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1. Introduction

In 1943, Fomin [1] introduced the notion of θ-continuity. In 1968, the notions of θ-open
subsets, θ-closed subsets, and θ-closure were introduced by Velic̆ko [2]. In 1989, Hdeib [3]
introduced the notion of ω-continuity. The main purpose of the present paper is to introduce
and investigate fundamental properties of weak and strong forms ofω-continuous functions.
Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces (called simply spaces)
with no separation axioms assumed unless otherwise stated. For a subset A of X, the closure
of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. Let (X, τ) be a
space andA a subset of X. A point x ∈ X is called a condensation point ofA if for eachU ∈ τ
with x ∈ U, the set U ∩A is uncountable. However, A is said to be ω-closed [4] if it contains
all its condensation points. The complement of an ω-closed set is said to be ω-open. It is well
known that a subset W of a space (X, τ) is ω-open if and only if for each x ∈ W , there exists
U ∈ τ such that x ∈ U and U − W is countable. The family of all ω-open subsets of a space
(X, τ), denoted by τω or ωO(X), forms a topology on X finer than τ . The family of all ω-open
sets ofX containing x ∈ X is denoted byωO(X, x). Theω-closure and theω-interior, that can
be defined in the same way as Cl(A) and Int(A), respectively, will be denoted byωCl(A) and
ωInt(A). Several characterizations of ω-closed subsets were provided in [5–8].
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A point x of X is called a θ-cluster points of A if Cl(U) ∩A/=φ for every open setU of
X containing x. The set of all θ-cluster points of A is called the θ-closure of A and is denoted
by Clθ(A). A subset A is said to be θ-closed [2] if A = Clθ(A). The complement of a θ-closed
set is said to be θ-open. A point x ofX is called anω-θ-cluster point ofA ifωCl(U)∩A/=φ for
every ω-open setU of X containing x. The set of all ω-θ-cluster points of A is called the ω-θ-
closure of A and is denoted by ωClθ(A). A subset A is said to be ω-θ-closed if A = ωClθ(A).
The complement of a ω-θ-closed set is said to be ω-θ-open. The ω-θ-interior of A is defined
by the union of all ω-θ-open sets contained in A and is denoted by ωIntθ(A).

2. θ-ω-Continuous Functions

We begin by recalling the following definition. Next, we introduce a relatively new notion.

Definition 2.1. A function f : X → Y is said to be ω-continuous (see [3]) (resp., almost
weakly ω-continuous (see [9])) if for each x ∈ X and each open set V of Y containing f(x),
there exists U ∈ ωO(X, x) such that f(U) ⊆ V (resp., f(U) ⊆ Cl(V )).

Definition 2.2. A function f : X → Y is said to be θ-ω-continuous if for each x ∈ X and each
open set V of Y containing f(x), there exists U ∈ ωO(X, x) such that f(ωCl(U)) ⊆ Cl(V ).

Next, several characterizations of θ-ω-continuous functions are obtained.

Theorem 2.3. For a function f : X → Y , the following properties are equivalent:

(1) f is θ-ω-continuous;

(2) ωClθ(f−1(B)) ⊆ f−1(Clθ(B)) for every subset B of Y ;

(3) f(ωClθ(A)) ⊆ Clθ(f(A)) for every subset A of X.

Proof. (1)⇒(2) Let B be any subset of Y . Suppose that x /∈ f−1(Clθ(B)). Then f(x)/∈Clθ(B)
and there exists an open set V containing f(x) such that Cl(V ) ∩ B = φ. Since f is θ-ω-
continuous, there exists U ∈ ωO(X, x) such that f(ωCl(U)) ⊆ Cl(V ). Therefore, we have
f(ωCl(U)) ∩ B = φ and ωCl(U) ∩ f−1(B) = φ. This shows that x /∈ωClθ(f−1(B)). Thus, we
obtain ωClθ(f−1(B)) ⊆ f−1(Clθ(B)).

(2)⇒(1) Let x ∈ X and V be an open set of Y containing f(x). Then we have
Cl(V ) ∩ (Y − Cl(V )) = φ and f(x)/∈Clθ(Y − Cl(V )). Hence, x /∈ f−1(Clθ(Y − Cl(V ))) and
x /∈ωClθ(f−1(Y − Cl(V ))). There exists U ∈ ωO(X, x) such that ωCl(U) ∩ f−1(Y − Cl(V )) = φ
and hence f(ωCl(U)) ⊆ Cl(V ). Therefore, f is θ-ω-continuous.

(2)⇒(3) Let A be any subset of X. Then we have ωClθ(A) ⊆ ωClθ(f−1(f(A))) ⊆
f−1(Clθ(f(A))) and hence f(ωClθ(A)) ⊆ Clθ(f(A)).

(3)⇒(2) Let B be a subset of Y . We have f(ωClθ(f−1(B))) ⊆ Clθ(f(f−1(B))) ⊆ Clθ(B)
and hence ωClθ(f−1(B)) ⊆ f−1(Clθ(B)).

Proposition 2.4. A subsetU of a space X is ω-θ-open in X if and only if for each x ∈ U, there exists
an ω-open set V with x ∈ V such that ωCl(V ) ⊆ U.

Proof. Suppose that U is ω-θ-open in X. Then X − U is ω-θ-closed. Let x ∈ U. Then
x /∈ωClθ(X − U) = X − U, and so there exists an ω-open set V with x ∈ V such that
ωCl(V ) ∩ (X −U) = φ. Thus ωCl(V ) ⊆ U. Conversely, assume that U is not ω-θ-open. Then
X − U is not ω-θ-closed, and so there exists x ∈ ωClθ(X − U) such that x /∈X − U. Since
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x ∈ U, by hypothesis, there exists an ω-open set V with x ∈ V such that ωCl(V ) ⊆ U. Thus
ωCl(V ) ∩ (X −U) = φ. This is a contradiction since x ∈ ωClθ(X −U).

Theorem 2.5. For a function f : X → Y , the following properties are equivalent:

(1) f is θ-ω-continuous;

(2) f−1(V ) ⊆ ωIntθ(f−1(Cl(V ))) for every open set V of Y ;

(3) ωClθ(f−1(V )) ⊆ f−1(Cl(V )) for every open set V of Y .

Proof. (1)⇒(2) Suppose that V is any open set of Y and x ∈ f−1(V ). Then f(x) ∈ V and there
exists U ∈ ωO(X, x) such that f(ωCl(U)) ⊆ Cl(V ). Therefore, x ∈ U ⊆ ωCl(U) ⊆ f−1(Cl(V )).
This shows that x ∈ ωIntθ(f−1(Cl(V ))). Therefore, we obtain f−1(V ) ⊆ ωIntθ(f−1(Cl(V ))).

(2)⇒(3) Suppose that V is any open set of Y and x /∈ f−1(Cl(V )). Then f(x)/∈Cl(V )
and there exists an open set W containing f(x) such that W ∩ V = φ; hence Cl(W) ∩ V = φ.
Therefore, we have f−1(Cl(W))∩f−1(V ) = φ. Since x ∈ f−1(W), by (2) x ∈ ωIntθ(f−1(Cl(W))),
there existsU ∈ ωO(X, x) such that ωCl(U) ⊆ f−1(Cl(W)). Thus we have ωCl(U) ∩ f−1(V ) =
φ and hence x /∈ωClθ(f−1(V )). This shows that ωClθ(f−1(V )) ⊆ f−1(Cl(V )).

(3)⇒(1) Suppose that x ∈ X and V are any open set of Y containing f(x). Then
V ∩ (Y − Cl(V )) = φ and f(x)/∈Cl(Y − Cl(V )). Therefore x /∈ f−1(Cl(Y − Cl(V ))) and by (3)
x /∈ωClθ(f−1(Y −Cl(V ))). There existsU ∈ ωO(X, x) such that ωCl(U) ∩ f−1(Y −Cl(V )) = φ.
Therefore, we obtain f(ωCl(U)) ⊆ Cl(V ). This shows that f is θ-ω-continuous.

A subset A of X is said to be regular open (resp., regular closed) (see [10]) if A =
Int(Cl(A)) (resp., A = Cl(Int(A))). Also, the family of all regular open (resp., regular closed)
sets of X is denoted by RO(X) (resp., RC(X)).

Theorem 2.6. For a function f : X → Y , the following properties are equivalent:

(1) f is θ-ω-continuous;

(2) ωClθ[f−1(Int(Clθ(B)))] ⊆ f−1(Clθ(B)) for every subset B of Y ;

(3) ωClθ[f−1(Int(Cl(V )))] ⊆ f−1(Cl(V )) for every open set V of Y ;

(4) ωClθ[f−1(Int(K))] ⊆ f−1(K) for every closed setK of Y ;

(5) ωClθ[f−1(Int(R))] ⊆ f−1(R) for every regular closed set R of Y .

Proof. (1)⇒(2) This follows immediately from Theorem 2.5(3) with V = Int(Clθ(B)).
(2)⇒(3) This is obvious since Clθ(V ) = Cl(V ) for every open set V of Y.
(3)⇒(4) For any closed set K of Y , Int(K) = Int(Cl(Int(K))) and by (3)

ωClθ
(
f−1(Int(K))

)
= ωClθ

(
f−1(Int(Cl(Int(K))))

)

⊂ f−1(Cl(Int(K)))

⊂ f−1(K).

(2.1)

(4)⇒(5) This is obvious.
(5)⇒(1) Let V be any open set of Y . Since Cl(V ) is regular closed, by (5)

ωClθ(f−1(V ))) ⊂ ωClθ(f−1(Int(Cl(V ))))) ⊂ f−1(Cl(V )). It follows from Theorem 2.5 that f
is θ-ω-continuous.
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Definition 2.7. A subset A of a space X is said to be semi-open (see [11]) (resp., preopen (see
[12]), β-open (see [13])) if A ⊆ Cl(Int(A)) (resp., A ⊆ Int(Cl(A)), A ⊆ Cl(Int(Cl(A)))).

Theorem 2.8. For a function f : X → Y , the following properties are equivalent:

(1) f is θ-ω-continuous;

(2) ωClθ[f−1(Int(Cl(G)))] ⊆ f−1(Cl(G)) for every β-open set G of Y ;

(3) ωClθ[f−1(Int(Cl(G)))] ⊆ f−1(Cl(G)) for every semi-open set G of Y .

Proof. (1)⇒(2) This is obvious by Theorem 2.6(5) since Cl(G) is regular closed for every β-
open set set G.

(2)⇒(3) This is obvious since every semi-open set is β-open.
(3)⇒(1) This follows immediately from Theorem 2.5(3) and since every open set is

semi-open.

Theorem 2.9. For a function f : X → Y , the following properties are equivalent:

(1) f is θ-ω-continuous;

(2) ωClθ[f−1(Int(Cl(G)))] ⊆ f−1(Cl(G)) for every preopen set G of Y ;

(3) ωClθ[f−1(G)] ⊆ f−1(Cl(G)) for every preopen set G of Y ;

(4) f−1(G) ⊂ ωIntθ(f−1(Cl(G))) for every preopen set G of Y .

Proof. (1)⇒(2) The proof follows from Theorem 2.8 (2) since every preopen set is β-open.
(2)⇒(3) This is obvious by the definition of a preopen set.
(3)⇒(4) Let G be any preopen set of Y . Then, by (3)we have

X −ωIntθ
(
f−1(Cl(G))

)
= ωClθ

(
X − f−1(Cl(G))

)

= ωClθ
(
f−1(Y − Cl(G))

)

⊂ f−1(Cl(Y − Cl(G)))

= f−1(Y − Int(Cl(G)))

⊂ f−1(Y −G)

= X − f−1(G).

(2.2)

Therefore, we obtain f−1(G) ⊂ ωIntθ(f−1(Cl(G))).
(4)⇒(1) This is obvious by Theorem 2.5 since every open set is preopen.

Definition 2.10. A function f : X → Y is said to be almost ω-continuous if for each x ∈ X and
each regular open set V of Y containing f(x), there existsU ∈ ωO(X, x) such that f(U) ⊆ V .
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Lemma 2.11. For a function f : X → Y , the following assertions are equivalent:

(1) f is almost ω-continuous;

(2) for each x ∈ X and each open set V of Y containing f(x), there existsU ∈ ωO(X, x) such
that f(U) ⊆ Int(Cl(V ));

(3) f−1(F) ∈ ωC(X) for every F ∈ RC(Y );

(4) f−1(V ) ∈ ωO(X) for every V ∈ RO(Y ).

Proposition 2.12. For a function f : X → Y , the following properties hold:

(1) if f is almost ω-continuous, then it is θ-ω-continuous;

(2) if f is θ-ω-continuous, then it is almost weakly ω-continuous.

Proof. (1) Suppose that x ∈ X and V is any open set of Y containing f(x). Since f is almostω-
continuous, f−1(Int(Cl(V ))) is ω-open and f−1(Cl(V )) is ω-closed in X by Lemma 2.11. Now,
set U = f−1(Int(Cl(V ))). Then we have U ∈ ωO(X, x) and ωCl(U) ⊆ f−1(Cl(V )). Therefore,
we obtain f(ωCl(U)) ⊆ Cl(V ). This shows that f is θ-ω-continuous.

(2) The proof follows immediately from the definition.

Example 2.13. Let X be an uncountable set and let A,B, and C be subsets of X such that each
of them is uncountable and the family {A,B,C} is a partition of X. We define the topology
τ = {φ,X, {A}, {B}, {A,B}}. Then, the function f : (X, τ) → (X, τ) defined by f(A) = A,
f(B) = C, and f(C) = A is θ-ω-continuous (and almost weakly ω-continuous) but is not
almost ω-continuous since for xc ∈ C ⊆ X, A is regular open and f(xc) ∈ A but there is not
open set Uxc containing xc such that f(Uxc) ⊆ A.

Question. Is the converse of Proposition 2.12(2) true?

It is clear that, for a subset A of a space X, x ∈ ωCl(A) if and only if for any ω-open
set U containing x, U ∩A/=φ.

Lemma 2.14. For an ω-open setU in a space X, ωCl(U) = ωClθ(U).

Proof. By definition, ωCl(U) ⊆ ωClθ(U). Let x ∈ ωClθ(U). Then for any ω-open set V
containing x, ωCl(V ) ∩ U/=φ. Let z ∈ ωCl(V ) ∩ U. Then U ∩ V /=φ and x ∈ ωCl(U). Thus
ωClθ(U) ⊆ ωCl(U).

Definition 2.15. A topological space X is said to be ω-regular (resp., ω∗-regular) if for each
ω-closed (resp., closed) set F and each point x ∈ X −F, there exist disjoint ω-open setsU and
V such that x ∈ U and F ⊆ V .

Lemma 2.16. A topological space X is ω-regular (resp., ω∗-regular) if and only if for each U ∈
ωO(X) (resp., U ∈ O(X)) and each point x ∈ U, there exists V ∈ ωO(X, x) such that x ∈ V ⊆
ωCl(V ) ⊆ U.

Proposition 2.17. Let X be an ω-regular space. Then f : X → Y is θ-ω-continuous if and only if it
is almost weakly ω-continuous.

Proof. Suppose that f is almost weakly ω-continuous. Let x ∈ X and V be any open set of
Y containing f(x). Then, there exists U ∈ ωO(X, x) such that f(U) ⊆ Cl(V ). Since X is
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ω-regular, by Lemma 2.16 there exists W ∈ ωO(X, x) such that x ∈ W ⊆ ωCl(W) ⊆ U.
Therefore, we obtain f(ωCl(W)) ⊆ Cl(V ). This shows that f is θ-ω-continuous.

Theorem 2.18. Let f : X → Y be a function and g : X → X ×Y the graph function of f defined by
g(x) = (x, f(x)) for each x ∈ X. Then g is θ-ω-continuous if and only if f is θ-ω-continuous.

Proof

Necessity. Suppose that g is θ-ω-continuous. Let x ∈ X and V be an open set of Y containing
f(x). Then X × V is an open set of X × Y containing g(x). Since g is θ-ω-continuous, there
exists U ∈ ωO(X, x) such that g(ωCl(U)) ⊆ Cl(X × V ) = X × Cl(V ). Therefore, we obtain
f(ωCl(U)) ⊆ Cl(V ). This shows that f is θ-ω-continuous.

Sufficiency. Let x ∈ X and W be any open set of X × Y containing g(x). There exist open sets
U1 ⊆ X and V ⊆ Y such that g(x) = (x, f(x)) ∈ U1 × V ⊆ W . Since f is θ-ω-continuous, there
exists U2 ∈ ωO(X, x) such that f(ωCl(U2)) ⊆ Cl(V ). Let U = U1 ∩ U2, then U ∈ ωO(X, x).
Therefore, we obtain g(ωCl(U)) ⊆ Cl(U1) × f(ωCl(U2)) ⊆ Cl(U1) × Cl(V ) ⊆ Cl(W). This
shows that g is θ-ω-continuous.

3. Strongly θ-ω-Continuous Functions

We introduce the following relatively new definition.

Definition 3.1 (see [14]). A function f : X → Y is said to be strongly θ-continuous if for each
x ∈ X and each open set V of Y containing f(x), there exists an open neighborhood U of x
such that f(Cl(U)) ⊆ V .

Definition 3.2. A function f : X → Y is said to be strongly θ-ω-continuous if for each x ∈ X
and each open set V of Y containing f(x), there exists U ∈ ωO(X, x) such that f(ωCl(U)) ⊆
V .

Clearly, the following holds and none of its implications is reversible:

ω-continuous almost weakly ω-continuous

almost ω-continuous

strongly θ-ω-continuous θ-ω-continuous

Remark 3.3. Strong θ-ω-continuity is stronger than ω-continuity and is weaker than strong
θ-continuity. Strong θ-ω-continuity and continuity are independent of each other as the
following examples show.

Example 3.4. Let X = {a, b, c}, τ = {φ,X, {a, b}}, and σ = {φ,X, {c}}. Define a function f :
(X, τ) → (X, σ) as follows: f(a) = a, f(b) = f(c) = c. Then f is strongly θ-ω-continuous but
it is not continuous.
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Example 3.5. Let X be an uncountable set and let A,B, and C be subsets of X such that
each of them is uncountable and the family {A,B,C} is a partition of X. We defined the
topology τ = {φ,X, {A}, {B}, {A,B}} and σ = {φ,X, {A}, {A,B}}. Then, the identity function
f : (X, τ) → (X, σ) is continuous (and ω-continuous) but is not strongly θ-ω-continuous.

Next, several characterizations of strongly θ-ω-continuous functions are obtained.

Theorem 3.6. For a function f : X → Y , the following properties are equivalent:

(1) f is strongly θ-ω-continuous;

(2) f−1(V ) is ω-θ-open in X for every open set V of Y ;

(3) f−1(F) is ω-θ-closed in X for every closed set F of Y ;

(4) f(ωClθ(A)) ⊆ Cl(f(A)) for every subset A of X;

(5) ωClθ(f−1(B)) ⊆ f−1(Cl(B)) for every subset B of Y .

Proof. (1)⇒(2) Let V be any open set of Y . Suppose that x ∈ f−1(V ). Since f is strongly
θ-ω-continuous, there exists U ∈ ωO(X, x) such that f(ωCl(U)) ⊆ V . Therefore, we have
x ∈ U ⊆ ωCl(U) ⊆ f−1(V ). This shows that f−1(V ) is ω-θ-open in X.

(2)⇒(3) This is obvious.
(3)⇒(4) Let A be any subset of X. Since Cl(f(A)) is closed in Y , by (3) f−1(Cl(f(A)))

is ω-θ-closed, and we have ωClθ(A) ⊆ ωClθ(f−1(f(A))) ⊆ ωClθ(f−1(Cl(f(A)))) =
f−1(Cl(f(A))). Therefore, we obtain f(ωClθ(A)) ⊆ Cl(f(A)).

(4)⇒(5) Let B be any subset of Y . By (4), we obtain f(ωClθ(f−1(B))) ⊆ Cl(f(f−1(B))) ⊆
Cl(B) and hence ωClθ(f−1(B)) ⊆ f−1(Cl(B)).

(5)⇒(1) Let x ∈ X and V be any open neighborhood of f(x). Since Y − V is closed
in Y , we have ωClθ(f−1(Y − V )) ⊆ f−1(Cl(Y − V )) = f−1(Y − V ). Therefore, f−1(Y − V ) is
ω-θ-closed in X and f−1(V ) is an ω-θ-open set containing x. There exists U ∈ ωO(X, x)
such that ωCl(U) ⊆ f−1(V ) and hence f(ωCl(U)) ⊆ V . This shows that f is strongly θ-ω-
continuous.

Theorem 3.7. Let Y be a regular space. Then, for a function f : X → Y , the following properties are
equivalent:

(1) f is almost weakly ω-continuous;

(2) f is ω-continuous;

(3) f strongly θ-ω-continuous.

Proof. (1)⇒(2) Let x ∈ X and V be an open set of Y containing f(x). Since Y is regular,
there exists an open set W such that f(x) ∈ W ⊆ Cl(W) ⊆ V . Since f is almost weakly
ω-continuous, there exists U ∈ ωO(X, x) such that f(U) ⊆ Cl(W) ⊆ V . Therefore f is ω-
continuous.

(2)⇒(3) Let x ∈ X and V be an open set of Y containing f(x). Since Y is regular, there
exists an open set W such that f(x) ∈ W ⊆ Cl(W) ⊆ V . Since f is ω-continuous, f−1(W) is
ω-open and f−1(Cl(W)) is ω-closed. Set U = f−1(W), then since x ∈ f−1(W) ⊆ f−1(Cl(W)),
U ∈ ωO(X, x) and ωCl(U) ⊆ f−1(Cl(W)). Consequently, we have f(ωCl(U)) ⊆ Cl(W) ⊆ V .

(3)⇒(1) The proof follows immediately from the definition.
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Corollary 3.8. Let Y be a regular space. Then, for a function f : X → Y , the following properties
are equivalent:

(1) f is strongly θ-ω-continuous;

(2) f is ω-continuous;

(3) f is almost ω-continuous;

(4) f is θ-ω-continuous;

(5) f is almost weakly ω-continuous.

Theorem 3.9. A space X is ω∗-regular if and only if, for any space Y , any continuous function
f : X → Y is strongly θ-ω-continuous.

Proof

Sufficiency. Let f : X → X be the identity function. Then f is continuous and strongly θ-
ω-continuous by our hypothesis. For any open set U of X and any points x of U, we have
f(x) = x ∈ U and there exists G ∈ ωO(X, x) such that f(ωCl(G)) ⊆ U. Therefore, we have
x ∈ G ⊆ ωCl(G) ⊆ U. It follows from Lemma 2.16, that is, X is ω∗-regular.

Necessity. Suppose that f : X → Y is continuous and X is ω∗-regular. For any x ∈ X and any
open neighborhood V of f(x), f−1(V ) is an open set of X containing x. Since X is ω∗-regular,
there exists U ∈ ωO(X) such that x ∈ U ⊆ ωCl(U) ⊆ f−1(V ) by Lemma 2.16. Therefore, we
have f(ωCl(U)) ⊆ V . This shows that f is strongly θ-ω-continuous.

Theorem 3.10. Let f : X → Y be a function and g : X → X ×Y the graph function of f defined by
g(x) = (x, f(x)) for each x ∈ X. If g is strongly θ-ω-continuous, then f is strongly θ-ω-continuous
and X is ω∗-regular.

Proof. Suppose that g is strongly θ-ω-continuous. First, we show that f is strongly θ-ω-
continuous. Let x ∈ X and V be an open set of Y containing f(x). Then X × V is an open
set of X × Y containing g(x). Since g is strongly θ-ω-continuous, there exists U ∈ ωO(X, x)
such that g(ωCl(U)) ⊆ X × V . Therefore, we obtain f(ωCl(U)) ⊆ V . Next, we show that
X is ω∗-regular. Let U be any open set of X and x ∈ U. Since g(x) ∈ U × Y and U × Y is
open in X × Y , there exists G ∈ ωO(X, x) such that g(ωCl(G)) ⊆ U × Y . Therefore, we obtain
x ∈ G ⊆ ωCl(G) ⊆ U and hence X is ω∗-regular.

Proposition 3.11. Let X be an ω-regular space. Then f : X → Y is strongly θ-ω-continuous if and
only if f is ω-continuous.

Proof. Suppose that f is ω-continuous. Let x ∈ X and V be any open set of Y containing f(x).
By the ω-continuity of f , we have f−1(V ) ∈ ωO(X, x) and hence there exists U ∈ ωO(X, x)
such that ωCl(U) ⊆ f−1(V ). Therefore, we obtain f(ωCl(U)) ⊆ V . This shows that f is
strongly θ-ω-continuous.

Theorem 3.12. Let f : X → Y be a function and g : X → X × Y the graph function of f defined
by g(x) = (x, f(x)) for each x ∈ X. If f is strongly θ-ω-continuous and X is ω-regular, then g is
strongly θ-ω-continuous.
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Proof. Let x ∈ X and W be any open set of X × Y containing g(x). There exist open sets
U1 ⊆ X and V ⊆ Y such that g(x) = (x, f(x)) ∈ U1 × V ⊆ W . Since f is strongly θ-ω-
continuous, there exists U2 ∈ ωO(X, x) such that f(ωCl(U2)) ⊆ V . Since X is ω-regular and
U1 ∩ U2 ∈ ωO(X, x), there exists U ∈ ωO(X, x) such that x ∈ U ⊆ ωCl(U) ⊆ U1 ∩ U2 (by
Lemma 2.16). Therefore, we obtain g(ωCl(U)) ⊆ U1 × f(ωCl(U2)) ⊆ U1 ×V ⊆ W . This shows
that g is strongly θ-ω-continuous.

Theorem 3.13. Suppose that the product of twoω-open sets ofX isω-open. If f : X → Y is strongly
θ-ω-continuous injection and Y is Hausdorff, thenE = {(x, y) : f(x) = f(y)} isω-θ-closed inX×X.

Proof. Suppose that (x, y)/∈E. Then f(x)/= f(y). Since Y is Hausdorff, there exist open sets
V and U containing f(x) and f(y), respectively, such that U ∩ V = φ. Since f is strongly
θ-ω-continuous, there exist G ∈ ωO(X, x) and H ∈ ωO(X, y) such that f(ωCl(G)) ⊆ V and
f(ωCl(H)) ⊆ U. SetD = G×H. It follows that (x, y) ∈ D ∈ ωO(X ×Y ) and ωCl(G×H)∩E ⊆
[ωCl(G) ×ωCl(H)] ∩ E = φ. By Proposition 2.4, E is ω-θ-closed in X ×X.

Definition 3.14 (see [9]). A space X is said to be ω-T2-space (resp., ω-Urysohn) if for each
pair of distinct points x and y in X, there exist U ∈ ωO(X, x) and V ∈ ωO(X, y) such that
U ∩ V = φ (resp., ωCl(U) ∩ωCl(V ) = φ).

Theorem 3.15. If f : X → Y is strongly θ-ω-continuous injection and Y is T0-space (resp.,
Hausdorff), then X is ω-T2-space (resp., ω-Urysohn).

Proof. (1) Suppose that Y is T0-space. Let x and y be any distinct points of X. Since f is
injective, f(x)/= f(y) and there exists either an open neighborhood V of f(x) not containing
f(y) or an open neighborhood W of f(y) not containing f(x). If the first case holds, then
there exists U ∈ ωO(X, x) such that f(ωCl(U)) ⊆ V . Therefore, we obtain f(y)/∈ f(ωCl(U))
and hence X − ωCl(U) ∈ ωO(X, y). If the second case holds, then we obtain a similar result.
Therefore, X is ω-T2.

(2) Suppose that Y is Hausdorff. Let x and y be any distinct points of X. Then
f(x)/= f(y). Since Y is Hausdorff, there exist open sets V and U containing f(x) and
f(y), respectively, such that U ∩ V = φ. Since f is strongly θ-ω-continuous, there exist
G ∈ ωO(X, x) and H ∈ ωO(X, y) such that f(ωCl(G)) ⊆ V and f(ωCl(H)) ⊆ U. It follows
that f(ωCl(G)) ∩ f(ωCl(H)) = φ, hence ωCl(G) ∩ ωCl(H) = φ. This shows that X is ω-
Urysohn.

A subset K of a space X is said to be ω-closed relative to X if for every cover {Vα : α ∈
Λ} of K by ω-open sets of X, there exists a finite subset Λ0 of Λ such that K ⊆ ∪{ωCl(Vα) :
α ∈ Λ0}.

Theorem 3.16. Let f : X → Y be strongly θ-ω-continuous and K ω-closed relative to X, then
f(K) is a compact set of Y .

Proof. Suppose that f : X → Y is a strongly θ-ω-continuous function and K is ω-closed
relative to X. Let {Vα : α ∈ Λ} be an open cover of f(K). For each point x ∈ K, there
exists α(x) ∈ Λ such that f(x) ∈ Vα(x). Since f is strongly θ-ω-continuous, there exists
Ux ∈ ωO(X, x) such that f(ωCl(Ux)) ⊆ Vα(x). The family {Ux : x ∈ K} is a cover of K by
ω-open sets of X and hence there exists a finite subset K∗ of K such that K ⊆ ⋃

x∈K∗ ωCl(Ux).
Therefore, we obtain f(K) ⊆ ⋃

x∈K∗ Vα(x). This shows that f(K) is compact.
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Recall that a subset A of a space X is quasi H-closed relative to X if for every cover
{Vα : α ∈ Λ} ofA by open sets ofX, there exist a finite subsetΛ0 ofΛ such thatA ⊆ ∪{Cl(Vα) :
α ∈ Λ0}. A space X is said to be quasiH-closed (see [15]) if X is quasiH-closed relative to X.

Theorem 3.17. Let f : X → Y be θ-ω-continuous and Kω-closed relative to X, then f(K) is quasi
H-closed relative to Y .

Proof. Suppose that f : X → Y is a θ-ω-continuous function and K is ω-closed relative to
X. Let {Vα : α ∈ Λ} be an open cover of f(K). For each point x ∈ K, there exists α(x) ∈
Λ such that f(x) ∈ Vα(x). Since f is θ-ω-continuous, there exists Ux ∈ ωO(X, x) such that
f(ωCl(Ux)) ⊆ Cl(Vα(x)). The family {Ux : x ∈ K} is a cover of K by ω-open sets of X and
hence there exists a finite subset K∗ of K such that K ⊆ ⋃

x∈K∗ ωCl(Ux). Therefore, we obtain
f(K) ⊆ ⋃

x∈K∗ Cl(Vα(x)). This shows that f(K) is quasi H-closed relative to Y .

Definition 3.18 (see [9]). A function f : X → Y is said to be pre-ω-open if f(U) ∈ ωO(Y ) for
every U ∈ ωO(X).

Proposition 3.19. Let f : X → Y and g : Y → Z be functions and let g ◦ f : X → Z be strongly
θ-ω-continuous. If f : X → Y is pre-ω-open and bijective, then g is strongly θ-ω-continuous.

Proof. Let y ∈ Y and W be any open set of Z containing g(y). Since f is bijective, y = f(x)
for some x ∈ X. Since (g ◦ f) is strongly θ-ω-continuous, there existsU ∈ ωO(X, x) such that
(g◦f)(ωCl(U)) ⊆ W . Since f is pre-ω-open and bijective, the image f(A) of anω-closed setA
ofX isω-closed in Y . Therefore, we haveωCl(f(U)) ⊆ f(ωCl(U)) and hence g(ωCl(f(U))) ⊆
(g ◦ f)(ωCl(U)) ⊆ W . Since f(U) ∈ ωO(Y, y), g is strongly θ-ω-continuous.

Definition 3.20 (see [16]). A function f : X → Y is said to be ω-irresolute if f−1(V ) ∈ ωO(X)
for each V ∈ ωO(Y ).

Lemma 3.21. If f : X → Y is ω-irresolute and V is ω-θ-open in Y , then f−1(V ) is ω-θ-open in X.

Proof. Let V be anω-θ-open set of Y and x ∈ f−1(V ). There existsW ∈ ωO(Y ) such that f(x) ∈
W ⊆ ωCl(W) ⊆ V . Since f is ω-irresolute, we have f−1(W) ∈ ωO(X) and f−1(ωCl(W)) ∈
ωC(X). Therefore, we obtain x ∈ f−1(W) ⊆ ωCl(f−1(W)) ⊆ f−1(ωCl(W)) ⊆ f−1(V ). This
shows that f−1(V ) is ω-θ-open in X.

Theorem 3.22. Let f : X → Y and g : Y → Z be functions. Then, the following properties hold.

(1) If f is strongly θ-ω-continuous and g is continuous, then the composition g ◦f is strongly
θ-ω-continuous.

(2) If f isω-irresolute and g is strongly θ-ω-continuous, then the composition g◦f is strongly
θ-ω-continuous.

Proof. (1) This is obvious from Theorem 3.6.
(2) This follows immediately from Theorem 3.6 and Lemma 3.21.

Theorem 3.23 (see [3]). For any space X, the following are equivalent:

(1) X is Lindelöf;

(2) every ω-open cover of X has a countable subcover.
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Definition 3.24 (see [17]). A space X is said to be nearly Lindelöf if every regular open cover
of X has a countably subcover.

Proposition 3.25. Let f : X → Y be an almost ω-continuous surjection. If X is Lindelöf, then Y is
nearly Lindelöf.

Proof. Let {Vα : α ∈ Λ} be a regular open cover of Y. Since f is almostω-continuous, {f−1(Vα) :
α ∈ Λ} is an ω-open cover of X. Since X is Lindelöf, by Theorem 3.23 there exists a countable
subcover {f−1(Vαn) : n ∈ N} of X. Hence {Vαn : n ∈ N} is a countable subcover of Y .

Definition 3.26 (see [18]). A topological space X is said to be almost Lindelöf if for every
open cover {Uα : α ∈ Λ} of X there exists a countable subset {αn : n ∈ N} ⊆ Λ such that
X =

⋃
n∈N

Cl(Uαn).

Theorem 3.27. Let f : X → Y be an almost weakly ω-continuous surjection. If X is Lindelöf, then
Y is almost Lindelöf.

Proof. Let {Vα : α ∈ Λ} be an open cover of Y . Let x ∈ X and Vα(x) be an open set in Y such
that f(x) ∈ Vα(x). Since f is almost weakly ω-continuous, there exists an ω-open set Uα(x) of
X containing x such that f(Uα(x)) ⊆ Cl(Vα(x)). Now {Uα(x) : x ∈ X} is an ω-open cover of the
Lindelöf space X. So by Theorem 3.23, there exists a countable subset {Uα(xn) : n ∈ N} such
that X =

⋃
n∈N

(Uα(xn)). Thus Y = f(
⋃

n∈N
(Uα(xn))) ⊆ ⋃

n∈N
f(Uα(xn)) ⊆ ⋃

n∈N
Cl(Vα(xn)). This

shows that Y is almost Lindelöf.

We notice that a subspaceA of a space X is Lindelöf if and only if for every cover {Vα :
α ∈ Λ} of A by open set of X, there exists a countable subset Λ0 of Λ such that {Vα : α ∈ Λ0}
covers A.

Definition 3.28 (see [4]). A function f : X → Y is said to be ω-closed if the image of every
closed subset of X is ω-closed in Y .

Theorem 3.29. If f : X → Y is an ω-closed surjection such that f−1(y) is a Lindelöf subspace for
each y ∈ Y and Y is Lindelöf, then X is Lindelöf.

Proof. Let {Uα : α ∈ Λ} be an open cover of X. Since f−1(y) is a Lindelöf subspace for each
y ∈ Y , there exists a countable subset Λ(y) of Λ such that f−1(y) ⊆ ∪{Uα : α ∈ Λ(y)}. Let
U(y) = ∪{Uα : α ∈ Λ(y)} and V (y) = Y −f(X −U(y)). Since f is ω-closed, V (y) is an ω-open
set containing y such that f−1(V (y)) ⊆ U(y). Then {V (y) : y ∈ Y} is an ω-open cover of the
Lindelöf space Y . By Theorem 3.23, there exist countable points of Y , says, y1, y2, . . . , yn, . . .
such that Y =

⋃
n∈N V (yn). Therefore, we have X = f−1(

⋃
n∈N V (yn)) =

⋃
n∈N f−1(V (yn)) ⊆⋃

n∈N(U(yn)) =
⋃

n∈N(∪{Uα : α ∈ Λ(yn)}) = ∪{Uα : α ∈ Λ(yn), n ∈ N}. This shows that X is
Lindelöf.

Theorem 3.30 (see [3]). Let f be an ω-continuous function from a space X onto a space Y . If X is
Lindelöf, then Y is Lindelöf.

Corollary 3.31. Let f : X → Y be an ω-closed and ω-continuous surjection such that f−1(y) is a
Lindelöf subspace for each y ∈ Y . Then X is Lindelöf if and only if Y is Lindelöf.
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Proof. Let X be Lindelöf. It follows from Theorem 3.30 that Y is Lindelöf. The converse is an
immediate consequence of Theorem 3.29.
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