∈ Cβ0 (∂G), g ∈ C1+β

0 (Γ). If h≡ 0, suppose moreover that (4.2) holds. Put

α0 ≡ 1 + sup
x∈∂G

�Rh(x). (9.12)

Fix α > α0/2, R > diamG. Let F be given by (7.3) and put

ϕ= α−1
∞
∑

n=0

(

I −α−1T̃h,R
)n
F, u=�g + �Rϕ,

ϕm = α−1
m
∑

n=0

(

I −α−1T̃h,R
)n
F, um =�g + �Rϕm.

(9.13)

Then u is a solution of the problem (2.2). Moreover, there are constants q ∈ (0,1), C ∈ (1,∞)
dependent on G, h, R, and α such that

∥
∥
∥α−1(I −α−1T̃h,R

)n
F
∥
∥
∥
C
β
0 (∂G)

≤ Cqn
[

‖ f ‖
C
β
0 (∂G)

+‖g‖
C

1+β
0 (Γ)

]

,

sup
x∈G

∣
∣u(x)

∣
∣+ sup

x∈G

∣
∣∇u(x)

∣
∣≤ C

[

‖ f ‖
C
β
0 (∂G)

+‖g‖
C

1+β
0 (Γ)

]

,

∥
∥ϕ−ϕm

∥
∥
C
β
0 (∂G)

≤ Cqm
[

‖ f ‖
C
β
0 (∂G)

+‖g‖
C

1+β
0 (Γ)

]

,

sup
x∈G

∣
∣u−um

∣
∣+ sup

x∈G

∣
∣∇u(x)−∇um(x)

∣
∣≤ Cqm

[

‖ f ‖
C
β
0 (∂G)

+‖g‖
C

1+β
0 (Γ)

]

.

(9.14)

Proof. If λ ∈ σ(T0,R − (1/2)I), λ �= 0, λ �= 1/2, then λ is an eigenvalue of T0,R − (1/2)I by
Lemma 8.4. Since |λ| ≤ 1/2 for each eigenvalue of T0,R − (1/2)I by Lemma 9.2, we get

r(T0,R− (1/2)I)≤ 1/2 in complC
β
0 (∂G). According to Lemma 9.4, [13, Chapter VIII, Sec-

tion 2], and [13, Satz 45.1 and Lemma 9.4], we have r(Th,R− (1/2)I)≤ r(Vh) + r(T0,R−
(1/2)I)≤ α0− (1/2) in complC

β
0 (∂G).

If λ ∈ σ(Th,R − (1/2)I), λ �= 0, λ �= 1/2, then λ is an eigenvalue of Th,R by Lemma 8.4.
Lemma 9.1 forces σ(Th,R − (1/2)I) ⊂ 〈−1/2,r(Th,R − (1/2)I)〉 ⊂ 〈−1/2,α0 − 1/2〉. Using
the spectral mapping theorem (see [13, Chapter VIII, Section 7]), we get σ(Th,R)⊂ 〈0,α0〉.
Put X = complC

β
0,0(∂G) for h≡ 0 and X = complC

β
0 (∂G) in the opposite case. Denote by

T̃h,R the restriction of Th,R onto X . Let λ∈ C \ σ(Th,R). Since X is a Th,R-invariant closed

linear subspace of finite codimension in C
β
0 (∂G) (see Section 7 and Proposition 4.1) and

Th,R − λI is a Fredholm operator with index 0, the operator T̃h,R − λI is a Fredholm op-
erator with index 0 in X by [8, Proposition 3.7.1.] Since T̃h,R − λI is injective, it is sur-
jective and the closed graph theorem (see [13, Chapter II, Section 6, Theorem 1]) gives
that T̃h,R− λI is continuously invertible. Thus σ(T̃h,R)⊂ σ(Th,R)⊂ 〈0,α0〉. Proposition 8.6
shows that σ(T̃h,R)⊂ (0,α0〉. Using the spectral mapping theorem (see [13, Chapter VIII,
Section 7]), we get σ(α−1T̃h,R− I)⊂ {λ∈ C;|λ| < 1}. Thus r(α−1T̃h,R− I) < 1. According
to [13, Chapter VIII, Section 2, Theorem 3] and [13, Chapter VIII, Section 2, Theorem 4],
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there are constants q ∈ (0,1), M1 ∈ (1,∞) so that

∥
∥
∥

(

α−1T̃h,R− I
)n
∥
∥
∥≤M1q

n (9.15)

for arbitrary nonnegative integer n.

F ∈ Cβ0 (∂G) by Section 7. Since there is a solution of the problem (2.2) by Theorem 8.7
and Theorem 8.8, there is a solution of the problem (7.2) by Section 7. Thus F ∈ X by
Proposition 4.1. According to (9.15),

∥
∥
∥α−1(I −α−1T̃h,R

)n
F
∥
∥
∥
C
β
0 (∂G)

≤M1q
n‖F‖

C
β
0 (∂G)

. (9.16)

Hence, ϕ is well defined and

‖ϕ‖
C
β
0 (∂G)

≤
∞
∑

n=0

M1q
n‖F‖

C
β
0 (∂G)

≤M1(1− q)−1‖F‖
C
β
0 (∂G)

, (9.17)

∥
∥ϕ−ϕm

∥
∥
C
β
0 (∂G)

≤
∞
∑

n=m+1

M1q
n‖F‖

C
β
0 (∂G)

≤ M1q

(1− q)
qm‖F‖

C
β
0 (∂G)

. (9.18)

Easy calculation yields thatTh,Rϕ= F. So, u is a solution of the problem (2.2) by Section 7.
According to Lemma 5.1, there is a constant M2 such that

sup
x∈G

∣
∣�Rψ(x)

∣
∣+ sup

x∈G

∣
∣∇�Rψ(x)

∣
∣≤M2‖ψ‖Cβ0 (∂G)

(9.19)

for each ψ ∈ Cβ0 (∂G). Since u−um =�R(ϕ−ϕm), we get from (9.18) and (9.19) that

sup
x∈G

∣
∣u−um

∣
∣+ sup

x∈G

∣
∣∇u(x)−∇um(x)

∣
∣≤M2M1q(1− q)−1qm‖F‖

C
β
0 (∂G)

. (9.20)

According to Lemma 6.1, there is a constant M3 such that

sup
x∈G

|�ψ(x)|+ sup
x∈G

|∇�ψ(x)| ≤M3‖ψ‖C1+β
0 (∂G)

(9.21)

for each ψ ∈ C1+β
0 (∂G). Using (9.17), (9.19), and (9.21), we get

sup
x∈G

|u|+ sup
x∈G

|∇u(x)| ≤M2M1(1− q)−1‖F‖
C
β
0 (∂G)

+M3‖g‖C1+β
0 (∂G)

. (9.22)

Denote

Tψ(x)= ∂�ψ(x)
∂n

+h(x)�ψ(x), x ∈ ∂G \Γ, (9.23)

Tψ(x)= h(x)
(

1
2
ψ(x) +

1
2π

∫

Γ

n+(y) · (y− x)
|x− y|2 ψ(y)d�1(y)

)

, x ∈ Γ. (9.24)
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Then T is a linear operator from C
1+β
0 (∂G) to C

β
0 (∂G) by Section 7. Since

[�ψ]+(x)= ψ(x)
2

+ (2π)−1
∫

Γ
ψ(y)|x− y|−2n+(y) · (y− x) d�1(y) (9.25)

for x ∈ Γ (see [9, Theorem 1]), the operator T is a bounded operator from C
1+β
0 (∂G) to

C0(∂G) by Lemma 6.1. Therefore, T is a closed linear operator from C
1+β
0 (∂G) to C

β
0 (∂G).

According to the closed graph theorem (see [13, Chapter II, Section 6, Theorem 1]), there
is a constant M3 such that ‖Tψ‖

C
β
0 (∂G)

≤M3‖ψ‖C1+β
0 (∂G)

for each ψ ∈ C1+β0 (∂G). There-

fore,

‖F‖‖
C
β
0 (∂G)

≤ ‖ f ‖
C
β
0 (∂G)

+M3‖g‖C1+β
0 (∂G)

. (9.26)

We get requested inequalities using (9.18), (9.20), (9.22), and (9.26). �
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