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1. Introduction

Bona et al. [1] compared the solutions of the Cauchy problem of the Korteweg-de Vries
(KdV)

Pi+Py+ PP+ Py, =0 (1.1)
and the Benjamin-Bona-Mahony (BBM) equation
Qt+Qx+QQx_Qxxt = 0. (1.2)

In (1.1) and (1.2), P and Q are functions of two real variables x and t.

Such equations have been derived as models for nonlinear dispersive waves in many
different physical contexts, and in most cases where they arise, x is proportional to dis-
tance measured in the direction of wave propagation, while t is proportional to elapsed
time. Interest is often focused on the pure initial-value problem for (1.1) and (1.2) in
which P and Q are specified for all real x at some beginning value of ¢, say t = 0, and then
the evolution equation is solved for ¢ > 0 subject to the restriction that the solution re-
spects the given initial condition. The thrust of their theory was that for suitably restricted
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initial conditions, the solutions P and Q emanating therefrom are nearly identical at least
for values of ¢ in an interval [0, T], where T is quite large.

This paper is concerned with mathematical models representing the unidirectional
propagation of weakly nonlinear dispersive long waves with weak transverse effects. In-
terest will be directed toward two particular models. One is the Kadomtsev-Petviashvili
(KP) equations

(77t+7/x+7]”]x+71xxx)x+“7]yy =0 (1.3)

and the other is a regularized version, the Benjamin-Bona-Mahony (BBM-KP) equation

(ft‘l'fx"'ffx*fxxt)x'*'“fyy:0> (1.4)

where « = +1. If @ = +1 in (1.3), the equation is known as the KP II equation, while for
a = —1, it is the KP I equation. The Kadomtsev-Petviashvili equations are two-dimen-
sional extensions of the Korteweg-de-Vries equation. They occur naturally in many phys-
ical contexts as “universal” models for the propagation of weakly nonlinear dispersive
long waves which are essentially one directional, with weak transverse effects. Observe
that the linearized dispersion relation for (1.3) is

2
w(k,l)=k(1—k2+%), (1.5)
while that of (1.4) is
~ k2 +al?
w(k,l) = m> (1.6)

within the scaling assumption that k2 = O(8), and I = O(8). As & — 0, w(k,I) may be
approximated by w(k,[) to the same order of & (since k?[? is of higher order).

The Cauchy problem for these equations have been studied by a number of authors.

Bourgain [2], using Picard iteration, has proved that the pure initial-value problem
for the KP II equation is locally well-posed, and hence in light of the conservation laws
for the equation, globally well-posed for data in L?(R). The same method has been used
to extend local well-posedness to some Sobolev spaces of negative indices.

A compactness method that uses only the divergence form of the nonlinearity and the
skew-adjointness of the linear dispersion operator was employed by I6rio and Nunes in
[3] to establish local well-posedness for data in H*(R?), for s > 2, for the KP I equation.
The I6rio-Nunes approach applies equally well to KP II-type equation. Molinet et al. [4]
using the local well-posedness of I6rio and Nunes obtained a version of the classical en-
ergy method coupled with some of the known conserved quantities and delicate estimates
of Strichartz type for the KP I equation to show global well-posedness for KP I equation
in the space

Z = {p e L2(R?) : gl + |l 2 + [l
(1.7)

+ @yl + Ha;I‘PyHLZ + ||a;2§0yy||L2 < °°}-



G. P. Daspan and M. M. Tom 3

Kenig [5] improved on this local well-posedness result given by the classical energy esti-
mate by showing local well-posedness in the space

Y= {p e 2R : gl + 1ol + 1195 ) ll: < o} (1.8)

for s > 3/2, where Js f (k, 1) = (1+Kk2)¥2 f (k,1).
In [6], global well-posedness is established in

Zy = {(P € L*(R?) : llgllz2 + 105 @y [l 12 + |l |12 + (105> @yyl 1 < ‘X’} (1.9)

for the KP I equation. It is worth mentioning the result of Colliander et al. [7], dealing
with the well-posedness of KP I equation when the initial data has low regularity. Bona et
al. [8] have shown that (1.4) can be solved by Picard iteration yielding to local and global
well-posedness results for the associated Cauchy problem. In particular, it is shown that
the pure initial-value problem for (1.4), regardless of the sign of a, is globally well-posed
in

Wi = {9 € LX(R?) : gl + llpxll: + l@eel 1 + 1195 9yl + lly |z < 0] (1.10)
Saut and Tzvetkov [9] improved this global well-posedness to the space
Y ={pe*(R?*): ¢, € L*(R*)}. (1.11)

We remark that provided g satisfies an appropriate constraint, (1.3) and (1.4) are equiv-
alent to the integrated forms

Nt + M + M + Mo + 405 ' 1y, = 0,
(1.12)
ft +£x +€€x - Exxt"’ “aglgyy =0.

To illustrate the kind of results we have in mind, we briefly outline below what Saut and
Tzvetkov generally discussed concerning the relationship between the two models in [9].
Since both KP and BBM-KP equations model weakly nonlinear dispersive long waves
which are valid to order €2, they can be considered as order € perturbations of the linear
transport equation, and hence can be written as

77€t+776x+€(7’le7’lex+7’lexxxia;lrleyy) =0, (1.13)

f€t+£€x+€(f€£6x_fexxtia;lgqu) :01 (114)
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with initial data #¢o, &co, respectively, which are of order one. The neglected terms in
the right-hand sides of (1.13) and (1.14) are of order €2. After performing the change of

variables

M = ey, N = ¢€é, x; =€ Vx, n=ely, T =12, (1.15)

one can rewrite (1.12) and (1.13) as

M+ My, + MMy, + My, 95 My, =0,

(1.16)
NT +NX1 +NNX1 - NXIXIT + a;llN}’l)/l = 0’
with initial data, respectively,
M (x1,y1,0) = €nco(€x1,€ 1),
(1.17)

N (x1, y1,0) = €€ (€Y%x1,€y1).

The dispersive and nonlinear terms in (1.13) and (1.14) may have a significant influence
on the structure of the waves on the time scale t; = € ! (corresponding to 71 = € ¥2),
while the neglected order €2 terms might affect the solution at order one on time scale
ty = €% (1, = € ¥?). It is therefore of interest to compare the solutions of (1.13) and
(1.14) on time scales between ¢, and f,. Such analysis was performed for the KdV and
BBM models in [1].

To give an idea of the results one can expect that we consider the Cauchy problem for
the linear versions of (1.13) and (1.14)

7’]6t+716x+€(+7’]exxx ia;I”leyy) =0

(1.18)
St exte(—Eexnr = a;lfeyy) =
together with initial condition
Me(%,,0) = §e(x,,0) = f(x,y), (1.19)

where f is of order one. Taking the Fourier transforms in both x and y variables, we have

g~ . L P
11et+1k11€+e[(1k)3 i 116] =0,
(1.20)
. ~ iR
Eorikdve €, = & =0,
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with #7¢(k,1,0) = EAe(k, ,o) = f(k, I). Solving for ¢ and &, there obtains

e = e—it[k—€k3i£(ll/k)]f(k’l’t)’

(1.21)
EAG _ e(—it/(1+ek2))(k:e(lz/k))f(k’l’t).
It is readily inferred that provided k3 f (k,1), 2k f (k,]) € L'(R?), then
|}1€(') )t) - EG(') )t) | ) = |ﬁz(k’l’t) - &:\E(k)l’t) |L1(R2) = Eztcf = C (122)

since # and & are of order one, the estimate (1.22) proves that up to time scale t; =
€~ 0 <5< 1,1 and & are €' 79 close to each other.

2. Notations

We will employ the following notations. We will let | - |,, || - [ denote the norms in
LP(R?) and the classical Sobolev spaces H*(R?), respectively, where

1112 = LRZ (14,2 + )| F(,1) | dkdl 2.1)

and ~ connotes Fourier transformation. Thus, the norm in L?(R?) will simply be denoted
by Il - llo. By H*, we denote (.o H*. The elements of H* are infinitely differentiable
functions, all of whose derivatives lie in L. If X is an arbitrary Banach space and T > 0, the
space C(0, T,X) is the collection of continuous functions u : [0, T] — X. This collection is
a Banach space with the norm sup,,_,_; [lu(t)|/x, where || - [|x denotes the norm in X.
Define the space H* | (R?) = {5 € S'(R?) : [I5]lz=,(r2) < 00} equipped with the norm

1/2
Il ) = (JR (1+ |k|’1)2(1+k2+lz)5|ﬁ(k,l)|2dkdl> . (2.2)

3. Summary of existence theory

As earlier mentioned, the pure initial-value problems for these model evolution equa-
tions have been studied. For our analysis, we will use the result of [6] for the Cauchy
problem for KP I equation, and the result for the well-posedness of BBM-KP I equation
is contained in [8].

We will first consider the initial-value problems for the KP I and BBM-KP I equations

(”t+’7x+77'7x+7]xxx)x_’7yy:0’ (3.1)

(Et + gx + Efx - Exxt)x - gyy =0, (32)
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with initial condition

n(x,y,0) = &(x,»,0) = g(x, ). (3.3)

The theoretical results relating to the initial-value problems (3.1) and (3.2) are presented
in the following theorems without proof.

TueEOREM 3.1. Lets = 2. Then forany g € H? | (R?), there exist a positive Ty = Ty(] Vgl=)
(lim,—o To(p) = o) and a unique n of the integrated KP I equation (3.1) with initial data
g on the time interval [0, To] satisfying n € C([0, To]; H,(R?)), 1; € C([0, To]; H3(R?)).
Furthermore, the Map g — 1 is continuous from H* | (R?) to C([0, To]; H®,(R?)).

THEOREM 3.2. Let g € H® | with s > 3/2. Then, there exist Ty > 0 such that the BBM-KP I
equation (3.2) has a unique solution § € C([0, ToJ; H® | (R?)), 95 &, € C([0, To; H}'(R?)),

with & € C([0, To]; H*2(R?)). Moreover, the map g — & is continuous from H* | (R?) to
C([0,Ty] : H*{(R?)).

4. Main result
In this section, we compare the solutions of the initial-value problems
e+ Hoe 17 M = O 11y = 0,

(4.1)
£t+£x+££x - fxxt - a;;lfyy =0

both with initial condition

1n(x,,0) = &(x,,0) = eg(e’x,€y). (4.2)

Our main result in this paper is the following.

THEOREM 4.1. Let g € HEJ{S([RZ), where k = 0 and let n and & be the unique solutions
guaranteed by Theorems 3.1 and 3.2 for the initial-value problems (4.1). Then there exist
positive constants C and T which depend only on k and g such that the solutions  and & of
the initial-value problems

Mo+ Hoe Qi+ e = 05 1y = 0,
Et + fx + f&x - fxxt - a;;lfyy =0, (4.3)

n(x,,0) = £(x, ,0) = eg(e"*x,€y),
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satisfy the inequalities

037 (-, 1) = DLE(+, -, 1)]], < Ce2H5/4,

(4.4)
1051+, t) = B4E(-, -, B)]|y < Cel*™/4
for0<e<1,and0 <t <e¥?*min{T, Ty}, where 0 < j <k.
Before we prove Theorem 4.1, we introduce two new dependent variables
u(x,y,t) = € 'nle Px+e ey, e ),
(4.5)

v(x, y,t) = € (e x+ et ey, e V).
A brief calculation shows that u and v satisfy, respectively, the initial-value problems
Up + Uty + Uy — 05 '1hyy = 0,
Vi + Vet Vaxx — €Vaxr — 0 ¥y = 0, (4.6)
u(x, y,0) = v(x,9,0) = g(x, y).

By virtue of Theorems 3.1 and 3.2, the existence and uniqueness of u and v are assured.

THEOREM 4.2. Let g € H® | (R?), where s > 2, then the initial-value problem for both equa-
tions (4.6) have solutions in C([0, To]; H* | (R?)) for some Ty > 0. Moreover, ifg € Hﬁs([Rz),
then there exist positive constants C and T depending only on k and g such that the difference
u — v satisfies

||9du — v]|, < Cet,

(4.7)
||0yu —9yv]|, < Cet
forall € and t for which0 <€ <tand0 <t <min[T;Ty] where0 < j < k.
We will make use of the following anisotropic Sobolev inequalities
12 /4
| fleo < 20 F U5 1 fyllo 1 el
(4.8)

| el = M fello 1A N el

the proofs of which can be found in [10].
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Proof of Theorem 4.2. Let w = u — v. Then, w is seen to satisfy

Wi+ WWy + Wexx — €EWxp — 0x ' Wy = —€lhnr — (W), (4.9)

w(x,y,0) = 0. (4.10)

We now venture into the task of estimating ||aZ¢W||() + ||a§/W||o, for j =0,1,2,3,4,....
In light of Theorem 3.1, we note that

lulle < elighge, ze) = Ax. (4.11)

This fact justifies the following computations.

We first estimate ||8f;w||0. Apply the operator af; to both sides of the differential equa-
tion (4.10), multiply the result by dw, and integrate the result over R? and over [0,£].
After a few integrations by parts, and taking into account the fact that w(x, y,0) =0, it
follows that

. . t . . .
J {(aiw)2+e(ai+lw)2}dxdy = 2J J aiw{eaif”)ur - §c]+1)<wu+ %wzﬂdxdydr,
R2 0 JR2
(4.12)

which holds for j = 0,1,2,.... Similarly, apply the operator 8{; on (4.10), multiply the

result by aiw, and integrate the result over R? and over [0,¢]. After a few integrations by
parts, and taking into account the fact that w(x, y,0) = 0, it follows also that

, , t . , ,
J {(w)’ +€(d)wy) tdxdy = ZJ J aﬁ,w{eaﬁux” -9, (wu+ %w2> }dxdydr
R 0 Jr2 x
(4.13)

for j =0,1,2,3,4,.... The relations (4.12) and (4.13) will be used repeatedly.
First, for j = 0, (4.12) or (4.13) may be used, since they will both given the same esti-
mate. Making use of (4.12), there appears after two integrations by parts that

J (w? +ew?)dxdy = JtJ {26 (Wer) — (uew?) }dxdydr, (4.14)
R? 0 Jre

from this, the following inequality is derived

t
w2 < L (2ellwllolttxrllg + x| o 1wlI5) d7. (4.15)
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By a variant of Gronwall’s lemma, it follows that
wllo se(%)(eclt— 1) < €tCeC' = Myet, (4.16)
1

where C; and C; are bounds for (1/2)||uxll« and ||ty llo, respectively, and ¢ is restricted
to the range [0,1].
Using the equation satisfied by u, the following estimates can be derived:

SupHuxxtHo = sup ||uxyy = BUyUyx — Ullyxxx — uxxxxx”o
t=0 t=0

12 1/4
= StuOP [””xyy”o+2Hu||(1)/4||uy||0 [xxllg lxxx o (4.17)

5/4 1/2 1/4
+6[[uxelly Huyllo ~[fotnexl +||uxxxxX||o]-

Hence, C, may be defined by sup,. [luxxllo < C. For C;, we estimate it from the aniso-
tropic Sobolev inequality

lux | o < 2||”xx||(1)/4||”y||(1)/2||”xxxx||(1)/4 =C. (4.18)

We therefore infer by an application of Gronwall’s lemma that

||w||ose(%)(eclf—1) < €tCye® = Myt < B (4.19)
1

for0<t<1.
For j = 1, integrate (4.12) by parts to get the following relation:

t
J ) [w?+ew ]dxdy = J J ) (2€Wxtyxrr — Wi = 3W2uy — Wity )dxdydr.  (4.20)
R 0Jr
Similarly, for j = 1, integrate (4.13) by parts to get

t
J[RZ [w)z,+ew§y]dxdy = L JRZ (Zew},uxx},f—2wxwyuy+w§ux+wywuxy—wiwx)dxdydf.

(4.21)
Adding these two equations above, we obtain
JRZ [wi +w) +ewg, +ews, Jdxdy
t
= J J [2€quxxxr — W) — 3Willx — WyWikex + 2EWyUyxyr (4.22)
0Jre

2 2
= 2WaWyldy + Witk + Wy Wiy — wywx]dxdy dr.
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The integrand on the right-hand side of (4.22) may be bounded above by

2
2€||WX||0||uxxxr||o+2€||Wy||o||“xxyr||o+ (4w, + |Vx|oo]||WX||o
2]t | oo+ [0 L Jlwy o+ wellliwllo | st | o + 1wy lloliwllo | sty |, (4:23)
+2wallolwyllo | 1y | -

Also from the anisotropic Sobolev inequalities, we infer that

1/4 12 1/4
[yl = 2luyllg Myl Nuenlly” = C,

1/4 12 1/4
|t | o =< 2|t ||“y||0 luxually <G,

(4.24)
|“xx | o = 2||uxXX||(1)/4||uxy||(1)/2||”xxXX||(1J/4 =G,

1/4 172 1/4
|”xy|m32||uxxy||o ||”yy||o ||”xxxy||0 <C

Now using the equation satisfied by u, we may derive the following estimates, valid for
O<7<1:

sup | |”xxxr| |0
£20

1/2 1/4
= Stug [H“xxyy”o +2||“||(1)/4||”y||0 [luxxllg |xxxe]lo
>

+8||”xx||(1)/4||”y||(1)/2||”xxxX||(1)/4~|”xxx||()+3||”xx||é+ H”xxxxxx”o] <G,

sup | |”xxyf | |0
t=0

3/2 1/4 1/4
5Stug[”“xxxyno""l“”xyuo txxxllg | |txxxx [
>

1/4 1/2 1/4 1/4 1/2 1/4
+6||“xx||o ||”y||o ||uxxX||o H”xxy||0+2||“y||o ||uyy||o ||”yxX||0 ||uxxx||0

1/4 172 1/4
+2|[ulfg ||”y||o el l ||“xxxy||o+||uxxxxxy||0+||”)/)’)/||0]SC‘

(4.25)

Putting all these estimates together, the right-hand side of (4.20) may be bounded above
by

2 2
25C4(||Wx||o + ||Wy||0) +C3(||Wx||0 + ||Wy||0)1 (4.26)
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where C; and C, are order-one quantities. The following is then seen to hold from (4.19)
! 2 2
[lwallg + [lw llg = JO [2€Cal[lwello +[lwyllo) + Cs ([[wallg +[[wyllo) Jdz. (4.27)

Let A1(t) = [llwxlIg + llwy 1§12, Observe that

(lwlly + [1wy110)° = llwel g+ llwyllg + 2llwal ol lwillo = 21 [wallg +lIwyllg),  (428)

so that
[wello + [lwylly < V2A1(2). (4.29)
Therefore,
d 2 2 2 2
a[HWxHo + ||Wy||o] = 2€C4(||Wx||o + ||Wy||o) + C3(||Wx||o + ||Wy||0)) (4.30)
which is equivalent to
%A%(t) < 2€C4\/§A1(l’) + C3A%(t) (4.31)
or
d 1
aAl(t) < €C4\/§+ §C3A1(t), (432)

and hence by a variant of Gronwall’s inequality, we obtain
A1) <2V/2€ (%) (VDG _ 1) < 2./2€tChe VPG = etM,. (4.33)
3

We thus infer that
[|will, < €tMy,

(4.34)
[, ly = et

for 0 < t < 1. Since Cs and C; are order-one quantities, M is also an order-one quantity.

For j = 2, integrate (4.12) and (4.13) by parts, combine the two operations to get the
following:

2 2 2 2
J{Rz (Wi + €Wy + w3, + €Wy, |dxdy

t
= JO J[Rz [ZEWxxexxx-r + 2€W},yblyyxx-r + OW e Wiex Uy — 4W)/Wyyuxy (4.35)

2 2
T 2WWixlhyxx — WWyylhcyy — 4We Wi, — ZWyyux]dx dydr.
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The right side of (4.35) may be bounded above by

2€{||WxX||0||uxxxxTHo + ||Wyy||o||“xxyyr||o} +6||Wx||o||wxx||o | Usex | "
+4||Wy||o||wy)'||o | Uxy | +21wllol[Waellg | thoxx | o + ”WHOHW}’J’HO | Uxyy o (4.36)
2 2
+ 4wl o]l |, +2[Iwyy o | 1| -

From the anisotropic Sobolev inequalities, we get the following estimates:

1/4 1/2 1/4
|”xyy | o = ZH”xxyy”() ||”yyy||o ||”xxxyy||0 =G,

1/4 12 1/4 (4.37)
|”xxx|oo = 2||uxxxx||o H”xx,vHo ||”xxxxX||o =C

Using the differential equation satisfied by u, we also obtain the following estimates, valid
for0<t<1:

sup ||t | |0

720
< 5up { s+ 1t
+ 4| |”xx| |(1)/4||”y||(1)/2||“xx9c||(1)/4||“xxxX| |0 (4.38)
2l ™ ety g™ Hetel g™ etenneel Lo
sl eyl = €},
Similarly,
Up eyl
< sup letcrnny o + 8llatayyllolecel g™ Nty lo *1tcaello
5/4 1/2 1/4 1/4 12 1/4

+14||uxxy||0 ||“yy||0 ||”xxxy||o +6||uxx||o ||uy||0 ||”xxx||o ||“xxyy||o

1/4 172 1/4 1/4 1/2 1/4
+2||“yy||o ||”yyy||o ||“xxyy||o ||”xxX||o+4||”y||0 ||“y}'||o ||MXXJ'||0 ||”xXXy||0

12 1/4
+ 2l ullg[luyllg~ eexlo ||“xxxy,v||o+||uxxxxxyy||o+||“yyyy||oSC}-

(4.39)

Putting all these estimates together, the right of (4.35) is bounded by

2€C6(||Wxx||0 + ||Wyy||0) +GCs (||Wxx||g + ||Wyy||é)) (4.40)
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where from previous estimates we already obtained [[wllo < €tMy < Cy, [lwillo < €t]\71 <
Ci, llwyllo < €tM; < C, for 0 < t < 1. Consequently, we have that

2 (! 2 2
[wax| [ +[[wyylo = Jo [2€C6(||Wxx||o+ lwyyllo) + Cs ([|wasllo + ||Wyy||o)]d7’ (4.41)

where Cs, and Cg are order-one constants. Let
/
Ax() = [[lwaallo + 1wy 5] (4.42)
Note that

2 2 2 2 2
(||Wxx||o+ ||Wyy||o) = ||WxX||o + ||Wyy||o+2||Wxx||o||wyy||o = 2(||Wxx||o+ ||Wyy||o)>
(4.43)

so that
[lwxllo + [wyyllp < V2A5(1), (4.44)

and (4.44) is equivalent to

d

E[HWMH(Z)"' ||Wy)’||§] = 2€C6(||Wxx||0 + ||WJ’7H0) +C5(||Wxx||(2) + ||W)'y||§)’ (4.45)

from which we have

%A%(t) < €CoVZA () + Cs A2(1) (4.46)
or

d 1

EAz(t) < 2€C6\/§+ ECSAZ(t). (447)

Apply Gronwall’s inequality to obtain
A, (t) <2V2€ (%) (PGt _ 1) < 2/2€tCeeVPS = etM,. (4.48)
5

From (4.44), we infer that

[|wyl|y < €tMa,

(4.49)
[[wyylly < M.



14  International Journal of Mathematics and Mathematical Sciences

For the general case j, the procedure for obtaininga bound on || 8f;w o+l a§w||0 is similar
to that followed above in the cases j =0, j = 1, and j = 2. Suppose inductively that for
j <k, where k > 1, there have been established bounds of the form

[[odwlly + 1wl
(4.50)

CH;
SG( 2 )(6C2j’lt—1) SEtCzjeczj’l =€tM]'
Cyj1

for t € [0,1], where Czj-1 and C,; are both order-one quantities. The goal now is to
establish the proof for j = k. Before we proceed with the proof, we add (4.12) and (4.13)
together to get the relation

f (@) + (@) + (3 w)* + (@ w) dxdy
[RZ
t
= JO JRZ Fw [268;“2)141 —20%+D (wu + %wz)] (4.51)

t
+ Jo J[RZ a’;w[zeaﬁum - 28§ (wu + %w2> ]dxdydf.

X

Using Leibniz rule, (4.51) may be written as
j [(0w)* + (@) + (3 w)* + (@) dxdy
R2
t
- 2ef J Fwak Dy dxdydr
0 Jr2

k+1

t L L
- 2J J > aj{%8§k+1_])w8iw+ ai"“‘”waiu} (*w)dxdydr
0Jr
j=0
y

t
+2€J J Bkwal)‘,ux“dxdyd‘r
0 Jr2

t k N ) ) L
—zjj S BN D wdhw+ 3 wedhu+ o P wdlu} (5w) dxdy dr.
0Jre e
j=0
(4.52)
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Here, the j and f3; are the constants that appear in Leibniz rule. Separating the top-order
derivatives and directly the rest estimating, we have that

k 2 k 2 k 2 k 2
JRZ[(axw) +e(0F W)+ (Dhw)’ + €(hw) ] dxdy

t t
< ZGJ |[0kwl]ol|0% 2 .|| ydT — ZJ J (worwo D + udkwolkVw) dx dy dr
0 0 JR2

k+1 k+1

J J z(x]|akw8(k+1 ]waiw|dxdydT+ZJ J Za]|akwa u ])w|dxdydr

+2€J Fwll 1 e || dxdyd
0|| ywllol|0) e | dxdy dr

t
- 2J J i (udywolw, + u dywolw + wedywow)dxdy dr

+2J | Zﬁj|a’<wa"‘ D ind) u|dxdydr+2j | Zﬁ]|3kw8yux8( | dxdydz

t k . .
v2[ [ By 13kwa waluw | dsdyar
oJr 5

(4.53)

The induction hypothesis (4. 50) assures us that on the time interval [0,¢], ||a§;w||0,

10 Wleos 103 Wll0s 10 wllos [19hwelles, and |0iwle are bounded by order-one constants
if 0<j<k-1,and 0 <i<k—2. Using the elementary inequalities, the following
estimates may be obtained:

1/4 125742 114 _
| 9ku] ., = 2l10kully" 1%y 1y 1% ull,

(4.54)
|@ul ., < 203ulls 1105 ully |9 uxlly* < C

and from the differential equation satisfied by u, we get the following estimates:

1- 2
sup |95 u]y < SUP{IIG"”L{IIOHZocjllax+ ully|[05ul,

=0 j=0

k
k—j j+3
36l 0l 13 o <

(4.55)
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Similarly,

sup||a ”xxTHo Sup{||ak“xxX||o+3ZVJHa “x”o”a;“xxno
j=0

k
i .
+ Z 6j||ay ]u||o||a§’“xxx||o + ||al;“xxxxx||o + ||8§+2ux||0} <C

(4.56)

for 0 < j < k+1, independent of 7 > 0, and the «;, f3;, y;, and §; are the constants that
appear in Leibniz rule. Because of Theorems 3.1 and 3.2, [Wyx|w, [W) |0, and |w|e are
similarly bounded. The second and the sixth integral on the right-hand side of (4.53) are
bounded, respectively, as follows:

t t
—J J (wx+ux)(8§w)2dxdydr < CJ \|8§w||gdr,
0

t (4.57)
_zj J [( ux+wx) (8§w)2]dxdydr < CJ ||8’;w||§dr,
R2 0

where, provided 0 <t < 1, C may be inferred to be an order-one quantity. The other
integrals on the right side of (4.53) may be estimated as follows:

k+1
J J Z“; |akWa EDy W| +2|a’<waxua"” 2 w|)dxdydr
+2L LRZ Zﬁj(ia’jwa(y"’”wxa ul + | wdu ol w|)dxdydr
j=1

t k o
+2J J S Bj|95wd T wdlw, | dxdyde
0 Jre i

k+1
<CJ |wx|oo||akw||0dr+CeJ [||akw|{OZMk+1 iMjT ]d
= (4.58)

t k+1
w0 [l Nl + ce [ [Hakwnozmﬂ e |

vee| ol | el o wlode + 3 e jpye }dr
0

j=2

.
NN AP e

t
e gl 1257wl |wxy|w+zsz e i
J
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valid at least for 0 < t < 1. The constants appearing in these inequalities are order one.
Hence, for0 <t <1,

t
5wl + |9 wlfg < j FeCa [0kl + 1105 wllo] + Corr [[|0%wllo + |05 wllo] i,

(4.59)
where Cyr—; and G,k are order-one quantities. As previously seen, if
/
Act) = [[|0wllo + (125 wl[o] 7%, (4.60)
then an application of Gronwall’s inequality will lead to
C
< ﬁe(cizk) (eC1t — 1) < \2€tCore ' = €tMy. (4.61)
2%k-1
We therefore infer that
1okwl, < e,
(4.62)

195wl < tMy.

The result (4.50) for j = k now follows and the inductive step is completed.
It is worth noting that the constants Cyt—; and Cy; depend only on [|g(j)llo for 0 < j <

k+ 5. This concludes the proof of Theorem 4.2. O
Proof of Theorem 4.1. From (4.5), we have
u(x, y,t) =€ 'n(e 2x+e ¥t ey, e ),
(4.63)
vy, t) = € 1E(eVxt e ey, e ).
Inverting the above relations, we get
n(x, y,t) = eu(e?x — et ey,e¥?t),
(4.64)
E(x,p,t) = ev(e?x — €t ey,e¥?t).
It follows that
a;jcn(x,y,t) _ ej/2+lazc (€2x— 63/21‘,6)/,63/21‘),
. 4 (4.65)
aig(x,y,t) _ Ej/ZHa;]c (El/Zx 63/2t €y, 63/2 )
Thus,
s = £ I = €072 | [luex - e,
. (4.66)

2
— ol v(eVx — 63/2t,€y,€3/2t)] dxdy.
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Now, change variables by letting z; = €>x — €%%t, z, = €y, and dxdy = |J|dzidz, =
€732dz,dz,. The relation above then becomes

194755 8) = EC ) I =6““2JR2 [2u(ex - et ep,6¥%)

2
—olv (e"?x — 63/2t,€y,€3/2t)] dz dz,

(4.67)
_ €j+1/2||afcw(_’ -,63/2t)||§
< et (e -Mj(€3/2t))2 - €j+5/2Mj(€3/2t)2
for 0 < €2t < 1. Hence if 0 < t < €2, then
||a,jc,1(.,., oL (-, S0l < €2H4M; (e24). (4.68)
Similarly,
Ani(x, 3,1) = €M (e Px — €t e y,€1),
. . (4.69)
) E(x, y,t) = €719y (€ x — €t €y,€%t),
so that

o3 (-, ot —8§E(-,-,t)||é =621+2IR2 [8} (€*x — €t ey,e¥*t)
—8] (€2x — (—:3/2t,(—:y,€3/2t)]2dxdy
zezj“/zjkz [Biu(zl,zz,emt) ayv(zl,zz, 320’ dzdzs
= 23 w(-, -, 1)

< €2j+1/2(€ . Mj(€3/2t))2 _ €2j+5/2Mj(€3/2t)2

(4.70)

for 0 < €2t < 1. Hence if 0 < t < € %2, then
||ai/’7(> >t) - ai&() )t)||0 = €j+5/4Mj (Es/zt)) (471)
where M; is of order one. O

CoROLLARY 4.3. Assume the hypothesis in Theorem 4.1. Then, there are constants K; such
that

|94, y,t) — HE(x, 3, 0) | o, < e*Hi2K; (e¥2t) (4.72)

or0<j<k—-2and0<t<e?min{T, Ty}, and i < k/2.
J J
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Proof. Note that

|8y, y,0) — D(x, y,1) | o, = 2118507 = )l 110k (1, — &1 1o (n = £ ™
(4.73)

Now observe that

1849, (1 = ©)lly = 1102 (7 = ©)IIy 15 = &)l (4.74)
so that
|3ktn =) |, = 2019k = &)l 192 o = &)l Nl 1850n = &)l 184 (n = )l
< [(__.j/2+5/4mj] 174 [Ezj'/2+5/4m2j] 174 [613/4m1 ] 1/4 [€(j+2)/2+5/4mj] 174
— J/85/1642j/8+5/16+13/16+(j+2)/8+5/16 31

— Ej/8+5/16+2j/8+5/16+13/16+(j+2)/8+5/161,~n — e.2+j/21,"",l(€3/2t).
(4.75)

From which, with j = 0, we get the following interesting case:
| 7(x, ,8) = &(x,,1) |, < Ko€e™t (4.76)

holding for 0 < t < €~¥2. Inequality (4.76) is exactly what was obtained when comparing
solutions of the two linearized model evolution equations. Note in particular that at ¢ =
tl — 673/2

[n(x,p.0) —E(xp1) | o < Ko€?, (4.77)

showing explicitly that the two solutions are the same in the formal order of accuracy €?
achieved by either model. Similarly, we state without proof the following corollary. [

COROLLARY 4.4. Assume the hypothesis in Theorem 4.1. Then, there are constants K; such
that

An(x, y,t) — DE(xe, 1) |, < €K (€¥2t) (4.78)
yH Xy y Y j
for0<j<k—2and0<t<e¥min{T,To}, and j < k/2 —2.

5. Remark

The same result is obtained by analyzing the solutions of the initial-value problems for
the KP IT and the BBM KP II equations. Indeed, that analysis was carried out by Mammeri
n [11]. This was made known to us after the submission of this paper.
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