
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2008, Article ID 490316, 5 pages
doi:10.1155/2008/490316

Research Article
On Prime Near-Rings with Generalized Derivation

Howard E. Bell

Department of Mathematics, Faculty of Mathematics and Science, Brock University,
St. Catharines, Ontario, Canada L2S 3A1

Correspondence should be addressed to Howard E. Bell, hbell@brocku.ca

Received 29 November 2007; Accepted 25 February 2008

Recommended by Francois Goichot

Let N be a 3-prime 2-torsion-free zero-symmetric left near-ring with multiplicative center Z. We
prove that if N admits a nonzero generalized derivation f such that f(N) ⊆ Z, then N is a
commutative ring. We also discuss some related properties.
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1. Introduction

LetN be a zero-symmetric left near-ring, not necessarily with amultiplicative identity element;
and letZ be its multiplicative center. DefineN to be 3-prime if for all a, b ∈ N\{0}, aNb /= {0};
and callN 2-torsion-free if (N,+) has no elements of order 2. A derivation onN is an additive
endomorphism D of N such that D(xy) = xD(y) + D(x)y for all x, y ∈ N. A generalized
derivation f with associated derivation D is an additive endomorphism f : N → N such that
f(xy) = f(x)y + xD(y) for all x, y ∈ N. In the case of rings, generalized derivations have
received significant attention in recent years.

In [1], we proved the following.

Theorem A. If N is 3-prime and 2-torsion-free and D is a derivation such that D2 = 0, then D = 0.

Theorem B. If N is a 3-prime 2-torsion-free near-ring which admits a nonzero derivation D for which
D(N) ⊆ Z, then N is a commutative ring.

Theorem C. If N is a 3-prime 2-torsion-free near-ring admitting a nonzero derivation D such that
D(x)D(y) = D(y)D(x) for all x, y ∈ N, then N is a commutative ring.

In this paper, we investigate possible analogs of these results, where D is replaced by a
generalized derivation f .
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We will need three easy lemmas.

Lemma 1.1 (see [1, Lemma 3]). Let N be a 3-prime near-ring.

(i) If z ∈ Z \ {0}, then z is not a zero divisor.

(ii) If Z \ {0} contains an element z such that z + z ∈ Z, then (N,+) is abelian.

(iii) If D is a nonzero derivation and x ∈ N is such that xD(N) = {0} or D(N)x = {0}, then
x = 0.

Lemma 1.2 (see [2, Proposition 1]). If N is an arbitrary near-ring and D is a derivation on N, then
D(xy) = D(x)y + xD(y) for all x, y ∈ N.

Lemma 1.3. Let N be an arbitrary near-ring and let f be a generalized derivation on N with associated
derivation D. Then

(
f(a)b + aD(b)

)
c = f(a)bc + aD(b)c ∀a, b, c ∈ N. (1.1)

Proof. Clearly f((ab)c) = f(ab)c+abD(c) = (f(a)b+aD(b))c+abD(c); and by using Lemma 1.2,
we obtain f(a(bc)) = f(a)bc + aD(bc) = f(a)bc + aD(b)c + abD(c).

Comparing these two expressions for f(abc) gives the desired conclusion.

2. The main theorem

Our best result is an extension of Theorem B.

Theorem 2.1. Let N be a 3-prime 2-torsion-free near-ring. If N admits a nonzero generalized derivation
f such that f(N) ⊆ Z, then N is a commutative ring.

In the proof of this theorem, as well as in a later proof, we make use of a further lemma.

Lemma 2.2. Let R be a 3-prime near-ring, and let f be a generalized derivation with associated
derivation D /= 0. If D(f(N)) = {0}, then f(D(N)) = {0}.

Proof. We are assuming that D(f(x)) = 0 for all x ∈ N. It follows that D(f(xy)) = D(f(x)y) +
D(xD(y)) = 0 for all x, y ∈ N, that is,

f(x)D(y) +D(x)D(y) + xD2(y) = 0 ∀x, y ∈ N. (2.1)

Applying D again, we get

f(x)D2(y) +D2(x)D(y) +D(x)D2(y) +D(x)D2(y) + xD3(y) = 0 ∀x, y ∈ N. (2.2)

TakingD(y) instead of y in (2.1) gives f(x)D2(y)+D(x)D2(y)+xD3(y) = 0, hence (2.2) yields

D2(x)D(y) +D(x)D2(y) = 0 ∀ x, y ∈ N. (2.3)

Now, substitute D(x) for x in (2.1), obtaining f(D(x))D(y) + D2(x)D(y) + D(x)D2(y) = 0;
and use (2.3) to conclude that f(D(x))D(y) = 0 for all x, y ∈ N. Thus, by Lemma 1.1(iii),
f(D(x)) = 0 for all x ∈ N.
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Proof of Theorem 2.1. Since f /= 0, there exists x ∈ N such that 0 /= f(x) ∈ Z. Since f(x) + f(x) =
f(x + x) ∈ Z, (N,+) is abelian by Lemma 1.1(ii). To complete the proof, we show that N is
multiplicatively commutative.

First, consider the caseD = 0, so that f(xy) = f(x)y ∈ Z for all x, y ∈ N. Then f(x)yw =
wf(x)y, hence f(x)(yw − wy) = 0 for all x, y,w ∈ N. Choosing x such that f(x) /= 0 and
invoking Lemma 1.1(i), we get yw −wy = 0 for all y,w ∈ N.

Now assume that D /= 0, and let c ∈ Z \ {0}. Then f(xc) = f(x)c + xD(c) ∈ Z; therefore,
(f(x)c + xD(c))y = y(f(x)c + xD(c)) for all x, y ∈ N, and by Lemma 1.3, we see that f(x)cy +
xD(c)y = yf(x)c + yxD(c). Since both f(x) and D(c) are in Z, we have D(c)(xy − yx) = 0 for
all x, y ∈ N, and provided that D(Z) /= {0}, we can conclude thatN is commutative.

Assume now that D /= 0 and D(Z) = {0}. In particular, D(f(x)) = 0 for all x ∈ N. Note
that for c ∈ N such that f(c) = 0, f(cx) = cD(x) ∈ Z; hence by Lemma 2.2, D(x)D(y) ∈ Z and
D(y)D(x) ∈ Z for each x, y ∈ N. If one of these is 0, the other is a central element squaring to 0,
hence is also 0. The remaining possibility is that D(x)D(y) and D(y)D(x) are nonzero central
elements, in which case D(x) is not a zero divisor. Thus D(x)D(x)D(y) = D(x)D(y)D(x)
yields D(x)(D(x)D(y) − D(y)D(x)) = 0 = D(x)D(y) − D(y)D(x). Consequently, N is
commutative by Theorem C.

3. On Theorems A and C

Theorem C does not extend to generalized derivations, even if N is a ring. As in [3], consider
the ring H of real quaternions, and define f : H → H by f(x) = ix + xi. It is easy to check
that f is a generalized derivation with associated derivation given by D(x) = xi − ix, and that
f(x)f(y) = f(y)f(x) for all x, y ∈ H.

TheoremA also does not extend to generalized derivations, as we see by lettingN be the
ring M2(F) of 2 × 2 matrices over a field F and letting f be defined by f(x) = e12x. However,
we do have the following results.

Theorem 3.1. Let N be a 3-prime near-ring, and let f be a generalized derivation on N with associated
derivation D. If f2 = 0, then D3 = 0. Moreover, if N is 2-torsion-free, then D(Z) = {0}.

Proof. We have

f2(xy) = f(f(x)y + xD(y)) = f(x)D(y) + f(x)D(y) + xD2(y) = 0 ∀x, y ∈ N. (3.1)

Applying f to (3.1) gives

f(x)D2(y) + f(x)D2(y) + f(x)D2(y) + xD3(y) = 0 ∀x, y ∈ N. (3.2)

Substituting D(y) for y in (3.1) gives

f(x)D2(y) + f(x)D2(y) + xD3(y) = 0; (3.3)

Therefore, by (3.2) and (3.3),

f(x)D2(y) = 0 ∀x, y ∈ N. (3.4)

It now follows from (3.3) that xD3(y) = 0 for all x, y ∈ N; and since N is 3-prime, D3 = 0.
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Suppose now that N is 2-torsion-free and that D(Z) /= {0}, and let z ∈ Z be such that
D(z) /= 0. Then if x, y ∈ N and f(N)x = {0}, then f(yz)x = f(y)zx + yD(z)x = 0 = yD(z)x;
and since N is 3-prime and D(z) is not a zero divisor, x = 0. It now follows from (3.4) that
D2 = 0 and hence by Theorem A that D = 0. But this contradicts our assumption that
D(Z) /= {0}, hence D(Z) = {0} as claimed.

Theorem 3.2. Let N be a 3-prime and 2-torsion-free near-ring with 1. If f is a generalized derivation on
N such that f2 = 0 and f(1) ∈ Z, then f = 0.

Proof. Note that f(x) = f(1x) = f(1)x + 1D(x), so

f(x) = cx +D(x), c ∈ Z. (3.5)

If c = 0, then f = D and D2 = 0, so D = 0 by Theorem A and therefore f = 0.
If c /= 0, then c is not a zero divisor, hence by (3.4) D2 = 0 and D = 0. But then f(x) = cx

and f2(x) = c2x = 0 for all x ∈ N. Since c2 is not a zero divisor, we get N = {0}—a
contradiction. Thus, c = 0 and we are finished.

4. More on Theorem C

In [4], the author studied generalized derivations f with associated derivation D which have
the additional property that

f(xy) = D(x)y + xf(y) ∀x, y ∈ N. (∗)

Our final theorem, a weak generalization of Theorem C, was stated in [4]; but the proof given
was not correct. (At one point, both left and right distributivity were assumed.) We now have
all the results required for a proof.

Theorem 4.1. Let N be a 3-prime 2-torsion-free near-ring which admits a generalized derivation f with
nonzero associated derivation D such that f satisfies (∗). If f(x)f(y) = f(y)f(x) for all x, y ∈ N, then
N is a commutative ring.

Proof. It is correctly shown in [4] that (N,+) is abelian and either f(N) ⊆ Z orD(f(N)) = {0}.
Hence, in view of Theorem 2.1, wemay assume thatD(f(N)) = 0 and therefore, by Lemma 2.2,
that f(D(N)) = {0}. We calculate f(D(x)D(y)) in two ways. Using the defining property of f ,
we obtain f(D(x)D(y)) = f(D(x))D(y) +D(x)D2(y) = D(x)D2(y); and using (∗), we obtain
f(D(x)D(y)) = D2(x)D(y)+D(x)f(D(y)) = D2(x)D(y). Thus,D2(x)D(y) = D(x)D2(y) for all
x, y ∈ N. But sinceD(f(N)) = {0}, (2.3) holds in this case as well; thereforeD2(x)D(y) = 0 for
all x, y ∈ N, hence by Lemma 1.1(iii) D2 = 0. Thus, D = 0, contrary to our original hypothesis,
so that the case D(f(N)) = {0} does not in fact occur.
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