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Let R be a ring such that every zero divisor x is expressible as a sum of a nilpotent element
and a potent element of R : x = a+ b, where a is nilpotent, b is potent, and ab = ba. We
call such a ring a D∗-ring. We give the structure of periodic D∗-ring, weakly periodic
D∗-ring, Artinian D∗-ring, semiperfect D∗-ring, and other classes of D∗-ring.
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1. Introduction

Throughout this paper, R is an associative ring; andN ,C,C(R), and J denote, respectively,
the set of nilpotent elements, the center, the commutator ideal, and the Jacobson radical.
An element x of R is called potent if xn = x for some positive integer n= n(x) > 1. A ring R
is called periodic if for every x in R, xm = xn for some distinct positive integers m=m(x),
n = n(x). A ring R is called weakly periodic if every element of R is expressible as a sum
of a nilpotent element and a potent element of R : R=N +P, where P is the set of potent
elements of R. A ring R such that every zero divisor is nilpotent is called a D-ring. The
structure of certain classes of D-rings was studied in [1]. Following [7], R is called normal
if all of its idempotents are in C. A ring R is called a D∗-ring, if every zero divisor x in
R can be written as x = a+ b, where a ∈ N , b ∈ P, and ab = ba. Clearly every D-ring is
a D∗-ring. In particular every nil ring is a D∗-ring, and every domain is a D∗-ring. A
Boolean ring is a D∗-ring but not a D-ring. Our objective is to study the structure of
certain classes of D∗-ring.

2. Main results

We start by stating the following known lemmas: Lemmas 2.1 and 2.2 were proved in [5],
Lemmas 2.3 and 2.4 were proved in [4].

Lemma 2.1. Let R be a weakly periodic ring. Then the Jacobson radical J of R is nil. If,
furthermore, xR⊆N for all x ∈N , then N = J and R is periodic.

Lemma 2.2. If R is a weakly periodic division ring, then R is a field.
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Lemma 2.3. Let R be a periodic ring and x any element of R. Then
(a) some power of x is idempotent;
(b) there exists an integer n > 1 such that x− xn ∈N .

Lemma 2.4. Let R be a periodic ring and let σ : R→ S be a homomorphism of R onto a ring
S. Then the nilpotents of S coincide with σ(N), where N is the set of nilpotents of R.

Definition 2.5. A ring is said to be a D-ring if every zero divisor is nilpotent. A ring R
is called a D∗-ring if every zero divisor x in R can be written as x = a+ b, where a ∈ N ,
b ∈ P, and ab = ba.

Theorem 2.6. A ring R is a D∗-ring if and only if every zero divisor of R is periodic.

Proof. Assume R is a D∗-ring and let x be any zero divisor. Then

x = a+ b, a∈N , b ∈ P, ab = ba. (2.1)

So, (x− a)= b = bn = (x− a)n. This implies, since x commutes with a, that (x− a)=
(x− a)n = xn+ sum of pairwise commuting nilpotent elements.

Hence

x− xn ∈N for every zero divisor x. (2.2)

Since each such x is included in a subring of zero divisors, which is periodic by
Chacron’s theorem, x is periodic.

Suppose, conversely, that each zero divisor is periodic. Then by the proof of [4, Lemma
1], R is a D∗-ring. �

Theorem 2.7. If R is any normal D∗-ring, then either R is periodic or R is a D-ring. More-
over, aR⊆N for each a∈N .

Proof. If R is a normal D∗-ring which is not a D-ring, then R has a central idempotent
zero divisor e. Then R= eR⊕A(e), where eR and A(e) both consist of zero divisors of R,
hence (in view of Theorem 2.6) are periodic. Therefore R is periodic.

Now consider a ∈ N and x ∈ R. Since ax is a zero divisor, hence a periodic element,
(ax) j = e is a central idempotent for some j. Thus (ax) j+1 = (ax) jax = a2y for some
y ∈ R. Repeating this argument, one can show that for each positive integer k, there exists
m such that (ax)m = a2kw for some w ∈ R. Therefore aR⊆N . �

Corollary 2.8. Let R be a D∗-ring which is not a D-ring. If N ⊆ C, then R is commutative.

Proof. Since N ⊆ C, R is normal. Therefore commutativity follows from Theorem 2.7 and
a theorem of Herstein. �

Now, we prove the following result for D∗-rings.

Theorem 2.9. Let R be a normal D∗-ring.
(i) If R is weakly periodic, then N is an ideal of R, R is periodic, and R is a subdirect

sum of nil rings and/or local rings Ri. Furthermore, if Ni is the set of nilpotents of
the local ring Ri, then Ri/Ni is a periodic field.
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(ii) If R is Artinian, then N is an ideal and R/N is a finite direct product of division
rings.

Proof. (i) Using Theorem 2.7, we have

aR⊆N for every a∈N. (2.3)

This implies, using Lemma 2.1, that N = J is an ideal of R, and R is periodic.
As is well-known, we have

R∼= a subdirect sum of subdirectly irreducible rings Ri. (2.4)

Let σ : R→ Ri be the natural homomorphism of R onto Ri. Since R is periodic, Ri is
periodic and by Lemma 2.4,

Ni = the set of nilpotents of Ri = σ(N) is an ideal of Ri. (2.5)

We now distinguish two cases.

Case 1 1 /∈ Ri. Let xi ∈ Ri, and let σ : x→ xi. Then by Lemma 2.3, xk is a central idempo-
tent of R, and hence xki is a central idempotent in the subdirectly irreducible ring Ri, for
some positive integer k. Hence xki = 0 (1 /∈ Ri). Thus Ri =Ni is a nil ring.

Case 2 1∈ Ri. The above argument in Case 1 shows that xki is a central idempotent in the
subdirectly irreducible ring Ri. Hence xki = 0 or xki = 1 for all xi ∈ Ri. So, Ri is a local ring
and for every xi +Ni ∈ Ri/Ni,

xi +Ni =Ni or
(
xi +Ni

)k = 1 +Ni. (2.6)

So Ri/Ni is a periodic division ring, and hence by Lemma 2.2, Ri/Ni is a periodic field.

(ii) Suppose R is Artinian. Using (2.3), aR is a nil right ideal for every a ∈ N . So,
N ⊆ J . But J ⊆ N since R is Artinian. Therefore N = J is an ideal of R and R/N = R/J
is semisimple Artinian. This implies that R/N is isomorphic to a finite direct product
R1 × R2 × ··· × Rn, where each Ri is a complete ti × ti matrix ring over a division ring
Di. Since R is Artinian, the idempotents of R/J lift to idempotents in R [2], and hence
the idempotents of R/J are central. If t j > 1, then E11 ∈ Rj , and (0, . . . ,0,E11,0, . . . ,0) is an
idempotent element of R/J which is not central in R/J . This is a contradiction. So ti = 1
for every i. Therefore each Ri is a division ring and R/N is isomorphic to a finite direct
product of division rings. �

The next result deals with a special kind of D∗-rings.

Theorem 2.10. Let R be a ring such that every zero divisor x can be written uniquely as
x = a+ e, where a∈N and e is idempotent.

(i) If R is weakly periodic, then N is an ideal of R, and R/N is isomorphic to a subdirect
sum of fields.

(ii) If R is Artinian, then N is an ideal and R/N is a finite direct product of division
rings.
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Proof. Let e2 = e ∈ R, x ∈ R, and let f = e+ ex− exe. Then f 2 = f and hence (e f − e) f =
0. So if f is not a zero divisor, then e f − e = 0. So e f = e, and thus f = e, which implies
that ex = exe. The net result is ex− exe = 0 if f is not a zero divisor. Next, suppose f is a
zero divisor. Then since

f = (ex− exe) + e; ex− exe ∈N , e idempotent;

f = 0 + f ,
(2.7)

it follows from uniqueness that ex− exe = 0, and hence ex = exe in all cases. Similarly
xe = exe, and thus

all idempotents of R are central, and hence R is a normal D∗-ring. (2.8)

(i) Using (2.8), R satisfies all the hypotheses of Theorem 2.9(i), and hence N is an ideal,
and R is periodic. Using Lemma 2.2, for each x ∈ R, there exists an integer k > 1, such that
x− xk ∈N , and hence

(x+N)k = (x+N), k = k(x) > 1. (2.9)

By a well-known theorem of Jacobson [6], (2.9) implies that R/N is a subdirect sum of
fields.

(ii) If R is Artinian, then using (2.8), R satisfies the hypotheses of Theorem 2.9(ii).
Therefore N is an ideal and R/N is a finite direct product of division rings. �

Theorem 2.11. Let R be a semiprime D∗-ring with N commutative. Then R is either a
domain or a J-ring.

Proof. As in the proof of [3, Theorem 1] we can show that if ak = 0, then (ar)k = 0 for all
r ∈ R. Therefore, by Levitzki’s theorem, N = {0}. Assume R is not a domain, and let a be
any nonzero divisor of zero. Then a is potent and aR consists of zero divisors, hence is a
J-ring containing a. Therefore [ax,a]= 0 for all x ∈ R, hence (ax)n = anxn for all x ∈ R,
and all n≥ 2. For x not a zero divisor, choose n > 1 such that an = a and (ax)n = ax. Then
anxn = ax, so a(xn − x) = 0 and xn − x is a zero divisor, hence is periodic. It follows by
Chacron’s theorem that R is a periodic ring; and since N = {0}, R is a J-ring. �

Example 2.12. Let

R=
{(

0 0

0 0

)

,

(
1 1

1 1

)

,

(
1 0

0 1

)

,

(
0 1

1 0

)}

, 0,1∈GF(2). (2.10)

Then R is a normal weakly periodic D∗-ring with commuting nilpotents. R is not
semiprime since the set of nilpotent elementsN is a nonzero nilpotent ideal. This example
shows that we cannot drop the hypothesis “R is semiprime” in Theorem 2.11.

In Theorem 2.14 below, we study the structure of a special kind of D∗-rings, the class
of rings in which every zero divisor is potent. Recall that a ring is semiperfect [2] if and
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only if R/J is semisimple (Artinian) and idempotents lift modulo J . We need the following
lemma.

Lemma 2.13. Let R be a ring in which every zero divisor is potent. Then N = {0} and R is
normal. Moreover, If R is not a domain, then J = {0}.
Proof. If a ∈ N , then a is a zero divisor and hence potent by hypothesis. So an = a for
some positive integer n, and since a ∈ N , there exists a positive integer k such that 0 =
an

k = a. So N = {0}. Let e be any idempotent element of R and x is any element of R. Then
ex− exe ∈N , and hence ex− exe = 0. Similarly, xe = exe. So ex = xe and R is normal.

Let x be a nonzero divisor of zero. Then xJ consists of zero divisors, which are po-
tent. Therefore xJ = {0}. But then J consists of zero divisors, hence potent elements, and
therefore J = {0}. �

Theorem 2.14. Let R be a ring such that every zero divisor is potent.
(i) If R is weakly periodic, then every element of R is potent and R is a subdirect sum of

fields.
(ii) If R is prime, then R is a domain.

(iii) If R is Artinian, then R is a finite direct product of division rings.
(iv) If R is semiperfect, then R/J is a finite direct product of division rings.

Proof. (i) Since R is weakly periodic, every element x ∈ R can be written as

x = a+ b, where a∈N , b is potent. (2.11)

But N = {0} (Lemma 2.13), so every x ∈ R is potent and hence R is isomorphic to a
subdirect sum of fields by a well-known theorem of Jacobson.

(ii) SupposeR is a prime, thenR is a prime ring withN = {0}, and henceR is a domain.
(iii) Let R be an Artinian ring such that every zero divisor is potent. Since N = {0}

(Lemma 2.13) and R is Artinian, J = N = {0}. So R is semisimple Artinian and hence it
is isomorphic to a finite direct product R1 ×R2 × ···×Rn, where each Ri is a complete
ti× ti matrix ring over a division ring Di. If t j > 1, then E11 ∈ Rj , and (0, . . . ,0,E11,0, . . . ,0)
is an idempotent element of R which is not central in R contradicting Lemma 2.13. So
ti = 1 for every i. Therefore each Ri is a division ring and R is isomorphic to a finite direct
product of division rings.

(iv) Let R be a semiperfect ring such that every zero divisor is potent. Then R/J is
semisimple Artinian and hence it is isomorphic to a finite direct product R1×R2×···×
Rn, where each Ri is a complete ti × ti matrix ring over a division ring Di. Since R is
semiperfect, the idempotents of R/J lift to idempotents in R, and hence the argument of
part (iii) above implies that each Ri is a division ring and R/J is isomorphic to a finite
direct product of division rings. �
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