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The paper centers around a pair of sequences of linear positive operators. The former
has the degree of exactness one and the latter has its degree of exactness null, but, as a
novelty, it reproduces the third test function of Korovkin theorem. Quantitative estimates
of the rate of convergence are given in different function spaces traveling from classical
approximation to approximation in abstract spaces. Particular classes are also studied.
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1. Introduction

One of the most powerful and spectacular criteria to help us decide if a sequence (Ln)n≥1

of positive linear operators tends to the identity operator with respect to the uniform
norm of the spaceC([a,b]) was established by P. P. Korovkin and H. Bohman in the fifties.
This theorem says: if (Lnek)n≥1 converges to ek uniformly on [a,b], k ∈ {0,1,2}, for the
test functions e0(x)= 1, e1(x)= x, e2(x)= x2, then (Ln f )n≥1 converges to f uniformly on
[a,b], for each f ∈ C([a,b]).

Many classical linear positive operators preserve e0. For example, all operators which
can be defined by using probabilistic methods enjoy this property. Besides, a part of these
operators also preserves the second test function e1, this implying that the affine functions
are invariant by them. It is known that if a linear positive operator preserved all three test
functions, it would then become the identity operator, so it is not useful in approximation
theory.

Recently, King [8] has presented an unexpected example of operators of Bernstein type
which preserve e0 and e2. Motivated by this work, in the present paper which comprises
five Sections, we focus our attention on indicating a general technique to construct se-
quences of operators of discrete type with the same property as in King’s example. By
using different moduli of smoothness, we study the rate of local and global estimates for
our class in various functions spaces. A probabilistic approach is also mentioned. Par-
ticular cases are analyzed and, following our technique, we give the modified variants
of Szász, Baskakov, and Bernstein-Chlodovsky operators. The last section is devoted to
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2 Linear operators that preserve some test functions

identifying what this property would mean in some abstract spaces and to presenting a
new look of the rate of convergence for the operators which satisfy it.

2. Construction of the class (L∗n )n≥1

Throughout the paper, R+ stands for the interval [0,∞) and N0 denotes the set {0}∪N.
At first step, we consider a sequence (Ln)n≥1 of linear positive operators of discrete type
acting on a subspace of C(R+) and defined as follows:

(
Ln f

)
(x)=

∞∑

k=0

un,k(x) f
(
xn,k

)
, x ≥ 0, f ∈�∩Eα, (2.1)

where every function un,k : R+ → R+ is continuous (n ∈ N, k ∈ N0), (xn,k)k≥0 := Δn is a
net on R+, and

� := { f ∈RR+
+ : the series in (2.1) is convergent},

Eα :=
{
f ∈ C(R+

)
:
f (x)

1 + xα
is convergent as x −→∞

}
,

(2.2)

α ≥ 2 being fixed. The space Eα is endowed with the usual norm ‖ · ‖∗α , ‖ f ‖∗α :=
supx≥0(| f (x)|/(1 + xα)). Clearly, if α < α′, then Eα ⊂ Eα′ . We mention that the right-hand

side of (2.1) could be a finite sum. For example, if we take un,k(x) =
(
n
k

)
(1 + x)−nxk for

k = 0,1, . . . ,n, un,k = 0 for k > n, and we choose the net Δn = (k/(n− k+ 1))k=0,n, then Ln,
n∈N, become the well-known Bleimann-Butzer-Hahn operators [3].

In order to obtain for Ln the degree of exactness one, we consider the following iden-
tities:

∞∑

k=0

un,k(x)= 1,
∞∑

k=0

un,k(x)xn,k = x, x ≥ 0, (2.3)

are fulfilled for each n ∈ N. We also impose that Ln maps e2 in a polynomial of second
degree, more precisely,

(
Lne2

)
(x)= anx2 + bnx+ cn, x ≥ 0, (2.4)

where an �= 0, n∈N, limn→∞ an = 1, limn→∞ bn = limn→∞ cn = 0.
Based on Bohman-Korovkin theorem, the values of these limits and relation (2.3)

guarantee that (Ln)n≥1 is an approximation process on any compact K ⊂ R+. Clearly,
{e0,e1,e2} ⊂ Eα. Relations (2.3) and (2.4) guarantee that {e0,e1,e2} ⊂�. Resulted from
Cauchy-Schwarz inequality,

(
Le1

)2 ≤ (Le0
)(
Le2

)
(2.5)

is a common property of any linear positive operator L of summation type. Based on it,
we get

(
an− 1

)
x2 + bnx+ cn ≥ 0, x ≥ 0, n∈N, (2.6)
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which implies

cn ≥ 0, an ≥ 1 for each n∈N. (2.7)

Moreover, {n∈N : an = 1} ⊂ {n∈N : bn ≥ 0}.
At this moment, we are looking for the functions vn ∈ RR+

+ , n ∈ N, such that (Lne2)
(vn(x))= x2 for each x ≥ 0 and each n∈N, this means

anv
2
n(x) + bnvn(x) + cn− x2 = 0, x ≥ 0, n∈N. (2.8)

Lemma 2.1. Let Ln, n∈N, be defined by (2.1) such that (2.3) and (2.4) hold. The functions
vn, n∈N, given by (2.8) exist, if and only if the following conditions take place:

b2
n ≥ 4ancn, n∈N, (2.9a)

{
n∈N : cn �= 0

}⊂ {n∈N : bn ≤ 0
}
. (2.9b)

One has

vn(x)= 1
2an

(√
b2
n + 4an

(
x2− cn

)− bn
)

, x ≥ 0. (2.10)

Proof. Let n∈N be arbitrarily fixed. Suppose that (2.8) holds. Since vn(0) must be a real
number, we get b2

n ≥ 4ancn. If cn = 0, (2.8), see also relation (2.7), permits us to find a
nonnegative vn(x) for each x ≥ 0. If cn �= 0, to obtain a nonnegative number vn(x), it is
necessary that bn ≤ 0, this representing condition (2.9b).

Reciprocally, we assume that both (2.9a) and (2.9b) hold. These relations guarantee
that vn(x) defined by (2.10) is a real nonnegative number for each x ≥ 0 and n∈N. Sim-
ple calculations show that vn(x) verifies (2.8).

The proof is complete. �

We proceed now to introduce the announced class of operators. Starting from (2.1),
for each n∈N, we define

(
L∗n f

)
(x)=

∞∑

k=0

un,k
(
vn(x)

)
f
(
xn,k

)
, x ≥ 0, f ∈�∩Eα, (2.11)

where vn is given by (2.10).
The question now arises under which conditions this sequence is an approximation

process.

Theorem 2.2. Let Ln, n∈N, be defined by (2.1) such that (2.3), (2.4), and (2.9) hold. Let
L∗n , n∈N, be defined by (2.11).

(i) The following identities

L∗n e0 = e0, L∗n e1 = vn, L∗n e2 = e2 (2.12)

hold.
(ii) One has limn→∞L∗n f = f uniformly on compact subsets of R+ for every f ∈�∩Eα.
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Proof. (i) Since (2.9) is fulfilled, vn, n ∈ N, are well defined. The first two identities are
implied by (2.3). Since (L∗n e2)(x) = (Lne2)(vn(x)), the last identity represents exactly re-
lation (2.8).

(ii) The result follows from (2.12), Lemma 2.1, and Korovkin criterion. �

Roughly speaking, Theorem 2.2 says: if (Ln)n≥1 is an approximation process, then
(L∗n )n≥1 inherits this property.

It would be interesting to present a new property of the sequence (vn)n≥1.

Lemma 2.3. Let Ln, n ∈ N, be defined by (2.1) such that (2.3), (2.4), and (2.9) hold. For
each n∈N, the function vn given by (2.10) verifies

vn(0)≤ vn(x)≤ x, x ∈R+. (2.13)

Proof. Examining (2.10), we deduce that (d/dx)vn(x)≥ 0, x ≥ 0, and this implies the first
inequality. Combining relations (2.5) and (2.12), we obtain the second inequality. �

3. On the rate of convergence

Here we explore the rate of convergence of L∗n , n ∈ N, operators in terms of both the
modulus of continuity and of a certain weighted modulus. Based on the probabilistic
interpretation of Korovkin’s theorem, we will also give estimates in the frame of a proba-
bilistic approach.

We denote by CB(R+) the space of all bounded continuous real-valued functions on
R+. Since CB(R+)⊂�∩Eα and ω( f ;·), the first modulus of smoothness of f ∈ CB(R+),
is well defined, we state the following general estimate.

Theorem 3.1. Let Ln, n∈N, be defined by (2.1) such that (2.3), (2.4), and (2.9) hold. Let
L∗n , n∈N, be defined by (2.11). For each n∈N, the operator L∗n verifies

(i) ‖L∗n ‖CB(R+) = 1,
(ii) for every f ∈ CB(R+),

∣
∣(L∗n f

)
(x)− f (x)

∣
∣≤

(
1 +

1
δ
ṽn(x)

)
ω( f ;δ), x ≥ 0, δ > 0, (3.1)

(iii) for every f differentiable on R+ and f ′ ∈ CB(R+),

∣
∣(L∗n f

)
(x)− f (x)

∣
∣≤ ∣∣ f ′(x)

∣
∣(x− vn(x)

)
+ ṽn(x)

(
1 +

1
δ
ṽn(x)

)
ω( f ′;δ), (3.2)

x ≥ 0, δ > 0, where

ṽn(x) :=
√

2x
(
x− vn(x)

)
, x ≥ 0, (3.3)

and vn is given by (2.10).
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Proof. Every operator L∗n maps continuously CB(R+) into itself. Indeed, for f ∈ CB(R+)
and x ≥ 0, we have

∣
∣(L∗n x

)
(x)
∣
∣≤

∞∑

k=0

un,k
(
vn(x)

)‖ f ‖∞ = ‖ f ‖∞, (3.4)

consequently, ‖L∗n f ‖∞ ≤ ‖ f ‖∞. Here ‖ · ‖∞ stands for the sup-norm, ‖ f ‖∞ := supx≥0

| f (x)|, f ∈ CB(R+).
Moreover, L∗n e0 = e0, hence (i) holds.
For every x ≥ 0, denote by ψx : R+ → R the function defined by ψx(t) = t− x. From

(2.12) and (3.3), we get

(
L∗n ψx

)
(x)= vn(x)− x,

(
L∗n ψ

2
x

)
(x)= (L∗n e2

)
(x)− 2x

(
L∗n e1

)
(x) + x2(L∗n e0

)
(x)= ṽ2

n(x).
(3.5)

For any positive linear operator L, see, for example, the monograph [1, Theorem
5.1.2], quantitative error estimates can be expressed in terms of the test functions as fol-
lows:

|L f − f | ≤ | f |∣∣Le0− 1
∣
∣+

(
Le0 +

1
δ

√(
Le0

)(
Lψ2

x

)
)
ω( f ;δ), (3.6)

respectively,

|L f − f | ≤ | f |∣∣Le0− 1
∣
∣+

∣
∣ f ′

∣
∣
∣
∣Lψx

∣
∣+

(√(
Le0

)(
Lψ2

x

)
+

1
δ
Lψ2

x

)
ω
(
f ′;δ

)
, (3.7)

δ > 0, provided f ∈ CB(R+), respectively, if f is differentiable on R+ and f ′ ∈ CB(R+).
By virtue of these inequalities, taking in view both (2.12), (3.5) and (3.3), (2.13), the

statements (ii) and (iii) follow. �

The pointwise estimates allow us to obtain global estimates of the rate of convergence.
For example, for every compact K = [k,k]⊂R+, (3.1) implies

∥
∥L∗n f − f

∥
∥
C(K) ≤

(
1 +

√

2k
)
ω
(
f ;
√
k− vn(k)

)
. (3.8)

Indeed, if x ∈ K , then

ṽn(x)≤
√

2k
{

max
x∈K

(
x− vn(x)

)}1/2 =
√

2k
√
k− vn(k) (3.9)

and choosing in (3.1) δ :=
√
k− vn(k), we get the desired result. We may remark that even

if a certain signal f belongs to C(K), we can extend it onR+ taking f (x)= f (k) for x > k.
By this way, L∗n is well defined. For the sake of simplicity, for the original signal and for
its extension, we use the same notation.
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We proceed now to use again (3.6) for the initial operators Ln, n∈N, obtaining

∣
∣(Ln f

)
(x)− f (x)

∣
∣≤

(
1 +

1
δ

√(
an− 1

)
x2 + bnx+ cn

)
ω( f ;δ), (3.10)

x ≥ 0, δ > 0, where f ∈ CB(R+).
Another question can be asked: is the construction (2.11) useful from approximation

theory point of view? Further on, we discuss the comparison between the upper bound of
the errors generated by Ln and that generated by L∗n , respectively. Examining (3.10) and
(3.1), we are concerned with finding x ≥ 0 such that L∗n ψ2

x (x)≤ Lnψ2
x (x) for each n∈N.

This means finding out the set

M∗ :=
{
x ≥ 0 : x

√
b2
n + 4an

(
x2− cn

)≥ an
(
3− an

)
x2 + bn

(
1− an

)
x− ancn, n∈N

}
.

(3.11)

Clearly, M∗ �= ∅ because of 0∈M∗, see (2.7). In the next section, in some particular
cases, the explicit form of M∗ will be obtained.

Returning to Theorem 3.1, these results are not valid for any unbounded function f
because the classical modulus ω( f ;·) is not defined. We can give estimates of the errors
|L∗n f − f |, n∈N, involving unbounded functions by using a weighted modulus associ-
ated to the Banach space (Eα,‖ · ‖∗α ), α≥ 2. In this respect, we consider

Ωwα( f ;δ) := sup
x≥0

0<h≤δ
wα(x+h)

∣
∣ f (x+h)− f (x)

∣
∣, δ > 0, (3.12)

where the weight wα is given by wα(x) = (1 + xα)−1, x ≥ 0. It is evident that for each
f ∈ Eα, Ωwα( f ;·) is well defined and Ωwα( f ;δ) ≤ 2‖ f ‖∗α , δ > 0, f ∈ Eα. We point out
that in formula (3.12), the presence of the weight calculated at x + h (not at x) is vital
regarding some approximation properties of Ωwα , and this idea is due to Freud. In [5],
weighted Lp-modulus of continuity with weights depending on two parameters has been
considered.

Among some basic properties of Ωwα( f ;·) modulus, following [9], we state

Ωwα( f ;λδ)≤ (λ+ 1)Ωwα( f ;δ), δ > 0, λ > 0,

Ωwα( f ;nδ)≤ nΩwα( f ;δ), δ > 0, n∈N,

lim
δ→0+

Ωwα( f ;δ)= 0.

(3.13)

An accurate proof of the last property can be found in a recent paper of López-Moreno
[9, Lemma 1].

Theorem 3.2. Let Ln, n∈N, be defined by (2.1) such that (2.3), (2.4), and (2.9) hold. Let
L∗n , n∈N, be defined by (2.11). For each n∈N and f ∈�∩Eα, the operator L∗n verifies

∣
∣(L∗n f

)
(x)− f (x)

∣
∣≤

√(
L∗n μ2

x

)
(x)
(

1 +
ṽn(x)
δ

)
Ωwα( f ;δ), x ≥ 0, δ > 0, (3.14)
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where ṽn is given at (3.3) and

μx(t) := 1 +
(
x+ |t− x|)α, t ≥ 0. (3.15)

Proof. Let n ∈ N and f ∈ �∩ Eα be fixed. For each t ∈ R+ and δ > 0, based on both
definition (3.12) and on property (3.13) with λ := |t− x|δ−1, we can write

∣
∣ f (t)− f (x)

∣
∣≤

(
1 +

(
x+ |t− x|)α

)(|t− x|δ−1 + 1
)
Ωwα( f ;δ)

= μx(t)
(
δ−1

∣
∣ψx

∣
∣(x) + 1

)
Ωwα( f ;δ).

(3.16)

Taking into account that L∗n is linear positive operator preserving the constants, we get
∣
∣(L∗n f

)
(x)− f (x)

∣
∣= ∣∣L∗n

(
f − f (x),x

)∣∣≤ L∗n
(∣∣ f − f (x)

∣
∣,x

)

≤ L∗n
(
μx + δ−1μx

∣
∣ψx

∣
∣,x

)
Ωwα( f ;δ).

(3.17)

Cauchy-Schwarz inequality applied to L∗n gives

L∗n μx ≤
√
L∗n μ2

x, L∗n μx
∣
∣ψx

∣
∣≤

√
L∗n μ2

x

√
L∗n ψ2

x . (3.18)

Since
√
L∗n ψ2

x = ṽn, the proof is finished. �

To this end, we mention that the positive approximation processes can be studied by
using probabilistic methods. This approach has its origin in the probabilistic interpreta-
tion of Korovkin’s theorem due to King [7]. At the moment, our aim is to present the
significance of relation (2.12) from this point of view.

In a probability space (Ω,�,P), we consider a random scheme Z onR+, for a thorough
documentation, [1, Section 5.2] can be consulted. The random variables Z(n,x), (n,x)∈
N×R+, are discretely distributed such that the distribution PZ(n,x) of Z(n,x) is given
by PZ(n,x) =

∑∞
k=0un,k(vn(x))εxn,k , where εxn,k denotes the unit mass at xn,k. For every f ∈

CB(R+), we can consider the operators defined by (2.11). Let E(Z(n,x)), Var(Z(n,x)) :=
σ2
n,x be the expected value and the variance of Z(n,x), respectively. Since (2.12) holds, we

get

E
(
Z(n,x)

)= vn(x), Var
(
Z(n,x)

)= E(Z2(n,x)
)−E2(Z(n,x)

)= x2− v2
n(x).

(3.19)

Consequently, in broad outlines,

x2 = σ2
n,x + v2

n(x), x ≥ 0, n∈N, (3.20)

represents the characteristic relation generated by our operators L∗n , n ∈ N, in a proba-
bilistic frame.

4. Examples

Starting from some known approximation processes verifying conditions (2.1)–(2.4),
(2.9), with Section 2 in mind, we focus our attention on obtaining modified processes
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of L∗n -type. The linear positive operators we are referring to are the following: Szász-
Mirakjan-Favard, Baskakov, Bernstein-Chlodvsky operators, all of them being unitary
presented, for example, in the monograph of Altomare and Campiti [1, Chapter 5]. We
also mention that the first two classes have the same equidistant net Δn = (k/n)k≥0.

(1) Szász-Mirakjan-Favard operators. For this class, the identities an = 1, bn = 1/n,
cn = 0, n∈N, hold, consequently conditions (2.4) and (2.9) are fulfilled. Thus

vn(x)=
√

1 + 4n2x2− 1
2n

, x ≥ 0, n∈N, (4.1)

and the corresponding modified operators are defined by

(
L∗n f

)
(x) := e−nvn(x)

∞∑

k=0

(
nvn(x)

)k

k!
f
(
k

n

)
, x ≥ 0, n∈N, (4.2)

their domain can be taken E2.
A short computation gives M∗ = [0,∞), where M∗ was introduced by (3.11).
(2) Baskakov operators. In this case, relation (2.4) is verified by the sequences an =

1 + 1/n, bn = 1/n, cn = 0, n∈N. We get

vn(x)=
√

1 + 4n(n+ 1)x2− 1
2(n+ 1)

, x ≥ 0, n∈N, (4.3)

and, following (2.11), the modified Baskakov operators are defined by

(
L∗n f

)
(x) :=

∞∑

k=0

(
n+ k− 1

k

)
vkn(x)

(
1 + vn(x)

)n+k f
(
k

n

)
, x ≥ 0, n∈N, (4.4)

where f ∈ E2. With regard to the set M∗, by a straightforward calculus, we obtain M∗ =
[0,∞).

We notice thatM∗ associated to each of the above two examples guarantee that the or-
der of approximation of (L∗n f )(x) to f (x) is at least as good as the order of approximation
to f (x) by (Ln f )(x), for any x ∈R+.

(3) Bernstein-Chlodovsky operators. Let (hn)n≥1 be a sequence of strictly positive real
numbers verifying limn→∞hn =∞ and

lim
n→∞

hn
n
= 0. (4.5)

The nth Bernstein-Chlodovsky operator, Ln : C(R+)→ C(R+), n∈N, is defined by

(
Ln f

)
(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∑

k=0

(
n

k

)(
x

hn

)k(
1− x

hn

)n−k
f
(
hnk

n

)
, if 0≤ x ≤ hn,

f (x), if x > hn.

(4.6)
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It is known that the identity (4.5) ensures limn→∞Ln f = f in E2, and hence uniformly
on compact subsets of R+. This time, we obtain

an = 1− 1
n

, bn = hn
n

, cn = 0, if x ∈ [0,hn],

an = 1, bn = cn = 0, if x > hn.
(4.7)

Taking in view the requirements of Section 2, at first cast of glance, something seems
wrong because (2.7) does not hold for n = 1 (a1 = 0). The reason is simple: since now
relation (2.6) must hold only for x ∈ [0,hn], not for x ∈ R+, condition an ≥ 1 in (2.7)
is not necessary to take place. It is not difficult to find the sequence (vn)n≥1. We get
v1(x)= x2, x ≥ 0. For n≥ 2,

vn(x)=
⎧
⎪⎨

⎪⎩

1
2(n− 1)

(√
h2
n + 4n(n− 1)x2−hn

)
, if x ∈ [0,hn],

x, if x > hn.
(4.8)

Returning to (4.6) via (2.11), we obtain L∗n .
In order to indicate M∗, we infer that for each n ≥ 2, the inequality incorporated in

(3.11) is verified by those x belonging to the set M∗
n = [0,((n+ 1)/(3n+ 1))hn]∪ [hn,∞).

Also, M∗
1 =R+. We get

M∗ =
⋂

n≥1

M∗
n =

⋂

n≥2

[
0,
n+ 1

3n+ 1
hn

]
. (4.9)

Putting h∗ :=minn≥1hn, clearly [0,h∗/3] ⊂M∗, consequently the order of approxima-
tion of L∗n f to f is at least as good as the order of approximation of Ln f to f whenever
0≤ x ≤ h∗/3.

If we choose in (4.6) hn = 1, then, for x ∈ [0,1], (Ln f )(x) becomes the classical nth
Bernstein polynomial for each n ∈ N. Our sequence (vn)n≥1 is identical to the result of
King [8, Equation (2.2)].

5. Approaches in abstract spaces

A fruitful research direction has consisted in extensions of Bohman-Korovkin theorem
to abstract spaces and, as a result, the so-called KAT, meaning Korovkin-type Approxi-
mation theory, has been developed. Motivated by these researches, in the present section,
we deal with establishing what the condition L∗n e2 = e2 would become in certain abstract
spaces, such as Hilbert spaces. In this direction, the book of Debnath and Mikusinski [4]
is a complete and accessible text containing all important information about the men-
tioned spaces.

Case 1. Let E be a real vector space with an inner product (·,·). Let X ⊂ E be a compact
set. C(X ,R) stands for the Banach lattice of all real-valued continuous functions on X ,
endowed with the sup-norm ‖ · ‖. We consider the functions 1X ,e,ex : X → R, x ∈ X ,
defined as follows:

1X(t) := 1, e(t) := (t, t), ex(t) := (x, t), t ∈ X. (5.1)
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Our concern is to select which of these functions could play the role of the classical
monomial e2. If we take the particular case E := R, X := [a,b], and the inner product
is the usual multiplication, then e(t) = t2 = e2(t) and ex(t) = xe1(t), t ∈ [a,b]. With this
fact in mind, based on the results established by Andrica and Mustăţa [2], we can state
the following theorem.

Theorem 5.1. Let (Ln)n≥1 be a sequence of linear positive operators acting on C(X ,R) such
that Ln1X = 1X and Lne = e, n∈N, hold.

(i) If f ∈ Lip(X ,R), then ‖Ln f − f ‖ ≤√2c f ‖Lnex − e‖1/2, x ∈ X .
(ii) If ((Lnex)(x))n≥1 converges to e(x) uniformly for x ∈ X , then (Ln f )n≥1 converges

uniformly to f for all f ∈ C(X ,R).

Proof. For any linear positive operator Ln acting onC(X ,R) and verifying Ln1X = 1X (this
means a Markov operator), one has

∥
∥Ln f − f

∥
∥≤ c f

∥
∥an− 2bn

∥
∥1/2

, for each f ∈ Lip(X ,R), (5.2)

where an(x) := (Lne)(x)− e(x) and bn(x) := (Lnex)(x)− e(x), x ∈ X , n∈N, see [2, Equa-
tion (6)]. In our case, an = 0 and the first statement is proved.

Following [2, Theorem 4] closely, under our assumptions, we can write

Ln
(
(·− x,·− x),x

)= 2
(
e(x)− (Lnex

)
(x)
)
, n∈N. (5.3)

Since the subspace Lip(X ,R) is dense in C(X ,R) with respect to the uniform norm,
the statement (i) implies the statement (ii). �

Case 2. Let E be a real Hilbert space. We denote by ‖ · ‖E the norm induced by its inner
product (·,·), ‖x‖E =

√
(x,x), x ∈ E. Let X ⊂ E be a compact convex set. Letting

D1
X(E) :={ f : E −→R : f is Gâteaux derivable on X ,

f ′ : X −→ E∗, f ′(x)= f ′x , is continuous on X
}

,

C1(X) := { f |X : f ∈D1
X(E)

}
,

(5.4)

we recall f : E→R is Gâteaux derivable at x ∈ X if, for all h∈ E, there exists limt→0( f (x+
th)− f (x))/t := f ′x (h) and f ′x is linear and continuous as function in h, that is, f ′x ∈ E∗.
The function f is Gâteaux derivable on X if f ′x ∈ E∗ for each x ∈ X . Here E∗ is endowed
with the usual norm ‖ · ‖E∗ ,

∥
∥x∗

∥
∥
E∗ := sup

{∣∣x∗(x)
∣
∣ : x ∈ E, ‖x‖E ≤ 1

}
, x∗ ∈ E∗. (5.5)

For the sake of completeness, we also recall the modulus of continuity of a function g :
E→ F on X , (F,‖ · ‖F) is real normed space, is given by

ω(g;δ) := sup
{∥∥g(x)− g(y)

∥
∥
F : x, y ∈ X , ‖x− y‖E ≤ δ

}
, (5.6)

δ ∈ [0,ρ(X)], where ρ(X) represents the diameter of the compact set X .
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Theorem 5.2. Let L : C(X ,R)→ C(X ,R) be a linear positive operator satisfying the prop-
erties L1X = 1X and Le = e. For each f ∈ C1(X) and each x ∈ X such that (L f )(x) �= f (x),
one has

∣
∣(L f )(x)− f (x)

∣
∣≤ ∣∣L( f ′x (·− x),x

)∣∣+ 4ΨL(x)ω
(
f ′;
(
e−Lex

)
(x)

ΨL(x)

)
, (5.7)

where ΨL(x)= L(‖ ·−x‖E,x) and the functions 1X ,e,ex are given by (5.1).

The requirement (L f )(x) �= f (x) guarantees that ΨL(x) > 0. This theorem has as an
origin the work of Gal representing a slight modification of his result [6, Theorem 3.1]
under our additional hypothesis Le = e. So, we omit the proof.
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