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The notion of maximal fuzzy open sets is introduced. Some basic properties and relationships
regarding this notion and other notions of I-topology are given. Moreover, some deep results
concerning the known minimal fuzzy open sets concept are given.

1. Introduction

In this paper, the unit interval [0, 1]will be denoted by I. LetX be a nonempty set. A member
of IX is called a fuzzy subset of X [1]. Throughout this paper, for A,B ∈ IX we write A ≤ B
if and only if A(x) ≤ B(x) for all x ∈ X. By A = B, we mean that A ≤ B and B ≤ A, that
is, A(x) = B(x) for all x ∈ X. Also we write A < B if and only if A ≤ B and A/=B. If
{Aj : j ∈ J} is a collection of fuzzy sets in X, then (

∨
Aj)(x) = sup{Aj(x) : j ∈ J}, x ∈ X,

and (
∧
Aj)(x) = inf{Aj(x) : j ∈ J}, x ∈ X. If r ∈ [0, 1], then rX denotes the fuzzy set given by

rX(x) = r for all x ∈ X. The complementAc of a fuzzy setA inX is given byAc(x) = 1−A(x),
x ∈ X. IfU ⊆ X, thenXU denotes the characteristic function of U.

In this paper, we will follow [2] for the definitions of I-topology, the product I-
topology, the direct and the inverse images of a fuzzy set under maps and their notations,
fuzzy continuity, and fuzzy openness. A fuzzy set p defined by

p(x) =

⎧
⎨

⎩

t ifx = xp,

0 ifx /=xp,
(1.1)
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where 0 < t ≤ 1, is called a fuzzy point inX, xp ∈ X is called the support of p and p(xp) = t the
value (level) of p [2]. Two fuzzy points p and q in X are said to be distinct if and only if their
supports are distinct, that is, xp /=xq.A ∈ IX is called a crisp subset ofX ifA is a characteristic
function of some ordinary subset of X [2]. A ∈ IX is called a fuzzy crisp point in X if it is a
characteristic function of singleton [2].

In this paper, we follow [3] for the definition of “belonging to”. Namely, a fuzzy point
p in X is said to belong to a fuzzy set A in X (notation: p ∈ A) if and only if p(xp) ≤ A(xp).

Let (X, τ) be a topological space and let U be a subset of X. U is called semiopen [4]
if U ⊆ Cl(Int(U)) and U is called preopen [5] if U ⊆ Int(Cl(U)). A nonempty open subset
U of X is called a minimal open set if the only nonempty open set which is contained in
U is U. min(X, τ) will denote the family of all minimal open sets in X. (X, τ) is said to be
homogeneous if for any two points x1, x2 ∈ X, there exists an autohomeomorphism on (X, τ)
takes x1 to x2. In 1997, Fora andAl-Bsoul [6] usedminimal open sets to characterize and count
finite homogeneous spaces. In 2001, Nakaoka and Nobuyuki [7] characterized minimal open
sets and proved that any subset of a minimal open set is pre-open. A non-empty pre-open
subset U of X is called a minimal pre-open set [8] if the only non-empty pre-open set which
is contained in U is U. The author in [8] characterized minimal pre-open sets as pre-open
singletons. A non-empty semi-open subsetU of X is called a minimal semi-open set [9] if the
only non-empty semi-open set which is contained in U is U. The authors in [9] proved that
the set of minimal open sets and the set of minimal semi-open sets in a space are equal. An
I-topological space (X, I) is said to be fuzzy homogeneous [10] if for any two points x1, x2 ∈
X, there exists a fuzzy autohomeomorphism on (X, I) takes x1 to x2. The authors in [11]
extended the concept of minimal open sets to include I-topological spaces as follows; a fuzzy
open setA of an I-topological space (X, I) is calledminimal fuzzy open set [11] ifA is nonzero
and there is no nonzero proper fuzzy open subset ofA. min(X, I)will denote the family of all
minimal fuzzy open sets inX. The authors in [11] obtained many results concerning minimal
fuzzy open sets, and they proved that homogeneity in I-topological spaces forces the shape
of minimal fuzzy open sets. Then the author in [12] generalized minimal fuzzy open sets by
two methods. A proper non-empty open subset U of a topological space (X, τ) is called a
maximal open set [13] if any open set which contains U is X or U. max(X, τ) will denote the
family of all maximal open sets in X. The authors in [13] obtained fundamental properties of
maximal open sets such as decomposition theorem for a maximal open set and established
basic properties of intersections of maximal open sets, such as the law of radical closure. By
a dual concepts of minimal open sets and maximal open sets, the authors in [14] introduced
the concepts of minimal closed sets and maximal closed sets and obtained results easily by
dualizing the known results regarding minimal open sets and maximal open sets. This paper
proposes mainly maximal fuzzy open sets in I-topological spaces. It also gives some deep
results concerning the known minimal fuzzy open sets concept.

Throughout this paper, for any set X, |X| will denote the cardinality of X. If A is a
fuzzy set in X, then the support ofA is denoted by S(A) and defined by S(λ) = λ−1(0, 1], and
the set {x ∈ X : A(x) = 1} will be denoted by 1(A).

2. Maximal Fuzzy Open Sets

Definition 2.1. Let (X, I) be an I-topological space. A nonzero fuzzy open subsetA ofX is said
to be maximal fuzzy open set if A/= 1X and for any fuzzy open set B in X with A ≤ B, B = A
or B = 1X .
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Throughout this paper, the set of all maximal fuzzy open subsets of the I-topological
space (X, I) will be denoted by max(X, I).

Theorem 2.2. Let (X, I) be an I-topological space andA ∈ max(X, I) with 1(A) = ∅. Then for every
B ∈ I − {1X} one has B ≤ A.

Proof. Suppose to the contrary that there existB ∈ I−{1X} and x◦ ∈ X such thatB(x◦) > A(x◦).
Since (A ∨ B)(x◦) = B(x◦)/=A(x◦) and A ∈ max(X, I), A ∨ B = 1X . Therefore, for each x ∈ X,
A(x) < 1 = B(x) and hence B = 1X , which is a contradiction.

Corollary 2.3. Let (X, I) be an I-topological space. If A ∈ max(X, I) with 1(A) = ∅, then
max(X, I) = {A}.

Corollary 2.4. Let (X, I) be an I-topological space. If |max(X, I)| > 1, then for every A ∈
max(X, I), 1(A)/= ∅.

Example 2.5. Let X = R and τ be the usual topology on R, then max(X, τ) = {R− {x} : x ∈ R}.
Let I = {XU : U ∈ τ}. then max(X, I) = {XU : U ∈ max(X, τ)} is uncountable. Therefore, the
condition “1(A) = ∅” in Corollary 2.3 cannot be dropped.

Proposition 2.6 (see [13]). Let (X, τ) be a topological space and let U ∈ max(X, τ), then Cl(U) =
X or Cl(U) = U.

The following example shows that the exact fuzzy version of Proposition 2.6 is not true
in general.

Example 2.7. Let X = {x1, x2, x3} and let A,B be fuzzy sets in X defined as follows:

A(x1) = 0.3, A(x2) = 0.3, A(x3) = 1,

B(x1) = 0.3, B(x2) = 0.3, B(x3) = 0.
(2.1)

Let I = {0X, 1X,A, B}, then max(X, I) = {A} and Cl(A) = {(x1, 0.7), (x2, 0.7), (x3, 1)}
but Cl(A) is neither A nor 1X .

The following lemma will be used in the following main result.

Lemma 2.8. Let (X, I) be an I-topological space and A ∈ max(X, I). If B ∈ I − {0X} such that
A ∧ B = 0X , then A = XS(A) and B = Ac.

Proof. Choose x◦ ∈ S(B). SinceA∧B = 0X ,A(x◦) = 0. Thus, (A∨B)(x◦) = B(x◦)/=A(x◦). Since
A ∈ max(X, I), A ∨ B = 1X . Since A ∧ B = 0X , it follows that A = XS(A) and B = Ac.

The following result is a partial fuzzy version of Proposition 2.6.

Theorem 2.9. Let (X, I) be an I-topological space. IfA = XS(A) ∈ max(X, I), then eitherCl(A) = A
or Cl(A) = 1X .

Proof. Suppose that Cl(A)/= 1X , then there exists x◦ ∈ X such that (Cl(A))(x◦) < 1. Let B =
(Cl(A))c, then B ∈ I, B /= 0X , and A ∧ B = 0X . Hence by Lemma 2.8, it follows that B = Ac.
Therefore, Cl(A) = A.



4 International Journal of Mathematics and Mathematical Sciences

Proposition 2.10 (see [13]). Let (X, τ) be a topological space. If U ∈ max(X, τ) and S is a non
empty subset of X −U, then Cl(S) = X −U.

The following result is the exact fuzzy version of Proposition 2.10.

Theorem 2.11. Let (X, I) be an I-topological space. If A ∈ max(X, I) and B is a non zero fuzzy set
in X with B ≤ Ac, then Cl(B) = Ac.

Proof. Suppose to the contrary that Cl(B)/=Ac. Since B ≤ Ac and Ac is a fuzzy closed set in
X, then Cl(B) ≤ Ac. Therefore, there exists x◦ ∈ X such that (Cl(B))(x◦) < Ac(x◦). Since
A(x◦) < (1X − Cl(B))(x◦) and A ∈ max(X, I), then A ∨ (1X − Cl(B)) = 1X . We are going to
show that Cl(B) = 0X . Let x ∈ X = 1(A) ∪ (X − 1(A)). If x ∈ 1(A), then Ac(x) = 0 and hence
(Cl(B))(x) ≤ Ac(x) = 0. If x ∈ (X − 1(A)), then A(x) < 1. Since A ∨ (1X − Cl(B)) = 1X , we get
(1X − Cl(B))(x) = 1 and hence (Cl(B))(x) = 0. Hence, we complete the proof that Cl(B) = 0X .
Therefore, B = 0X , which is a contradiction.

Recall that a fuzzy subset A of an I-topological space (X, I) is called fuzzy preopen if
A ≤ int(Cl(A)).

From now on the set PO(X, I) will denote the set of all fuzzy preopen subsets of the
I-topological space (X, I).

Corollary 2.12. Let (X, I) be an I-topological space and A ∈ max(X, I), then {B ∈ IX : B ≤
int(Ac)} ⊆ PO(X, I).

Proof. Let B ∈ IX such that B ≤ int(Ac). If B = 0X , then B ∈ PO(X, I). If B /= 0X , then by
Theorem 2.11, Cl(B) = Ac and hence B ≤ int(Ac) = int(Cl(B)), that is, B ∈ PO(X, I).

Corollary 2.13. Let (X, I) be an I-topological space andA ∈ max(X, I) withA is a clopen fuzzy set,
then {B ∈ IX : B ≤ Ac} ⊆ PO(X, I).

Proof. Let B ∈ IX such that B ≤ Ac. If B = 0X , then B ∈ PO(X, I). If B /= 0X , then by
Theorem 2.11, Cl(B) = Ac and hence B ≤ Ac = int(Ac) = int(Cl(B)), that is, B ∈ PO(X, I).

Proposition 2.14 (see [13]). Let (X, τ) be a topological space. If U ∈ max(X, τ) and M is a subset
of X withU � M, then Cl(M) = X.

Corollary 2.15. Let (X, τ) be a topological space. If U ∈ max(X, τ) and M is a closed subset of X
withU � M, thenM = X.

The following example shows that the exact fuzzy version of each of Proposition 2.14
and Corollary 2.15 is invalid in general.

Example 2.16. Let X be a non empty set with the I-topology I = {0X, 1X, (0.3)X}, then
max(X, I) = {(0.3)X} and (0.3)X < (0.4)X , but Cl((0.4)X) = (0.7)X . This shows that the exact
fuzzy version of Proposition 2.14 is invalid in general. On the other hand, since (0.7)X is a
fuzzy closed subset of (X, I) and 0X < (0.7)X < 1X , we get that the exact fuzzy version of
Corollary 2.15 is invalid in general.

The following result is a partial fuzzy version of Corollary 2.15.
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Theorem 2.17. Let (X, I) be an I-topological space and A ∈ max(X, I). If B is a fuzzy closed subset
of X with A < B, then for every x ∈ X with A(x) < B(x), one has B(x) > 0.5.

Proof. Suppose to the contrary that there exists a fuzzy closed subset B of X and x◦ ∈ X such
thatA(x◦) < B(x◦) and B(x◦) ≤ 0.5. Since B is a fuzzy closed subset of X, Bc ∈ I and so either
Bc ∨A = A or Bc ∨A = 1X . If Bc ∨A = A, then 1 − B(x◦) ≤ A(x◦) and so B(x◦) > 0.5 which is
a contradiction because B(x◦) ≤ 0.5. If Bc ∨A = 1X , then B(x◦) = 0 or A(x◦) = 1 which is also
a contradiction because A(x◦) < B(x◦).

For crisp maximal fuzzy sets, the exact fuzzy version of Corollary 2.15 is valid as the
following result shows.

Theorem 2.18. Let (X, I) be an I-topological space. If A = XS ∈ max(X, I) and B is a fuzzy closed
subset of X with A < B, then B = 1X .

Proof. Suppose to the contrary that there exists x◦ ∈ X such that B(x◦) < 1. Since A < B, then
x◦ ∈ X − S. Therefore, (Bc ∨A)(x◦) = Bc(x◦)/= 0 = A(x◦) and so Bc ∨A/=A. Hence, we must
have Bc ∨A = 1X . Choose x1 ∈ X such that A(x1) < B(x1). Then Bc(x1) = 1 and so B(x1) = 0,
but 0 = A(x1) < B(x1), which is a contradiction.

Corollary 2.19. Let (X, I) be an I-topological space. If A = XS ∈ max(X, I) and B is a fuzzy subset
of X with A < B, then Cl(B) = 1X .

Corollary 2.20. Let (X, I) be an I-topological space. If A = XS ∈ max(X, I) and B is a fuzzy subset
of X with A ≤ B, then B is a fuzzy preopen set.

Proof. If B = A, then B is fuzzy open and so it is a fuzzy preopen set. On the other hand, if
A < B, then by Corollary 2.19, it follows that B ≤ 1X = int(1X) = int(Cl(B)).

The following ordinary topological spaces result follows easily.

Proposition 2.21. Let (X, τ) be an ordinary topological space, then {U,Uc} ⊆ max(X, τ) for some
U ⊆ X if and only if τ = {∅, X,U,Uc}.

The exact fuzzy version of Proposition 2.21 is true as the following result shows.

Theorem 2.22. Let (X, I) be an I-topological space and let A ∈ IX with A/=Ac, then {A,Ac} ⊆
max(X, I) if and only if A = XS(A) and I = {0X, 1X,A,Ac}.

Proof. =⇒) Suppose that {A,Ac} ⊆ max(X, I). Choose x◦ ∈ X such that A(x◦)/=Ac(x◦). Then
(A ∨Ac)(x◦)/=A(x◦) or (A ∨Ac)(x◦)/=Ac(x◦). Since {A,Ac} ⊆ max(X, I), then A ∨Ac = 1X .
Thus for every x ∈ X with A(x) < 1, we must have Ac(x) = 1 and so A(x) = 0. Therefore,
A = XS(A). Let B ∈ I − {0X}. If B ≤ A, then Ac ∧ B = 0X and, by Lemma 2.8, B = (Ac)c = A.
If B � A, then A ∨ B = 1X and so B = Ac.

⇐=) Clear.

3. Images and Products of Maximal Sets

From now on πx and πy will denote the projections onX and Y , respectively, τprod will denote
the product topology of τ1 and τ2, and Iprod will denote the product I-topology of I1 and I2.
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We start by the following result.

Proposition 3.1. Let (X, τ1) and (Y, τ2) be two ordinary topological spaces. If f : (X, τ1) −→ (Y, τ2)
is continuous, open, and surjective, then for every U ∈ max(X, τ1) with f(U)/=Y one has f(U) ∈
max(Y, τ2).

Proof. Suppose that H ∈ τ2 with f(U) ⊆ H ⊂ Y . Then f−1(H) ∈ τ1 with U ⊆ f−1(H). Since
U ∈ max(X, τ1), then f−1(H) = U or f−1(H) = X. If f−1(H) = X, then f(f−1(H)) = f(X) = Y.
Thus f−1(H) = U and soH = f(f−1(H)) = f(U).

The following result is the exact fuzzy version of Proposition 3.1.

Theorem 3.2. Let (X, I1) and (Y, I2) be two I-topological spaces and let f :(X, I1) → (Y, I2) be
fuzzy continuous, fuzzy open, and surjective function. If A ∈ max(X, I1), then either f(A) = 1Y or
f(A) ∈ max(Y, I2).

Proof. Suppose that f(A)/= 1Y . It is sufficient to show that f(A) ∈ max(Y, I2). Since f is fuzzy
open and A is a fuzzy open set, then f(A) is a fuzzy open set. Since A/= 0X , there exists
x◦ ∈ X such that A(x◦) > 0 and so (f(A))(f(x◦)) = sup{A(x) : f(x) = f (x◦)} ≥ A(x◦) >
0, hence f(A)/= 0Y . Suppose that B ∈ I2 such that f(A) < B. We are going to show B = 1Y
which completes the proof. Choose y◦ ∈ Y such that (f(A))(y◦) < B(y◦). Since f is onto,
there exists x1 ∈ X such that f(x1) = y◦. Thus, A(x1) ≤ (f(A))(y◦) < B(y◦). Since f is fuzzy
continuous, f−1(B) ∈ I1. Thus, we have f−1(B)∨A ∈ I1,A ≤ f−1(B)∨A, and (f−1(B)∨A)(x1) =
max{A(x1), B(y◦)} = B(y◦) > A(x1). Since A ∈ max(X, I1), then f−1(B) ∨A = 1X . To see that
B = 1Y , let y ∈ Y and choose x ∈ X such that f(x) = y, then 1 = max{A(x), B(y)} ≤
max{f(A)(y), B(y)} = B(y) and so B(y) = 1.

Corollary 3.3. Let (X, I1) and (Y, I2) be two I-topological spaces and let f : (X, I1) → (Y, I2) be a
fuzzy homeomorphism. If A ∈ max(X, I1), then f(A) ∈ max(Y, I2).

Proof. Let A ∈ max(X, I1). According to Theorem 3.2, it is sufficient to see that f(A)/= 1Y .
Since A ∈ max(X, I1), there exists x◦ ∈ X such that A(x◦) < 1. Thus, f(A)(f(x◦)) = A(x◦) <
1.

Proposition 3.4. Let (X, τ1) and (Y, τ2) be two ordinary topological spaces. If U ∈ max(X, τ1) and
V ∈ max(Y, τ2), thenU × V /∈ max(X × Y, τprod).

Proof. Follows because U × Y ∈ τprod, but U × V ⊂ U × Y ⊂ X × Y .

Proposition 3.5. Let (X, τ1) and (Y, τ2) be two ordinary topological spaces and let G ∈ max(X ×
Y, τprod) such that πx(G)×πy(G)/=X×Y , then there existsU ∈ max(X, τ1) or V ∈ max(Y, τ2) such
that G = U × Y or G = X × V .

Proof. Since G ⊆ πx(G) × πy(G), πx(G) × πy(G) ∈ τprod, πx(G) × πy(G)/=X × Y , and
G ∈ max(X × Y, τprod), it follows that G = πx(G) × πy(G). If πx(G)/=X and πy(G)/=Y ,
then by Proposition 3.1, πx(G) ∈ max(X, τ1) and πy(G) ∈ max(Y, τ2), which is impossible
by Proposition 3.4. Therefore, either πx(G) = X or πy(G) = Y . Hence, there exists U ∈
max(X, τ1) or V ∈ max(Y, τ2) such that G = U × Y or G = X × V .
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The following example shows that the condition “πx(G) × πy(G)/=X × Y” in
Proposition 3.5 cannot be dropped.

Example 3.6. LetX = R with the usual topology τu and letG = R
2−{(0, 0)}, thenG ∈ max(X×

X, τprod), πx(G) × πy(G) = X × X, and there is no U ∈ max(X, τu) such that G = U × X or
G = X ×U.

The following is the main result of this section.

Theorem 3.7. Let (X, I1) and (Y, I2) be two I-topological spaces. If A ∈ max(X, I1) and B ∈
max(Y, I2), then A × B ∈ max(X × Y, Iprod) if and only if there exists 0 < c < 1 such that A = cX
and B = cY .

Proof. Suppose thatA×B ∈ max(X×X, Iprod). SinceA×1Y , 1X×B ∈ Iprod,A×B ≤ A×1Y < 1X×Y ,
A × B ≤ 1X × B < 1X×Y , then A × B = A × 1Y and A × B = 1X × B. Therefore, for every x ∈ X
and y ∈ Y , min{A(x), B(y)} = min{A(x), 1} = min{1, B(y)} and hence A(x) = B(y). Thus,
there exists 0 < c < 1 such that A = cX and B = cY . Conversely, suppose for some 0 < c < 1
thatA = cX and B = cY . LetM ∈ Iprod −{1X×Y} such that cX ×cY = cX×Y ≤ M. Choose families
{Aα : α ∈ Λ} ⊆ I1 and {Bα : α ∈ Λ} ⊆ I2 such that M =

∨{Aα × Bα : α ∈ Λ}. Since M/= 1X×Y ,
then for every α ∈ Λ, Aα /= 1X or Bα /= 1Y . We are going to show that Aα × Bα ≤ cX×Y for every
α ∈ Λ. Let α ∈ Λ.

Case 1. Aα /= 1X and Bα /= 1Y , then Aα ≤ cX and Bα ≤ cY and hence Aα × Bα ≤ cX×Y .

Case 2. Aα /= 1X and Bα = 1Y , then for every (x, y) ∈ X × Y , (Aα × Bα)(x, y) = min{Aα(x), 1} =
Aα(x) ≤ cX(x) = cX×Y (x, y). Hence, Aα × Bα ≤ cX×Y .

Case 3. Aα = 1X and Bα /= 1Y . Similar to Case 2, we get Aα × Bα ≤ cX×Y .

Therefore, we get thatM =
∨{Aα ×Bα : α ∈ Λ} ≤ cX×Y and henceM = cX×Y . This ends

the proof of this direction.

4. Maximal Sets and Tc Property

We start this section by the following nice characterization of T1 ordinary topological spaces.

Proposition 4.1. Let (X, τ) be an ordinary topological space with |X| > 1, then (X, τ) is T1 if and
only ifmax(X, τ) = {X − {x} : x ∈ X}.

Proof. It is straightforward.

Corollary 4.2. If (X, τ) is a T1 ordinary topological space with |X| > 1, thenmax(X, τ) covers X.

Definition 4.3 (see [15]). An I-topological space (X, I) is said to be Tc if every fuzzy crisp point
in X is fuzzy closed.

Definition 4.4. Let (X, I) be an I-topological space and let x ∈ X. Denote the fuzzy set

∨
{A ∈ I : A(x) < 1} (4.1)
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by x(I).

Proposition 4.5. Let (X, I) be a Tc I-topological space and x ∈ X, then for every y ∈ X −
{x}, (x(I))(y) = 1.

Proof. Since (X, I) is Tc, thenXX−{x} ∈ I with (XX−{x})(x) = 0 < 1. Thus, for every y ∈ X−{x},
it follows that 1 = (XX−{x})(y) ≤ (x(I))(y) ≤ 1 and hence (x(I))(y) = 1.

Theorem 4.6. Let (X, I) be a Tc I-topological space and x ∈ X, then

max(X, I) = {x(I) : x ∈ X, (x(I))(x) < 1}. (4.2)

Proof. Let B ∈ max(X, I). Choose x ∈ X such that B(x) < 1. If (x(I))(x) = 1, then there exists
A ∈ I such that B(x) < A(x) < 1 and hence we have B ∨ A ∈ I with B < B ∨ A < 1X which
is impossible. Since B ∨ x(I) ∈ I and (B ∨ x(I))(x) < 1, then B ∨ x(I) = B. Thus, x(I) ≤ B.
On the other hand, by the definition of x(I) and that B(x) < 1, we have B ≤ x(I). Therefore,
B = x(I).

Conversely, let x ∈ X such that (x(I))(x) < 1 andM ∈ I−{1X} such that x(I) ≤ M. By
Proposition 4.5, it follows thatM(y) = 1 for every y ∈ X − {x}. SinceM ∈ I − {1X}, it follows
that M(x) < 1, and by the definition of x(I), we must have M ≤ x(I). Therefore, M = x(I)
and hence x(I) ∈ max(X, I).

Corollary 4.7. Let (X, I) be a Tc I-topological space, then the following are equivalent:

(a) max(X, I) = ∅,
(b) (x(I))(x) = 1 for every x ∈ X,

(c) x(I) = 1X for every x ∈ X.

Corollary 4.8. For every non empty set X and for the discrete I-topology Idisc on X, max(X, Idisc) =
∅.

Corollary 4.8 shows that Corollary 4.2 is invalid in I-topological spaces.

5. Maximal Sets and Homogeneity

We start this section by the following ordinary topological spaces result.

Proposition 5.1. If (X, τ) is a homogeneous ordinary topological space which contains a maximal
open set, thenmax(X, τ) covers X.

Proof. Let x ∈ X. ChooseM ∈ max(X, τ) and y ∈ M. Since (X, τ) is homogeneous, then there
exists a homeomorphism h : (X, τ) −→ (X, τ) such that h(y) = x. By Proposition 3.1, it follows
that h(M) ∈ max(X, τ). Since x = h(y) ∈ h(M), the proof is ended.

The following example shows that the condition “homogeneous” in Proposition 5.1
cannot be dropped.

Example 5.2. Let X = R and τ = {∅, X,Q}, then max(X, τ) = {Q} and so max(X, τ) does not
cover X.
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Theorem 5.3. Let (X, I) be a fuzzy homogeneous topological space. If A ∈ max(X, I) such that
1(A) = ∅, then A is a constant fuzzy set.

Proof. Suppose to the contrary that there exists x1, x2 ∈ X such that A(x1) < A(x2). Since
(X, I) is fuzzy homogeneous, there exists a fuzzy homeomorphism f : (X, I) −→ (X, I) such
that f(x1) = x2. Note that (A ∨ f−1(A))(x1) = max{A(x1), A(x2)} = A(x2) < 1. Then A ∨
f−1(A) ∈ I and A < A ∨ f−1(A) < 1X , which contradicts the fuzzy maximality of A.

The following example shows that the condition “fuzzy homogeneous” in Theorem 5.3
cannot be dropped.

Example 5.4. Let X = {2, 3} with the I-topology I = {0X, 1X,A} where A(2) = 0.3 and A(3) =
0.5, then max(X, I) = {A} and 1(A) = ∅while A is not constant.

The following example shows that the condition “1(A) = ∅” in Theorem 5.3 cannot be
dropped.

Example 5.5. Let X = {2, 3} with the I-topology I = {0X, 1X,A, B} where A(2) = 0, A(3) = 1,
B(2) = 1, and B(3) = 0, then (X, I) is fuzzy homogeneous and A ∈ max(X, I) while A is not
constant.

Theorem 5.3 shows that Proposition 5.1 is invalid in I-topological spaces in general.
However, the following main result is a partial fuzzy version of Theorem 5.3.

Theorem 5.6. Let (X, I) be a homogeneous I-topological space which consists a maximal fuzzy set,
then

∨{B : B ∈ max(X, I)} = 1X if and only if there exists A ∈ max(X, I) such that 1(A)/= ∅.

Proof. =⇒) Suppose that
∨{B : B ∈ max(X, I)} = 1X and suppose to the contrary that 1(B) = ∅

for all B ∈ max(X, I). Choose A ∈ max(X, I). Then by Corollary 2.3, max(X, I) = {A}.
Applying Theorem 5.3, it follows that A is a constant fuzzy set and hence

∨{B : B ∈
max(X, I)} = A/= 1X , which is a contradiction.

⇐=) Suppose A ∈ max(X, I) such that 1(A)/= ∅. Choose x◦ ∈ X such that A(x◦) = 1.
To see that

∨{B : B ∈ max(X, I)} = 1X , let x ∈ X such that x /=x◦. Choose a fuzzy
homeomorphism f : (X, I) −→ (X, I) such that f(x◦) = x. By Corollary 3.3, it follows that
f(A) ∈ max(X, I). Thus, (

∨{B : B ∈ max(X, I)})(x) ≥ f(A)(x) = A(x◦) = 1 and hence

(∨
{B : B ∈ max(X, I)}

)
(x) = 1. (5.1)

6. Minimal Fuzzy Open Sets

Definition 6.1. Let (X, I) be an I-topological space. For each x ∈ X, we call the fuzzy set
∧{A ∈ I : x ∈ S(A)} the lower fuzzy set at x, and we denote it by Ax.

The following is an example of a zero lower fuzzy set.

Example 6.2. Let X be any non empty set together with any I-topology I such that {cx : 0 ≤
c ≤ 1} ⊆ I, then for every x ∈ X, Ax = 0X .
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The following lemma will be used in the next main result.

Lemma 6.3. Let (X, I) be an I-topological space and let A ∈ min(X, I). If x ∈ S(A), then for every
B ∈ I with x ∈ S(B), one has A ≤ B.

Proof. Since x ∈ S(A) ∩ S(B), 0X /=A ∧ B ≤ A. Since A ∈ min(X, I), then A ∧ B = A and hence
A ≤ B.

Theorem 6.4. Let (X, I) be an I-topological space and let A ∈ min(X, I), then for every x ∈ S(A),
A = Ax.

Proof. Let x ∈ S(A). Then by Lemma 6.3, it follows thatA ≤ B for all B ∈ I with x ∈ S(B) and
hence A ≤ ∧{B ∈ I : x ∈ S(B)} = Ax. On the other hand, since A ∈ I with x ∈ S(A), then
Ax ≤ A.

Corollary 6.5. Let (X, I) be an I-topological space. If A ∈ min(X, I), then A is a lower fuzzy set in
(X, I).

The following is an example of a non zero lower fuzzy set in an I-topological space
that is not a minimal fuzzy set.

Example 6.6. Let X = R with the I-topology I = {XU : U ∈ τu}, then A0 ≤ X(−1/n,1/n) for each
n ∈ N and so A0 ≤ ∧{X(−1/n,1/n) : n ∈ N} = X{0}. On the other hand, A0(0) = inf{A(0) : A ∈
I and 0 ∈ S(A)} = 1. Therefore, A0 = X{0} /∈ min(X, I).

In ordinary topological spaces, we have the following result.

Proposition 6.7 (see [7]). Let (X, τ) be a topological space. IfU ∈ min(X, τ), then every set V ⊆ U
is preopen.

The following example shows that the exact fuzzy version of Proposition 6.7 is invalid
in general.

Example 6.8. Let X be any nonempty set together with the I-topology I =
{0X, 1X, (0.4)X, (0.7)X}, then (0.4)X ∈ min(X, I), (0.2)X ≤ (0.4)X , but int(Cl((0.2)X)) =
int((0.3)X) = 0X , that is, (0.2)X is not a fuzzy preopen set.

Theorem 6.9. Let (X, I) be an I-topological space and A ∈ min(X, I) with A(x◦) > 0.5 for some
x◦ ∈ X, then for every fuzzy set B with S(B) ⊆ S(A) and B(x◦) ≥ 0.5 one has (Cl(B))(x) = 1 for all
x ∈ S(B).

Proof. Suppose to the contrary that there exists a fuzzy set B such that S(B) ⊆ S(A) and
B(x◦) ≥ 0.5 with Cl(B)(x1) < 1 for some x1 ∈ S(B), since S(B) ⊆ S(A), A(x1) > 0. Thus,
(A ∧ (Cl(B))c)(x1) = min{A(x1), 1 − (Cl(B))(x1)} > 0 and hence A ∧ (Cl(B))c = A. Therefore,
A ≤ (Cl(B))c and so A(x◦) + (Cl(B))(x◦) ≤ 1, but A(x◦) + (Cl(B))(x◦) > 0.5 + 0.5 = 1, which is
a contradiction.

Corollary 6.10. Let (X, I) be an I-topological space and A ∈ min(X, I) with A(x◦) > 0.5 for some
x◦ ∈ X, then for every B ∈ IX with S(B) = S(A) and B(x◦) ≥ 0.5, one has A ≤ Cl(B).
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Proof. Let B ∈ IX with S(B) = S(A) and B(x◦) ≥ 0.5 and let x ∈ X. If x ∈ S(B), then by
Theorem 6.9, (Cl(B))(x) = 1 and so A(x) ≤ (Cl(B))(x). If x /∈S(B), then x /∈S(A) and so
0 = A(x) ≤ (Cl(B))(x).

The following corollary is a partial fuzzy version of Proposition 6.7.

Corollary 6.11. Let (X, I) be an I-topological space and A ∈ min(X, I) with A(x◦) > 0.5 for some
x◦ ∈ X, then for every B ∈ IX such that B(x◦) ≥ 0.5, B ≤ A, and S(B) = S(A), B is a fuzzy preopen
set.

Proof. Let B ∈ IX with B(x◦) ≥ 0.5, B ≤ A, and S(B) = S(A), then by Corollary 6.10,A ≤ Cl(B)
and so B ≤ A ≤ int(Cl(B)).
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