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1. Introduction

Bona et al. [1] compared the solutions of the Cauchy problem of the Korteweg-de Vries
(KdV)

Pt +Px +PPx +Pxxx = 0 (1.1)

and the Benjamin-Bona-Mahony (BBM) equation

Qt +Qx +QQx −Qxxt = 0. (1.2)

In (1.1) and (1.2), P and Q are functions of two real variables x and t.
Such equations have been derived as models for nonlinear dispersive waves in many

different physical contexts, and in most cases where they arise, x is proportional to dis-
tance measured in the direction of wave propagation, while t is proportional to elapsed
time. Interest is often focused on the pure initial-value problem for (1.1) and (1.2) in
which P and Q are specified for all real x at some beginning value of t, say t = 0, and then
the evolution equation is solved for t ≥ 0 subject to the restriction that the solution re-
spects the given initial condition. The thrust of their theory was that for suitably restricted
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initial conditions, the solutions P and Q emanating therefrom are nearly identical at least
for values of t in an interval [0,T], where T is quite large.

This paper is concerned with mathematical models representing the unidirectional
propagation of weakly nonlinear dispersive long waves with weak transverse effects. In-
terest will be directed toward two particular models. One is the Kadomtsev-Petviashvili
(KP) equations

(
ηt +ηx +ηηx +ηxxx

)
x +αηyy = 0 (1.3)

and the other is a regularized version, the Benjamin-Bona-Mahony (BBM-KP) equation

(
ξt + ξx + ξξx − ξxxt

)
x +αξyy = 0, (1.4)

where α=±1. If α= +1 in (1.3), the equation is known as the KP II equation, while for
α = −1, it is the KP I equation. The Kadomtsev-Petviashvili equations are two-dimen-
sional extensions of the Korteweg-de-Vries equation. They occur naturally in many phys-
ical contexts as “universal” models for the propagation of weakly nonlinear dispersive
long waves which are essentially one directional, with weak transverse effects. Observe
that the linearized dispersion relation for (1.3) is

w(k, l)= k
(

1− k2 +
αl2

k2

)
, (1.5)

while that of (1.4) is

w̃(k, l)= k2 +αl2

k
(
1 + k2

) , (1.6)

within the scaling assumption that k2 = O(δ), and l = O(δ). As δ → 0, w(k, l) may be
approximated by w̃(k, l) to the same order of δ (since k2l2 is of higher order).

The Cauchy problem for these equations have been studied by a number of authors.
Bourgain [2], using Picard iteration, has proved that the pure initial-value problem

for the KP II equation is locally well-posed, and hence in light of the conservation laws
for the equation, globally well-posed for data in L2(R). The same method has been used
to extend local well-posedness to some Sobolev spaces of negative indices.

A compactness method that uses only the divergence form of the nonlinearity and the
skew-adjointness of the linear dispersion operator was employed by Iório and Nunes in
[3] to establish local well-posedness for data in Hs(R2), for s > 2, for the KP I equation.
The Iório-Nunes approach applies equally well to KP II-type equation. Molinet et al. [4]
using the local well-posedness of Iório and Nunes obtained a version of the classical en-
ergy method coupled with some of the known conserved quantities and delicate estimates
of Strichartz type for the KP I equation to show global well-posedness for KP I equation
in the space

Z =
{
ϕ∈ L2(R2) : ‖ϕ‖L2 +

∥
∥ϕxxx

∥
∥
L2 +

∥
∥ϕy

∥
∥
L2

+
∥
∥ϕxy

∥
∥
L2 +

∥
∥∂−1

x ϕy

∥
∥
L2 +

∥
∥∂−2

x ϕyy

∥
∥
L2 <∞

}
.

(1.7)
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Kenig [5] improved on this local well-posedness result given by the classical energy esti-
mate by showing local well-posedness in the space

Ys =
{
ϕ∈ L2(R2) : ‖ϕ‖L2 +

∥
∥Jsϕ

∥
∥
L2 +

∥
∥∂−1

x ϕy

∥
∥
L2 <∞

}
(1.8)

for s > 3/2, where Ĵ s f (k, l)= (1 + k2)s/2 f̂ (k, l).
In [6], global well-posedness is established in

Z0 =
{
ϕ∈ L2(R2) : ‖ϕ‖L2 +

∥
∥∂−1

x ϕy

∥
∥
L2 +

∥
∥ϕxx

∥
∥
L2 +

∥
∥∂−2

x ϕyy

∥
∥
L2 <∞

}
(1.9)

for the KP I equation. It is worth mentioning the result of Colliander et al. [7], dealing
with the well-posedness of KP I equation when the initial data has low regularity. Bona et
al. [8] have shown that (1.4) can be solved by Picard iteration yielding to local and global
well-posedness results for the associated Cauchy problem. In particular, it is shown that
the pure initial-value problem for (1.4), regardless of the sign of α, is globally well-posed
in

W1 =
{
ϕ∈ L2(R2) : ‖ϕ‖L2 +

∥
∥ϕx

∥
∥
L2 +

∥
∥ϕxx

∥
∥
L2 +

∥
∥∂−1

x ϕy

∥
∥
L2 +

∥
∥ϕy

∥
∥
L2 <∞

}
. (1.10)

Saut and Tzvetkov [9] improved this global well-posedness to the space

Y = {ϕ∈ L2(R2) : ϕx ∈ L2(R2)}. (1.11)

We remark that provided g satisfies an appropriate constraint, (1.3) and (1.4) are equiv-
alent to the integrated forms

ηt +ηx +ηηx +ηxxx +α∂−1
x ηyy = 0,

ξt + ξx + ξξx − ξxxt +α∂−1
x ξyy = 0.

(1.12)

To illustrate the kind of results we have in mind, we briefly outline below what Saut and
Tzvetkov generally discussed concerning the relationship between the two models in [9].
Since both KP and BBM-KP equations model weakly nonlinear dispersive long waves
which are valid to order ε2, they can be considered as order ε perturbations of the linear
transport equation, and hence can be written as

ηεt +ηεx + ε
(
ηεηεx +ηεxxx± ∂−1

x ηεyy
)= 0, (1.13)

ξεt + ξεx + ε
(
ξεξεx − ξεxxt ± ∂−1

x ξεyy
)= 0, (1.14)



4 International Journal of Mathematics and Mathematical Sciences

with initial data ηε0, ξε0, respectively, which are of order one. The neglected terms in
the right-hand sides of (1.13) and (1.14) are of order ε2. After performing the change of
variables

M = εη, N = εξ, x1 = ε−1/2x, y1 = ε−1y, τ = ε−1/2t, (1.15)

one can rewrite (1.12) and (1.13) as

Mτ +Mx1 +MMx1 +Mx1x1x1 ± ∂−1
x1
My1 y1 = 0,

Nτ +Nx1 +NNx1 −Nx1x1τ ± ∂−1
x1
Ny1 y1 = 0,

(1.16)

with initial data, respectively,

M
(
x1, y1,0

)= εηε0
(
ε1/2x1,εy1

)
,

N
(
x1, y1,0

)= εξε0
(
ε1/2x1,εy1

)
.

(1.17)

The dispersive and nonlinear terms in (1.13) and (1.14) may have a significant influence
on the structure of the waves on the time scale t1 = ε−1 (corresponding to τ1 = ε−3/2),
while the neglected order ε2 terms might affect the solution at order one on time scale
t2 = ε−2 (τ2 = ε−5/2). It is therefore of interest to compare the solutions of (1.13) and
(1.14) on time scales between t1, and t2. Such analysis was performed for the KdV and
BBM models in [1].

To give an idea of the results one can expect that we consider the Cauchy problem for
the linear versions of (1.13) and (1.14)

ηεt +ηεx + ε
(

+ηεxxx ± ∂−1
x ηεyy

)= 0,

ξεt + ξεx + ε
(− ξεxxt ± ∂−1

x ξεyy
)= 0

(1.18)

together with initial condition

ηε(x, y,0)= ξε(x, y,0)= f (x, y), (1.19)

where f is of order one. Taking the Fourier transforms in both x and y variables, we have

η̂ε t + ikη̂ε + ε
[

(ik)3η̂ε ± −l
2

ik
η̂ε

]
= 0,

ξ̂ε t + ikξ̂ε + ε
[
k2ξ̂ε t ±

il2

k
ξ̂ε

]
= 0,

(1.20)
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with η̂ε(k, l,0)= ξ̂ε(k, l,0)= f̂ (k, l). Solving for ηε and ξε, there obtains

η̂ε = e−it[k−εk
3±ε(l2/k)] f̂ (k, l, t),

ξ̂ε = e(−it/(1+εk2))(k±ε(l2/k)) f̂ (k, l, t).

(1.21)

It is readily inferred that provided k5 f̂ (k, l), l2k f̂ (k, l)∈ L1(R2), then

∣
∣ηε(·,·, t)− ξε(·,·, t)

∣
∣∞ ≤

∣
∣η̂ε(k, l, t)− ξ̂ε(k, l, t)

∣
∣
L1(R2) ≤ ε2tC f ≤ C (1.22)

since ηε and ξε are of order one, the estimate (1.22) proves that up to time scale t1 =
ε−(1+δ), 0 < δ < 1, ηε and ξε are ε1−δ close to each other.

2. Notations

We will employ the following notations. We will let | · |p, ‖ · ‖s denote the norms in
Lp(R2) and the classical Sobolev spaces Hs(R2), respectively, where

‖ f ‖2
s =

∫

R2

(
1 + k2 + l2

)s∣∣ f̂ (k, l)
∣
∣2
dkdl (2.1)

and ̂ connotes Fourier transformation. Thus, the norm in L2(R2) will simply be denoted
by ‖ · ‖0. By H∞, we denote

⋂
s≥0H

s. The elements of H∞ are infinitely differentiable
functions, all of whose derivatives lie in L2. IfX is an arbitrary Banach space andT > 0, the
space C(0,T ,X) is the collection of continuous functions u : [0,T]→ X . This collection is
a Banach space with the norm sup0≤t≤T ‖u(t)‖X , where ‖ · ‖X denotes the norm in X .

Define the space Hs
−1(R2)= {η ∈ S′(R2) : ‖η‖Hs

−1(R2) <∞} equipped with the norm

‖η‖Hs
−1(R2) =

(∫

R2

(
1 + |k|−1)2(

1 + k2 + l2
)s∣∣η̂(k, l)

∣
∣2
dkdl

)1/2

. (2.2)

3. Summary of existence theory

As earlier mentioned, the pure initial-value problems for these model evolution equa-
tions have been studied. For our analysis, we will use the result of [6] for the Cauchy
problem for KP I equation, and the result for the well-posedness of BBM-KP I equation
is contained in [8].

We will first consider the initial-value problems for the KP I and BBM-KP I equations

(
ηt +ηx +ηηx +ηxxx

)
x −ηyy = 0, (3.1)

(
ξt + ξx + ξξx − ξxxt

)
x − ξyy = 0, (3.2)
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with initial condition

η(x, y,0)= ξ(x, y,0)= g(x, y). (3.3)

The theoretical results relating to the initial-value problems (3.1) and (3.2) are presented
in the following theorems without proof.

Theorem 3.1. Let s≥ 2. Then for any g ∈Hs
−1(R2), there exist a positive T0 = T0(|	 g|L∞)

(limρ→0T0(ρ) =∞) and a unique η of the integrated KP I equation (3.1) with initial data
g on the time interval [0,T0] satisfying η ∈ C([0,T0];Hs

−1(R2)), ηt ∈ C([0,T0];Hs−3(R2)).
Furthermore, the Map g 
→ η is continuous from Hs

−1(R2) to C([0,T0];Hs
−1(R2)).

Theorem 3.2. Let g ∈Hs
−1 with s > 3/2. Then, there exist T0 > 0 such that the BBM-KP I

equation (3.2) has a unique solution ξ ∈ C([0,T0];Hs
−1(R2)), ∂−1

x ξy ∈ C([0,T0];Hs−1
−1 (R2)),

with ξt ∈ C([0,T0];Hs−2(R2)). Moreover, the map g 
→ ξ is continuous from Hs
−1(R2) to

C([0,T0] : Hs
−1(R2)).

4. Main result

In this section, we compare the solutions of the initial-value problems

ηt +ηx +ηηx +ηxxx − ∂−1
x ηyy = 0,

ξt + ξx + ξξx − ξxxt − ∂−1
x ξyy = 0

(4.1)

both with initial condition

η(x, y,0)= ξ(x, y,0)= εg(ε1/2x,εy
)
. (4.2)

Our main result in this paper is the following.

Theorem 4.1. Let g ∈ Hk+5
−1 (R2), where k ≥ 0 and let η and ξ be the unique solutions

guaranteed by Theorems 3.1 and 3.2 for the initial-value problems (4.1). Then there exist
positive constants C and T which depend only on k and g such that the solutions η and ξ of
the initial-value problems

ηt +ηx +ηηx +ηxxx − ∂−1
x ηyy = 0,

ξt + ξx + ξξx − ξxxt − ∂−1
x ξyy = 0,

η(x, y,0)= ξ(x, y,0)= εg(ε1/2x,εy
)
,

(4.3)
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satisfy the inequalities

∥
∥∂

j
xη(·,·, t)− ∂

j
xξ(·,·, t)∥∥0 ≤ Cε j/2+5/4,

∥
∥∂

j
yη(·,·, t)− ∂

j
yξ(·,·, t)∥∥0 ≤ Cε j+5/4

(4.4)

for 0 < ε ≤ 1, and 0≤ t ≤ ε−3/2 min{T ,T0}, where 0≤ j ≤ k.

Before we prove Theorem 4.1, we introduce two new dependent variables

u(x, y, t)= ε−1η
(
ε−1/2x+ ε−3/2t,ε−1y,ε−3/2t

)
,

v(x, y, t)= ε−1ξ
(
ε−1/2x+ ε−3/2t,ε−1y,ε−3/2t

)
.

(4.5)

A brief calculation shows that u and v satisfy, respectively, the initial-value problems

ut +uux +uxxx − ∂−1
x uyy = 0,

vt + vvx + vxxx − εvxxt − ∂−1
x vyy = 0,

u(x, y,0)= v(x, y,0)= g(x, y).

(4.6)

By virtue of Theorems 3.1 and 3.2, the existence and uniqueness of u and v are assured.

Theorem 4.2. Let g ∈Hs
−1(R2), where s≥ 2, then the initial-value problem for both equa-

tions (4.6) have solutions inC([0,T0];Hs
−1(R2)) for someT0 > 0. Moreover, if g ∈Hk+5

−1 (R2),
then there exist positive constants C and T depending only on k and g such that the difference
u− v satisfies

∥
∥∂

j
xu− ∂

j
xv
∥
∥

0 ≤ Cεt,

∥
∥∂

j
yu− ∂

j
yv
∥
∥

0 ≤ Cεt
(4.7)

for all ε and t for which 0≤ ε ≤ t and 0≤ t ≤min[T ;T0] where 0≤ j ≤ k.

We will make use of the following anisotropic Sobolev inequalities

| f |∞ ≤ 2‖ f ‖1/4
0

∥
∥ fy
∥
∥1/2

0

∥
∥ fxx

∥
∥1/4

0 ,

∣
∣ fx
∣
∣∞ ≤

∥
∥ fxx

∥
∥1/4

0

∥
∥ fy
∥
∥1/2

0

∥
∥ fxxx

∥
∥1/4

0 ,

(4.8)

the proofs of which can be found in [10].
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Proof of Theorem 4.2. Let w = u− v. Then, w is seen to satisfy

wt +wwx +wxxx − εwxxt − ∂−1
x wyy =−εuxxt − (wu)x, (4.9)

w(x, y,0)= 0. (4.10)

We now venture into the task of estimating ‖∂j
xw‖0 +‖∂j

yw‖0, for j = 0,1,2,3,4, . . . .
In light of Theorem 3.1, we note that

‖u‖k ≤ c‖g‖Hk
−1(R2) =Ak. (4.11)

This fact justifies the following computations.

We first estimate ‖∂j
xw‖0. Apply the operator ∂

j
x to both sides of the differential equa-

tion (4.10), multiply the result by ∂
j
xw, and integrate the result over R2 and over [0, t].

After a few integrations by parts, and taking into account the fact that w(x, y,0) ≡ 0, it
follows that

∫

R2

{(
∂
j
xw
)2

+ ε
(
∂
j+1
x w

)2}
dxdy = 2

∫ t

0

∫

R2
∂
j
xw
{
ε∂( j+2)

x uτ − ∂
( j+1)
x

(
wu+

1
2
w2
)}

dxdydτ,

(4.12)

which holds for j = 0,1,2, . . . . Similarly, apply the operator ∂
j
y on (4.10), multiply the

result by ∂
j
yw, and integrate the result over R2 and over [0, t]. After a few integrations by

parts, and taking into account the fact that w(x, y,0)≡ 0, it follows also that

∫

R2

{(
∂
j
yw
)2

+ ε
(
∂
j
ywx

)2}
dxdy = 2

∫ t

0

∫

R2
∂
j
yw
{
ε∂j

yuxxτ − ∂
j
y

(
wu+

1
2
w2
)

x

}
dxdydτ

(4.13)

for j = 0,1,2,3,4, . . . . The relations (4.12) and (4.13) will be used repeatedly.
First, for j = 0, (4.12) or (4.13) may be used, since they will both given the same esti-

mate. Making use of (4.12), there appears after two integrations by parts that

∫

R2

(
w2 + εw2

x

)
dxdy =

∫ t

0

∫

R2

{
2ε
(
wuxxτ

)− (uxw2)}dxdydτ, (4.14)

from this, the following inequality is derived

‖w‖2
0 ≤

∫ t

0

(
2ε‖w‖0

∥
∥uxxτ

∥
∥

0 +
∣
∣ux

∣
∣∞‖w‖2

0

)
dτ. (4.15)
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By a variant of Gronwall’s lemma, it follows that

‖w‖0 ≤ ε
(
C2

C1

)
(
eC1t − 1

)≤ εtC2e
C1 =M0εt, (4.16)

where C1 and C2 are bounds for (1/2)‖ux‖∞ and ‖uxxt‖0, respectively, and t is restricted
to the range [0,1].

Using the equation satisfied by u, the following estimates can be derived:

sup
t≥0

∥
∥uxxt

∥
∥

0 = sup
t≥0

∥
∥uxyy − 3uxuxx −uuxxx−uxxxxx

∥
∥

0

≤ sup
t≥0

[∥
∥uxyy

∥
∥

0 + 2‖u‖1/4
0

∥
∥uy

∥
∥1/2

0

∥
∥uxx

∥
∥1/4

0

∥
∥uxxx

∥
∥

0

+ 6
∥
∥uxx

∥
∥5/4

0

∥
∥uy

∥
∥1/2

0

∥
∥uxxxx

∥
∥1/4

0 +
∥
∥uxxxxx

∥
∥

0

]
.

(4.17)

Hence, C2 may be defined by supt≥0‖uxxt‖0 ≤ C2. For C1, we estimate it from the aniso-
tropic Sobolev inequality

∣
∣ux

∣
∣∞ ≤ 2

∥
∥uxx

∥
∥1/4

0

∥
∥uy

∥
∥1/2

0

∥
∥uxxxx

∥
∥1/4

0 ≤ C1. (4.18)

We therefore infer by an application of Gronwall’s lemma that

‖w‖0 ≤ ε
(
C2

C1

)
(
eC1t − 1

)≤ εtC2e
C1 =M0εt ≤ B (4.19)

for 0≤ t ≤ 1.
For j = 1, integrate (4.12) by parts to get the following relation:

∫

R2

[
w2
x + εw2

xx

]
dxdy =

∫ t

0

∫

R2

(
2εwxuxxxτ −w3

x − 3w2
xux −wwxuxx

)
dxdydτ. (4.20)

Similarly, for j = 1, integrate (4.13) by parts to get

∫

R2

[
w2

y+εw2
xy

]
dxdy =

∫ t

0

∫

R2

(
2εwyuxxyτ−2wxwyuy+w2

yux+wywuxy−w2
ywx

)
dxdydτ.

(4.21)

Adding these two equations above, we obtain

∫

R2

[
w2
x +w2

y + εw2
xx + εw2

xy

]
dxdy

=
∫ t

0

∫

R2

[
2εwxuxxxτ −w3

x − 3w2
xux −wxwuxx + 2εwyuxxyτ

− 2wxwyuy +w2
yux +wywuxy −w2

ywx

]
dxdydτ.

(4.22)
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The integrand on the right-hand side of (4.22) may be bounded above by

2ε
∥
∥wx

∥
∥

0

∥
∥uxxxτ

∥
∥

0 + 2ε
∥
∥wy

∥
∥

0

∥
∥uxxyτ

∥
∥

0 +
[
4
∣
∣ux

∣
∣∞ +

∣
∣vx
∣
∣∞
]∥∥wx

∥
∥2

0

+
[
2
∣
∣ux

∣
∣∞ +

∣
∣vx
∣
∣∞
]∥∥wy

∥
∥2

0 +
∥
∥wx

∥
∥

0‖w‖0
∣
∣uxx

∣
∣∞ +

∥
∥wy

∥
∥

0‖w‖0
∣
∣uxy

∣
∣∞

+ 2
∥
∥wx

∥
∥

0

∥
∥wy

∥
∥

0

∣
∣uy

∣
∣∞.

(4.23)

Also from the anisotropic Sobolev inequalities, we infer that

∣
∣uy

∣
∣∞ ≤ 2

∥
∥uy

∥
∥1/4

0

∥
∥uyy

∥
∥1/2

0

∥
∥uxxy

∥
∥1/4

0 ≤ C,

∣
∣ux

∣
∣∞ ≤ 2

∥
∥uxx

∥
∥1/4

0

∥
∥uy

∥
∥1/2

0

∥
∥uxxx

∥
∥1/4

0 ≤ C,

∣
∣uxx

∣
∣∞ ≤ 2

∥
∥uxxx

∥
∥1/4

0

∥
∥uxy

∥
∥1/2

0

∥
∥uxxxx

∥
∥1/4

0 ≤ C,

∣
∣uxy

∣
∣∞ ≤ 2

∥
∥uxxy

∥
∥1/4

0

∥
∥uyy

∥
∥1/2

0

∥
∥uxxxy

∥
∥1/4

0 ≤ C.

(4.24)

Now using the equation satisfied by u, we may derive the following estimates, valid for
0≤ τ ≤ 1:

sup
t≥0

∥
∥uxxxτ

∥
∥

0

≤ sup
t≥0

[∥
∥uxxyy

∥
∥

0 + 2‖u‖1/4
0

∥
∥uy

∥
∥1/2

0

∥
∥uxx

∥
∥1/4

0

∥
∥uxxxx

∥
∥

0

+ 8
∥
∥uxx

∥
∥1/4

0

∥
∥uy

∥
∥1/2

0

∥
∥uxxxx

∥
∥1/4

0

∥
∥uxxx

∥
∥

0 + 3
∥
∥uxx

∥
∥2

0 +
∥
∥uxxxxxx

∥
∥

0

]
≤ C,

sup
t≥0

∥
∥uxxyτ

∥
∥

0

≤ sup
t≥0

[∥
∥uxxxy

∥
∥

0 + 4
∥
∥uxy

∥
∥3/2

0

∥
∥uxxx

∥
∥1/4

0

∥
∥uxxxx

∥
∥1/4

0

+ 6
∥
∥uxx

∥
∥1/4

0

∥
∥uy

∥
∥1/2

0

∥
∥uxxx

∥
∥1/4

0

∥
∥uxxy

∥
∥

0 + 2
∥
∥uy

∥
∥1/4

0

∥
∥uyy

∥
∥1/2

0

∥
∥uyxx

∥
∥1/4

0

∥
∥uxxx

∥
∥

0

+ 2
∥
∥ux

∥
∥1/4

0

∥
∥uy

∥
∥1/2

0

∥
∥uxx

∥
∥1/4

0

∥
∥uxxxy

∥
∥

0 +
∥
∥uxxxxxy

∥
∥

0 +
∥
∥uyyy

∥
∥

0

]
≤ C.

(4.25)

Putting all these estimates together, the right-hand side of (4.20) may be bounded above
by

2εC4
(∥∥wx

∥
∥

0 +
∥
∥wy

∥
∥

0

)
+C3

(∥∥wx

∥
∥2

0 +
∥
∥wy

∥
∥2

0

)
, (4.26)
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where C3 and C4 are order-one quantities. The following is then seen to hold from (4.19)

∥
∥wx

∥
∥2

0 +
∥
∥wy

∥
∥2

0 ≤
∫ t

0

[
2εC4

(∥∥wx

∥
∥

0 +
∥
∥wy

∥
∥

0

)
+C3

(∥∥wx

∥
∥2

0 +
∥
∥wy

∥
∥2

0

)]
dτ. (4.27)

Let A1(t)= [‖wx‖2
0 +‖wy‖2

0]1/2. Observe that

(∥∥wx

∥
∥

0 +
∥
∥wy

∥
∥

0

)2 = ∥∥wx

∥
∥2

0 +
∥
∥wy

∥
∥2

0 + 2
∥
∥wx

∥
∥

0

∥
∥wy

∥
∥

0 ≤ 2
(∥∥wx

∥
∥2

0 +
∥
∥wy

∥
∥2

0

)
, (4.28)

so that

∥
∥wx

∥
∥

0 +
∥
∥wy

∥
∥

0 ≤
√

2A1(t). (4.29)

Therefore,

d

dt

[∥∥wx

∥
∥2

0 +
∥
∥wy

∥
∥2

0

]≤ 2εC4
(∥∥wx

∥
∥

0 +
∥
∥wy

∥
∥

0

)
+C3

(∥∥wx

∥
∥2

0 +
∥
∥wy

∥
∥2

0

)
, (4.30)

which is equivalent to

d

dt
A2

1(t)≤ 2εC4

√
2A1(t) +C3A

2
1(t) (4.31)

or

d

dt
A1(t)≤ εC4

√
2 +

1
2
C3A1(t), (4.32)

and hence by a variant of Gronwall’s inequality, we obtain

A1(t)≤ 2
√

2ε
(
C4

C3

)
(
e(1/2)C3t − 1

)≤ 2
√

2εtC4e
(1/2)C3 = εtM1. (4.33)

We thus infer that
∥
∥wx

∥
∥

0 ≤ εtM1,

∥
∥wy

∥
∥

0 ≤ εtM1

(4.34)

for 0≤ t ≤ 1. Since C3 and C4 are order-one quantities, M1 is also an order-one quantity.
For j = 2, integrate (4.12) and (4.13) by parts, combine the two operations to get the
following:

∫

R2

[
w2
xx + εw2

xxx +w2
yy + εw2

xyy

]
dxdy

=
∫ t

0

∫

R2

[
2εwxxuxxxxτ + 2εwyyuyyxxτ + 6wxwxxuxx − 4wywyyuxy

+ 2wwxxuxxx −wwyyuxyy − 4wxw
2
xx − 2w2

yyux
]
dxdydτ.

(4.35)
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The right side of (4.35) may be bounded above by

2ε
{∥∥wxx

∥
∥

0

∥
∥uxxxxτ

∥
∥

0 +
∥
∥wyy

∥
∥

0

∥
∥uxxyyτ

∥
∥

0

}
+ 6
∥
∥wx

∥
∥

0

∥
∥wxx

∥
∥

0

∣
∣uxx

∣
∣∞

+ 4
∥
∥wy

∥
∥

0

∥
∥wyy

∥
∥

0

∣
∣uxy

∣
∣∞ + 2‖w‖0

∥
∥wxx

∥
∥

0

∣
∣uxxx

∣
∣∞ +‖w‖0

∥
∥wyy

∥
∥

0

∣
∣uxyy

∣
∣∞

+ 4
∥
∥wxx

∥
∥2

0

∥
∥wx

∥
∥∞ + 2

∥
∥wyy

∥
∥2

0

∣
∣ux

∣
∣∞.

(4.36)

From the anisotropic Sobolev inequalities, we get the following estimates:

∣
∣uxyy

∣
∣∞ ≤ 2

∥
∥uxxyy

∥
∥1/4

0

∥
∥uyyy

∥
∥1/2

0

∥
∥uxxxyy

∥
∥1/4

0 ≤ C,

∣
∣uxxx

∣
∣∞ ≤ 2

∥
∥uxxxx

∥
∥1/4

0

∥
∥uxxy

∥
∥1/2

0

∥
∥uxxxxx

∥
∥1/4

0 ≤ C.
(4.37)

Using the differential equation satisfied by u, we also obtain the following estimates, valid
for 0≤ τ ≤ 1:

sup
τ≥0

∥
∥uxxxxτ

∥
∥

0

≤ sup
τ≥0

{∥
∥uxxxxx

∥
∥

0 +
∥
∥uxxx

∥
∥5/4

0

∥
∥uxy

∥
∥1/2

0

∥
∥uxxxx

∥
∥1/4

0

+ 4
∥
∥uxx

∥
∥1/4

0

∥
∥uy

∥
∥1/2

0

∥
∥uxxx

∥
∥1/4

0

∥
∥uxxxx

∥
∥

0

+ 2
∥
∥ux

∥
∥1/4

0

∥
∥uy

∥
∥1/2

0

∥
∥uxx

∥
∥1/4

0

∥
∥uxxxxx

∥
∥

0

+
∥
∥uxxxxxxx

∥
∥

0 +
∥
∥uxxyy

∥
∥

0 ≤ C
}
.

(4.38)

Similarly,

sup
τ≥0

∥
∥uxxyyτ

∥
∥

0

≤ sup
τ≥0

{∥
∥uxxxyy

∥
∥

0 + 8
∥
∥uxyy

∥
∥

0

∥
∥uxxx

∥
∥1/4

0

∥
∥uxy

∥
∥1/2

0

∥
∥uxxxx

∥
∥1/4

0

+ 14
∥
∥uxxy

∥
∥5/4

0

∥
∥uyy

∥
∥1/2

0

∥
∥uxxxy

∥
∥1/4

0 + 6
∥
∥uxx

∥
∥1/4

0

∥
∥uy

∥
∥1/2

0

∥
∥uxxx

∥
∥1/4

0

∥
∥uxxyy

∥
∥

0

+ 2
∥
∥uyy

∥
∥1/4

0

∥
∥uyyy

∥
∥1/2

0

∥
∥uxxyy

∥
∥1/4

0

∥
∥uxxx

∥
∥

0 +4
∥
∥uy

∥
∥1/4

0

∥
∥uyy

∥
∥1/2

0

∥
∥uxxy

∥
∥1/4

0

∥
∥uxxxy

∥
∥

0

+ 2‖u‖1/4
0

∥
∥uy

∥
∥1/2

0

∥
∥uxx

∥
∥1/4

0

∥
∥uxxxyy

∥
∥

0 +
∥
∥uxxxxxyy

∥
∥

0 +
∥
∥uyyyy

∥
∥

0 ≤ C
}
.

(4.39)

Putting all these estimates together, the right of (4.35) is bounded by

2εC6
(∥∥wxx

∥
∥

0 +
∥
∥wyy

∥
∥

0

)
+C5

(∥∥wxx

∥
∥2

0 +
∥
∥wyy

∥
∥2

0

)
, (4.40)
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where from previous estimates we already obtained ‖w‖0 ≤ εtM0 ≤ C0, ‖wx‖0 ≤ εtM̃1 ≤
C1, ‖wy‖0 ≤ εtM1 ≤ C1 for 0≤ t ≤ 1. Consequently, we have that

∥
∥wxx

∥
∥2

0 +
∥
∥wyy

∥
∥2

0 ≤
∫ t

0

[
2εC6

(∥∥wxx

∥
∥

0 +
∥
∥wyy

∥
∥

0

)
+C5

(∥∥wxx

∥
∥2

0 +
∥
∥wyy

∥
∥2

0

)]
dτ, (4.41)

where C5, and C6 are order-one constants. Let

A2(t)= [∥∥wxx

∥
∥2

0 +
∥
∥wyy

∥
∥2

0

]1/2
. (4.42)

Note that

(∥∥wxx

∥
∥

0 +
∥
∥wyy

∥
∥

0

)2 = ∥∥wxx

∥
∥2

0 +
∥
∥wyy

∥
∥2

0 + 2
∥
∥wxx

∥
∥

0

∥
∥wyy

∥
∥

0 ≤ 2
(∥∥wxx

∥
∥2

0 +
∥
∥wyy

∥
∥2

0

)
,

(4.43)

so that

∥
∥wxx

∥
∥

0 +
∥
∥wyy

∥
∥

0 ≤
√

2A2(t), (4.44)

and (4.44) is equivalent to

d

dt

[∥∥wxx

∥
∥2

0 +
∥
∥wyy

∥
∥2

0

]≤ 2εC6
(∥∥wxx

∥
∥

0 +
∥
∥wyy

∥
∥

0

)
+C5

(∥∥wxx

∥
∥2

0 +
∥
∥wyy

∥
∥2

0

)
, (4.45)

from which we have

d

dt
A2

2(t)≤ εC6

√
2A2(t) +C5A

2
2(t) (4.46)

or

d

dt
A2(t)≤ 2εC6

√
2 +

1
2
C5A2(t). (4.47)

Apply Gronwall’s inequality to obtain

A2(t)≤ 2
√

2ε
(
C6

C5

)
(
e(1/2)C5t − 1

)≤ 2
√

2εtC6e
(1/2)C5 = εtM2. (4.48)

From (4.44), we infer that

∥
∥wxx

∥
∥

0 ≤ εtM2,

∥
∥wyy

∥
∥

0 ≤ εtM2.
(4.49)
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For the general case j, the procedure for obtaining a bound on ‖∂j
xw‖0 +‖∂j

yw‖0 is similar
to that followed above in the cases j = 0, j = 1, and j = 2. Suppose inductively that for
j < k, where k > 1, there have been established bounds of the form

∥
∥∂

j
xw
∥
∥

0 +
∥
∥∂

j
yw
∥
∥

0

≤ ε
(

C2 j

C2 j−1

)
(
eC2 j−1t − 1

)≤ εtC2 j e
C2 j−1 = εtMj

(4.50)

for t ∈ [0,1], where C2 j−1 and C2 j are both order-one quantities. The goal now is to
establish the proof for j = k. Before we proceed with the proof, we add (4.12) and (4.13)
together to get the relation

∫

R2

[(
∂kxw

)2
+ ε
(
∂(k+1)
x w

)2
+
(
∂kyw

)2
+ ε
(
∂kywx

)2]
dxdy

=
∫ t

0

∫

R2
∂kxw

[
2ε∂(k+2)

x uτ − 2∂(k+1)
x

(
wu+

1
2
w2
)]

+
∫ t

0

∫

R2
∂kyw

[
2ε∂kyuxxτ − 2∂ky

(
wu+

1
2
w2
)

x

]
dxdydτ.

(4.51)

Using Leibniz rule, (4.51) may be written as

∫

R2

[(
∂kxw

)2
+ ε
(
∂(k+1)
x w

)2
+
(
∂kyw

)2
+ ε
(
∂kywx

)2]
dxdy

= 2ε
∫ t

0

∫

R2
∂kxw∂

(k+2)
x uτdxdydτ

− 2
∫ t

0

∫

R2

k+1∑

j=0

αj

{
1
2
∂

(k+1− j)
x w∂

j
xw+ ∂

(k+1− j)
x w∂

j
xu
}
(
∂kxw

)
dxdydτ

+ 2ε
∫ t

0

∫

R2
∂kyw∂

k
yuxxτdxdydτ

− 2
∫ t

0

∫

R2

k∑

j=0

βj
{
∂

(k− j)
y w∂

j
ywx + ∂

(k− j)
y wx∂

j
yu+ ∂

(k− j)
y w∂

j
yux
}(
∂kyw

)
dxdydτ.

(4.52)
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Here, the αj and βj are the constants that appear in Leibniz rule. Separating the top-order
derivatives and directly the rest estimating, we have that

∫

R2

[(
∂kxw

)2
+ ε
(
∂(k+1)
x w

)2
+
(
∂kyw

)2
+ ε
(
∂kywx

)2]
dxdy

≤ 2ε
∫ t

0

∥
∥∂kxw

∥
∥

0

∥
∥∂(k+2)

x uτ
∥
∥

0dτ − 2
∫ t

0

∫

R2

(
w∂kxw∂

(k+1)
x w+u∂kxw∂

(k+1)
x w

)
dxdydτ

+
∫ t

0

∫

R2

k+1∑

j=1

αj

∣
∣∂kxw∂

(k+1− j)
x w∂

j
xw
∣
∣dxdydτ + 2

∫ t

0

∫

R2

k+1∑

j=1

αj

∣
∣∂kxw∂

j
xu∂

(k+1− j)
x w

∣
∣dxdydτ

+ 2ε
∫ t

0

∥
∥∂kyw

∥
∥

0

∥
∥∂kyuxxτ

∥
∥

0dxdydτ

− 2
∫ t

0

∫

R2

(
u∂kyw∂

k
ywx +ux∂

k
yw∂

k
yw+wx∂

k
yw∂

k
yw
)
dxdydτ

+ 2
∫ t

0

∫

R2

k∑

j=1

βj

∣
∣∂kyw∂

(k− j)
y wx∂

j
yu
∣
∣dxdydτ + 2

∫ t

0

∫

R2

k∑

j=1

βj

∣
∣∂kyw∂

j
yux∂

(k− j)
y w

∣
∣dxdydτ

+ 2
∫ t

0

∫

R2

k∑

j=1

βj

∣
∣∂kyw∂

k− j
y w∂

j
ywx

∣
∣dxdydτ.

(4.53)

The induction hypothesis (4.50) assures us that on the time interval [0, t], ‖∂j
xw‖0,

|∂ixw|∞, ‖∂j
yw‖0, ‖∂j

ywx‖0, ‖∂j
ywx‖∞, and |∂iyw|∞ are bounded by order-one constants

if 0 ≤ j ≤ k − 1, and 0 ≤ i ≤ k − 2. Using the elementary inequalities, the following
estimates may be obtained:

∣
∣∂

j
xu
∣
∣∞ ≤ 2

∥
∥∂

j
xu
∥
∥1/4

0

∥
∥∂

j
xuy

∥
∥1/2

0

∥
∥∂

j+2
x u

∥
∥1/4

0 ≤ C,

∣
∣∂

j
yu
∣
∣∞ ≤ 2

∥
∥∂

j
yu
∥
∥1/4

0

∥
∥∂

j+1
y u

∥
∥1/2

0

∥
∥∂

j
yuxx

∥
∥1/4

0 ≤ C,

(4.54)

and from the differential equation satisfied by u, we get the following estimates:

sup
τ≥0

∥
∥∂k+2

x uτ
∥
∥

0 ≤ sup
τ≥0

{
∥
∥∂k+3

x u
∥
∥

0 + 3
k∑

j=0

αj

∥
∥∂

k+1− j
x u

∥
∥

0

∥
∥∂

j+2
x u

∥
∥

0

+
k∑

j=0

βj

∥
∥∂

k− j
x u

∥
∥

0

∥
∥∂

j+3
x u

∥
∥

0 +
∥
∥∂k+5

x u
∥
∥

0 +
∥
∥∂k+1

x uyy

∥
∥

0

}

≤ C.

(4.55)
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Similarly,

sup
τ≥0

∥
∥∂kyuxxτ

∥
∥

0 ≤ sup
τ≥0

{
∥
∥∂kyuxxx

∥
∥

0 + 3
k∑

j=0

γj
∥
∥∂

k− j
y ux

∥
∥

0

∥
∥∂

j
yuxx

∥
∥

0

+
k∑

j=0

δj
∥
∥∂

k− j
y u

∥
∥

0

∥
∥∂

j
yuxxx

∥
∥

0 +
∥
∥∂kyuxxxxx

∥
∥

0 +
∥
∥∂k+2

y ux
∥
∥

0

}

≤ C

(4.56)

for 0 ≤ j ≤ k + 1, independent of τ ≥ 0, and the αj , βj , γj , and δj are the constants that
appear in Leibniz rule. Because of Theorems 3.1 and 3.2, |wx|∞, |wy|∞, and |w|∞ are
similarly bounded. The second and the sixth integral on the right-hand side of (4.53) are
bounded, respectively, as follows:

−
∫ t

0

∫

R2

(
wx +ux

)(
∂kxw

)2
dxdydτ ≤ C

∫ t

0

∥
∥∂kxw

∥
∥2

0dτ,

−2
∫ t

0

∫

R2

[(
1
2
ux +wx

)
(
∂kyw

)2
]
dxdydτ ≤ C

∫ t

0

∥
∥∂kyw

∥
∥2

0dτ,

(4.57)

where, provided 0 ≤ t ≤ 1, C may be inferred to be an order-one quantity. The other
integrals on the right side of (4.53) may be estimated as follows:

∫ t

0

∫

R2

k+1∑

j=1

αj
(∣∣∂kxw∂

(k+1− j)
x w∂

j
xw
∣
∣+ 2

∣
∣∂kxw∂

j
xu∂

(k+1− j)
x w

∣
∣)dxdydτ

+ 2
∫ t

0

∫

R2

k∑

j=1

βj
(∣∣∂kyw∂

(k− j)
y wx∂

j
yu
∣
∣+

∣
∣∂kyw∂

j
yux∂

(k− j)
y w

∣
∣)dxdydτ

+ 2
∫ t

0

∫

R2

k∑

j=1

βj

∣
∣∂kyw∂

k− j
y w∂

j
ywx

∣
∣dxdydτ

≤ C
∫ t

0

∣
∣wx

∣
∣∞
∥
∥∂kxw

∥
∥2

0dτ +Cε
∫ t

0

[
∥
∥∂kxw

∥
∥

0

k+1∑

j=2

Mk+1− jMjτ
2

]

dτ

+C
∫ t

0

∣
∣ux

∣
∣∞
∥
∥∂kxw

∥
∥2

0dτ +Cε
∫ t

0

[
∥
∥∂kxw

∥
∥

0

k+1∑

j=2

Nk+1− jNjτ
2

]

dτ

+Cε
∫ t

0

∥
∥∂kyw

∥
∥

0

[
∣
∣ux

∣
∣∞
∥
∥∂k−1

y w
∥
∥

0dτ +
k∑

j=2

Pk− jP jτ
2

]

dτ

+Cε
∫ t

0

∥
∥∂kyw

∥
∥

0

[
∥
∥∂k−1

y w
∥
∥

0

∣
∣uxy

∣
∣∞ +

k∑

j=2

Qk− jQjτ
2

]

dτ

+Cε
∫ t

0

∥
∥∂kyw

∥
∥

0

[
∥
∥∂k−1

y w
∥
∥

0

∣
∣wxy

∣
∣∞ +

k∑

j=2

Rk− jRjτ
2

]

dτ,

(4.58)
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valid at least for 0 ≤ t ≤ 1. The constants appearing in these inequalities are order one.
Hence, for 0≤ t ≤ 1,

∥
∥∂kxw

∥
∥2

0 +
∥
∥∂kyw

∥
∥2

0 ≤
∫ t

0

{
εC2k

[∥∥∂kxw
∥
∥

0 +
∥
∥∂kyw

∥
∥

0

]
+C2k−1

[∥∥∂kxw
∥
∥2

0 +
∥
∥∂kyw

∥
∥2

0

]}
dτ,

(4.59)

where C2k−1 and C2k are order-one quantities. As previously seen, if

Ak(t)= [∥∥∂kxw
∥
∥2

0 +
∥
∥∂kyw

∥
∥2

0

]1/2
, (4.60)

then an application of Gronwall’s inequality will lead to

Ak(t)≤√2ε
(

C2k

C2k−1

)
(
eC2k−1t − 1

)≤√2εtC2ke
C2k−1 = εtMk. (4.61)

We therefore infer that
∥
∥∂kxw

∥
∥

0 ≤ εtMk,

∥
∥∂kyw

∥
∥

0 ≤ εtMk.
(4.62)

The result (4.50) for j = k now follows and the inductive step is completed.
It is worth noting that the constants C2k−1 and C2k depend only on ‖g( j)‖0 for 0≤ j ≤

k+ 5. This concludes the proof of Theorem 4.2. �

Proof of Theorem 4.1. From (4.5), we have

u(x, y, t)= ε−1η
(
ε−1/2x+ ε−3/2t,ε−1y,ε−3/2t

)
,

v(x, y, t)= ε−1ξ
(
ε−1/2x+ ε−3/2t,ε−1y,ε−3/2t

)
.

(4.63)

Inverting the above relations, we get

η(x, y, t)= εu(ε1/2x− ε3/2t,εy,ε3/2t
)
,

ξ(x, y, t)= εv(ε1/2x− ε3/2t,εy,ε3/2t
)
.

(4.64)

It follows that

∂
j
xη(x, y, t)= ε j/2+1∂

j
xu
(
ε1/2x− ε3/2t,εy,ε3/2t

)
,

∂
j
xξ(x, y, t)= ε j/2+1∂

j
xv
(
ε1/2x− ε3/2t,εy,ε3/2t

)
.

(4.65)

Thus,

∥
∥∂

j
x
(
η(·,·, t)− ξ(·,·, t))∥∥2

0 = ε j+2
∫

R2

[
∂
j
xu
(
ε1/2x− ε3/2t,εy,ε3/2t

)

− ∂
j
xv
(
ε1/2x− ε3/2t,εy,ε3/2t

)]2
dxdy.

(4.66)
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Now, change variables by letting z1 = ε2x − ε3/2t, z2 = εy, and dxdy = |J|dz1dz2 =
ε−3/2dz1dz2. The relation above then becomes

∥
∥∂

j
x
(
η(·,·, t)− ξ(·,·, t))∥∥2

0 = ε j+1/2
∫

R2

[
∂
j
xu
(
ε1/2x− ε3/2t,εy,ε3/2t

)

− ∂
j
xv
(
ε1/2x− ε3/2t,εy,ε3/2t

)]2
dz1dz2

= ε j+1/2
∥
∥∂

j
xw
(·,·,ε3/2t

)∥∥2
0

≤ ε j+1/2(ε ·Mj
(
ε3/2t

))2 = ε j+5/2Mj
(
ε3/2t

)2

(4.67)

for 0≤ ε3/2t ≤ 1. Hence if 0≤ t ≤ ε−3/2, then

∥
∥∂

j
xη(·,·, t)− ∂

j
xξ(·,·, t)∥∥0 ≤ ε j/2+5/4Mj

(
ε3/2t

)
. (4.68)

Similarly,

∂
j
yη(x, y, t)= ε j+1∂

j
yu
(
ε1/2x− ε3/2t,εy,ε3/2t

)
,

∂
j
yξ(x, y, t)= ε j+1∂

j
yv
(
ε1/2x− ε3/2t,εy,ε3/2t

)
,

(4.69)

so that

∥
∥∂

j
yη(·,·, t)− ∂

j
yξ(·,·, t)∥∥2

0 = ε2 j+2
∫

R2

[
∂
j
yu
(
ε1/2x− ε3/2t,εy,ε3/2t

)

− ∂
j
yv
(
ε1/2x− ε3/2t,εy,ε3/2t

)]2
dxdy

= ε2 j+1/2
∫

R2

[
∂
j
yu(z1,z2,ε3/2t

)− ∂
j
yv
(
z1,z2,ε3/2t

)]2
dz1dz2

= ε2 j+1/2
∥
∥∂

j
yw
(·,·,ε3/2t

)∥∥2
0

≤ ε2 j+1/2(ε ·Mj
(
ε3/2t

))2 = ε2 j+5/2Mj
(
ε3/2t

)2

(4.70)

for 0≤ ε3/2t ≤ 1. Hence if 0≤ t ≤ ε−3/2, then

∥
∥∂

j
yη(·,·, t)− ∂

j
yξ(·,·, t)∥∥0 ≤ ε j+5/4Mj

(
ε3/2t

)
, (4.71)

where Mj is of order one. �

Corollary 4.3. Assume the hypothesis in Theorem 4.1. Then, there are constants Kj such
that

∣
∣∂

j
xη(x, y, t)− ∂

j
xξ(x, y, t)

∣
∣∞ ≤ ε2+ j/2Kj

(
ε3/2t

)
(4.72)

for 0≤ j ≤ k− 2 and 0≤ t ≤ ε−3/2 min{T ,T0}, and j ≤ k/2.
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Proof. Note that

∣
∣∂

j
xη(x, y, t)− ∂

j
x(x, y, t)

∣
∣∞ ≤ 2

∥
∥∂

j
x(η− ξ)

∥
∥1/4

0

∥
∥∂

j
x
(
ηy − ξy

)∥∥1/2
0

∥
∥∂

j+2
x (η− ξ)

∥
∥1/4

0 .
(4.73)

Now observe that

∥
∥∂

j
x∂y(η− ξ)

∥
∥

0 ≤
∥
∥∂

2 j
x (η− ξ)

∥
∥1/2

0

∥
∥∂2

y(η− ξ)
∥
∥1/2

0 , (4.74)

so that

∣
∣∂

j
x(η− ξ)

∣
∣∞ ≤ 2

∥
∥∂

j
x(η− ξ)

∥
∥1/4

0

∥
∥∂

2 j
x (η− ξ)

∥
∥1/4

0

∥
∥1/4

0

∥
∥∂2

y(η− ξ)
∥
∥1/4

0

∥
∥∂

j+2
x (η− ξ)

∥
∥1/4

0

≤ [ε j/2+5/4mj
]1/4[ε2 j/2+5/4m2 j

]1/4[ε13/4m1
]1/4[ε( j+2)/2+5/4mj

]1/4

= ε j/8+5/16+2 j/8+5/16+13/16+( j+2)/8+5/16m̃

= ε j/8+5/16+2 j/8+5/16+13/16+( j+2)/8+5/16m̃= ε2+ j/2m̃
(
ε3/2t

)
.

(4.75)

From which, with j = 0, we get the following interesting case:

∣
∣η(x, y, t)− ξ(x, y, t)

∣
∣∞ ≤ K0ε7/2t (4.76)

holding for 0≤ t ≤ ε−3/2. Inequality (4.76) is exactly what was obtained when comparing
solutions of the two linearized model evolution equations. Note in particular that at t =
t1 = ε−3/2

∣
∣η
(
x, y, t1

)− ξ
(
x, y, t1

)∣∣∞ ≤ K0ε2, (4.77)

showing explicitly that the two solutions are the same in the formal order of accuracy ε2

achieved by either model. Similarly, we state without proof the following corollary. �

Corollary 4.4. Assume the hypothesis in Theorem 4.1. Then, there are constants Kj such
that

∣
∣∂

j
yη(x, y, t)− ∂

j
yξ(x, y, t)

∣
∣∞ ≤ ε2+ jKj

(
ε3/2t

)
(4.78)

for 0≤ j ≤ k− 2 and 0≤ t ≤ ε−3/2 min{T ,T0}, and j ≤ k/2− 2.

5. Remark

The same result is obtained by analyzing the solutions of the initial-value problems for
the KP II and the BBM KP II equations. Indeed, that analysis was carried out by Mammeri
in [11]. This was made known to us after the submission of this paper.
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