
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2010, Article ID 187232, 7 pages
doi:10.1155/2010/187232

Research Article
Heterogeneous Riemannian Manifolds

James J. Hebda

Department of Mathematics, Saint Louis University, St. Louis, MO 63103, USA

Correspondence should be addressed to James J. Hebda, hebdajj@slu.edu

Received 6 July 2009; Accepted 23 March 2010

Academic Editor: Wolfgang Kuehnel

Copyright q 2010 James J. Hebda. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We solve Ambrose’s Problem for a generic class of Riemannian metrics on a smooth manifold,
namely, the class of heterogeneous metrics.

1. Introduction

We define a Riemannian metric g on a manifold M to be heterogeneous if no two distinct
points of M have isometric neighborhoods. Intuitively, a heterogeneous metric is as far as
possible from being homogeneous. Heterogeneity can be reformulated in terms of a multijet
transversality condition so that by an application of the standard transversality theorems, the
genericity of heterogeneous metrics is established.

Theorem 1.1. The set of heterogeneous metrics on a smooth manifold M of dimension n ≥ 2 is
residual in the space of Riemannian metrics onM with the strong C∞ topology.

A version of Theorem 1.1 for compact manifolds was stated and proved by Sunada [1,
Proposition 1].

Ambrose [2] asked whether or not a complete simply connected Riemannian manifold
is determined up to isometry by the behavior of curvature under parallel transport along
geodesics emanating from a point. For heterogeneous metrics the answer is always yes.

Proposition 1.2. If (M,g) is a complete, connected, simply connected, heterogeneous Riemannian
manifold of dimension n ≥ 2, then, for every p ∈ M, (M,g) is determined up to isometry by the
behavior of curvature under parallel transport along geodesics emanating from p.

Proposition 1.2 combines with Theorem 1.1 to produce a generic dense family of
metrics on a manifold which answers Ambrose’s Problem in the affirmative.
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Theorem 1.3. The set of complete metrics on a connected, simply connected smooth manifold M
of dimension n ≥ 2 which, for every point p in M, are determined up to isometry by the behavior
of curvature under parallel transport along geodesics emanating from p, is residual in the space of
complete Riemannian metrics on M with the strong C∞ topology.

Although Ambrose’s Problem has been completely settled in dimension 2 [3, 4],
Theorem 1.3 does give a significant advance on the problem in higher dimensions, since
earlier partial results in [5, 6] apply only to metrics with rather special properties.

2. Ambrose’s Problem and Heterogeneity

Let us recall what it means for a complete, connected, simply connected, n-dimensional
Riemannian manifold (M,g) to be determined up to isometry by the behavior of curvature
under parallel transport along geodesics emanating from a point p in M. Let (M,g) be
another complete, connected, simply connected, n-dimensional Riemannian manifold. Let
p ∈ M, and let I : TpM → TpM be a linear isometry between the tangent spaces. For each
geodesic γ : [0, 1] → M satisfying γ(0) = p, there is a corresponding geodesic γ : [0, 1] → M
satisfying γ(0) = p characterized by the initial condition γ ′(0) = I(γ ′(0)). Given such a
geodesic γ , Iγ = Pγ ◦ I ◦ P−1

γ defines a linear isometry from Tγ(1)M onto Tγ(1)M where Pγ

and Pγ denote parallel transport along γ and γ , respectively. Consider the hypothesis

Iγ(R(X,Y )Z) = R
(
Iγ(X), Iγ(Y )

)
Iγ(Z) (∗)

for every such geodesic γ and for all vectors X,Y,Z ∈ Tγ(1)M, where R and R are the
respective Riemann curvature tensors. Then (M,g) is determined up to isometry by the
behavior of curvature under parallel transport along geodesics emanating from p if the
hypothesis (∗) implies that there exists an isometry Φ : M → M with Φ(p) = p and dΦ = I
at p (cf., [2, 5, 6]).

In order to prove Proposition 1.2, suppose that (M,g) is heterogeneous, and assume
the hypothesis (∗). We will first find an isometry Φ : M → M with Φ(p) = p and dΦ = I−1 at

p. Thus we obtain the desired isometry Φ by setting Φ = Φ
−1
.

To prove the existence of Φ, let q in M be any nonconjugate cut point to p of order
two, and let γ1 and γ2 be the two minimizing geodesics joining p to q, whose respective initial
tangent vectors are X1 = γ ′1(0) and X2 = γ ′2(0). Thus expp(X1) = expp(X2) = q. Since q is

not conjugate to p along γ1 or γ2, there are neighborhoods V1 of X1 and V2 of X2 in TpM for
which expp carries both V1 and V2 diffeomorphically onto the same neighborhood W of q.

As noted in [6, page 561], for i ∈ {1, 2}, the map fi = expp ◦ I−1 ◦ (expp | Vi)
−1 : W → M

is an isometry (after possibly cutting down W) onto a neighborhood Ui of γi(1). It follows

that γ1(1) = γ2(1), because otherwise f2 ◦ f
−1
1 : U1 → U2 would be an isometry between

neighborhoods of two distinct points of M, contradicting the assumed heterogeneity of M.
This verifies the hypothesis of Lemma 2.1 in [6], with the roles of M and M interchanged.
Hence there exists an isometric immersionΦ : M → MwithΦ(p) = p and dΦ = I−1. Actually
Φ is an isometry because (1) an isometric immersion between two complete Riemannian
manifolds of the same dimension is a covering map by Theorem IV.4.6 in [7, page 176], and
(2) a smooth covering map between two simply connected manifolds is a diffeomorphism.

This completes the proof of Proposition 1.2.
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3. Heterogeneity and Transversality

Let us say that two k-jets, Jkp g and Jkq h, of germs of Riemannian metrics g and h at points
p and q in M are equivalent if there is a germ of a diffeomorphism f with f(p) = q such
that Jkp (f

∗(h)) = Jkp g. We then define a Riemannian metric g on M to be heterogeneous
of order k if the k-jets of g at any two distinct points of M are not equivalent. Obviously,
being heterogeneous of order k for some k ≥ 2 is a stronger condition than being simply
heterogeneous. Let us proceed to explain how to express heterogeneity of order k in terms of
transversality when k is sufficiently large.

Let π : X → M denote the the bundle of positive definite symmetric covariant 2-
tensors over M. Thus sections of X are just Riemannian metrics on M. Let πk : Xk → M
denote the bundle of k-jets of Riemannian metrics on M. Following [8, 9], let 2π

k : 2X
k →

2M denote the bundle of multijets of Riemannian metrics of order k and multiplicity 2. Thus

2X
k =

{(
Jkp g, J

k
q h

)
∈ Xk ×Xk : p /= q

}
, 2M =

{(
p, q

) ∈ M ×M : p /= q
}
, (3.1)

and 2π
k(Jkp g, J

k
q h) = (πk(Jkp g), π

k(Jkq h)) = (p, q). Given a Riemannian metric g, the multijet
extension

2J
kg : 2M −→ 2X

r (3.2)

is defined by the formula 2J
kg(p, q) = (Jkp g, J

k
q g) for (p, q) ∈ 2M.

Since 2X
k is just the set of ordered pairs of k-jets of Riemannian metrics over distinct

points of M, the equivalence relation on k-jets of Riemannian metrics on M defines a subset
S ⊂ 2X

k consisting of pairs of equivalent k-jets. Obviously, g is heterogeneous of order k if
and only if the image of its multijet extension 2J

kg(2M) misses the set S. In the next section
we investigate the structure of the set S and prove the following proposition.

Proposition 3.1. Let n be the dimension ofM. Then the set S is a union of finitely many submanifolds
of codimension at least

(
n+1

2

)(
n+k

k

)
−n

(
n+k+1

k+1

)
+n. In particular codim(S) > 2n in any of the three

cases (i) n = 2 and k ≥ 4, (ii) n = 3 and k ≥ 3, or (iii) n ≥ 4 and k ≥ 2.

As a corollary we obtain the following stronger version of Theorem 1.1.

Theorem 3.2. The set of Riemannian metrics on a manifold M of dimension n, which are
heterogeneous of order k, is residual in the space of Riemannian metrics on M with the strong C∞

topology as long any one of the three cases listed in Proposition 3.1 for which codim(S) > 2n holds.

Proof. Since S is a union of submanifolds, application of the multijet transversality theorem
(Corollary 3.4 [8] or [9, page 739]), shows that the set of g for which 2J

kg is transverse to
S forms a residual set in the space of Riemannian metrics with the strong C∞ topology. But
because dim( 2M) = 2n and codim(S) > 2n, it follows that 2J

kg is transverse to S if and only
if its image misses S, that is, if and only g is heterogeneous of order k.

This completes the proof of Theorem 3.2. Theorem 1.1 is an immediate consequence.
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4. The Structure of S

Consider the collectionMk(n) of k-jets of Riemannian metrics on Rn at 0 and the so-called jet
group Gk+1(n), consisting of the (k+1)-jets of diffeomorphisms f : Rn → Rn satisfying f(0) =
0 ([12, page 128]). The jet group acts uponMk(n) on the left by the formula f ·g = Jk0 ((f

−1)∗g)
for f ∈ Gk+1(n) and g ∈ Mk(n). For any subgroupH of Gk+1(n), letMk

[H](n) denote the set of
points on orbits of type Gk+1(n)/H, that is,

Mk
[H](n) =

{
g ∈ Mk(n) : The isotropy group of g is conjugate to H

}
. (4.1)

Finally, let Mk

[H](n) denote the orbit space Gk+1(n) \ Mk
[H](n), and let Q denote the quotient

projection Q : Mk
[H](n) → Mk

[H](n).

Proposition 4.1. Mk
[H](n) and Mk

[H](n) are smooth manifolds, and Q is a smooth fibration with
fibers Gk+1(n)/H. Moreover, there are only finitely many distinct orbit types, and these finitely many
submanifolds Mk

[H](n) stratifyMk(n).

Proof. If Gk+1(n) was compact, this proposition would follow from Theorem IV.3.3 in [10,
page 182]. Although Gk+1(n) is not compact, its action on Mk(n) reduces to a compatible
action of the orthogonal group O(n), which canonically includes as a subgroup of Gk+1(n),
on the subset Nk(n) of Mk(n). Here Nk(n) denotes the set of k-jets of Riemannian metrics
Rn at 0 for which the standard coordinates on Rn form a normal coordinate system. These are
the jets that satisfy the conditions (2.5.1-3) in [11] for 1 ≤ r ≤ k. If one carries out the proof
of Theorem 2.6 in [11] for k-jets, rather than for∞-jets, one concludes that each Gk+1(n) orbit
in Mk(n) meets Nk(n) in an O(n) orbit. Thus the inclusion of the orbit space O(n) \ Nk(n)
into Gk+1(n) \ Mk(n) is a one-to-one correspondence. This also implies that every isotropy
subgroup for the Gk+1(n) action is conjugate to an isotropy subgroup of theO(n) action. Thus
there is a one-to-one correspondence between the orbit types of the two actions. In addition,
we see that the isotropy subgroups of the Gk+1(n) action are compact. It also follows that
every slice for the O(n) action on Nk

n is a slice for the Gk+1(n) action on Mk(n) which proves
that slices exist for the latter action. Because of these observations, the conclusions of Theorem
IV.3.3 in [10] which apply to the action of O(n) on Nk(n) also apply to the action of Gk+1(n)
on Mk(n). That there are only finitely many of orbit types follows in the same way from the
well-known finiteness of orbit types for orthogonal actions [10, page 112]. This completes the
proof of Proposition 4.1.

Let Pk+1(M) denote the principal Gk+1(n) bundle of the (k + 1)th order frames on the
n-dimensional manifold M [12, page 122]. Clearly, the bundle Xk of k-jets of Riemannian
metrics onM is the associated bundle Pk+1(M)×Gk+1(n)Mk(n). Since the stratification by orbit
types of Mk(n) is invariant under Gk+1(n), it induces a stratification of Xk where the typical
stratum takes the form of the associated bundle

Xk
[H] = Pk+1(M)×Gk+1(n)Mk

[H](n). (4.2)

Moreover, the quotient map Q induces a smooth submersion Xk
[H] → Mk

[H](n).
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Because S ⊂ Xk ×Xk, we may set

S[H] = S ∩
(
Xk

[H] ×Xk
[H]

)
. (4.3)

Since two equivalent jets automatically have the same orbit type, we have

S =
⋃

[H]

S[H]. (4.4)

Clearly, S[H] is just the inverse image of the diagonal inMk

[H](n)×M
k

[H](n) under the product

submersion Xk
[H] × Xk

[H] → Mk

[H](n) × Mk

[H](n) induced by Q. Therefore, S[H] is a smooth
submanifold of Xk

[H] ×Xk
[H] whose codimension satisfies

codim
(
S[H] ⊂ Xk

[H] ×Xk
[H]

)
= dim

(
Mk

[H](n)
)
. (4.5)

We may now compute the codimension of S[H] in 2X
k:

codim
(
S[H]

)
= codim

(
S[H] ⊂ Xk ×Xk

)

= codim
(
S[H] ⊂ Xk

[H] ×Xk
[H]

)
+ 2codim

(
Xk

[H] ⊂ Xk
)

= dim
(
Mk

[H](n)
)
+ 2 codim

(
Mk

[H](n) ⊂ Mk(n)
)

= dim
(
Mk

[H](n)
)
− dim

(
Gk+1(n)/H

)

+ 2
(
dim

(
Mk(n)

)
− dim

(
Mk

[H](n)
))

= dim
(
Mk(n)

)
− dim

(
Gk+1(n)

)
+ dim(H)

+
(
dim

(
Mk(n)

)
− dim

(
Mk

[H](n)
))

≥ dim
(
Mk(n)

)
− dim

(
Gk+1(n)

)

=

(
n + 1

2

)(
n + k

k

)

−
(

n

(
n + k + 1

k + 1

)

− n

)

.

(4.6)

In view of Proposition 4.1, this completes the proof of first statement in Proposition 3.1. The
second statement of Proposition 3.1 follows directly from the first.
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5. The Space of Complete Metrics

Since every Riemannian metric on a compact manifold is complete, Theorem 1.3 is an
immediate consequence of Theorem 1.1 and Proposition 1.2 when M is compact. If M is
not compact, the space of complete metrics on M is a proper subspace of the space of all
Riemannian metrics on M. Thus to prove Theorem 1.3 in general, we need to show that the
subspace of complete metrics inherits the property of being a Baire space from the space of
all metrics, and that an open dense subset of the space of all metrics intersects the subspace
of complete metrics in an open dense subset of the subspace. Both of these statements are
immediate consequences of the next proposition.

Proposition 5.1. The set of all complete Riemannian metrics on a given smooth manifold M is both
open and closed in the space of Riemannian metrics on M with the strong C∞ topology.

Proof. Fix a Riemannian metric g0 onM. It suffices to show that there is a neighborhood U of
g0 in the strong C∞ topology consisting either entirely of complete metrics if g0 is complete
or entirely of incomplete metrics if g0 is incomplete.

To this end, let U be the set of all Riemannian metrics g such that

1
2
g0(X,X) < g(X,X) < 2g0(X,X) (5.1)

for all X /= 0 in TM. Obviously, U is an open neighborhood of g0 in the strong C∞ topology.
Clearly, if g ∈ U, and if dist and dist0 are the associated distance functions corresponding to
g and g0, respectively, then we have

1
2
dist0

(
p, q

) ≤ dist
(
p, q

) ≤ 2dist0
(
p, q

)
(5.2)

for all p and q in M. It follows that dist and dist0 have the same Cauchy sequences and the
same convergent sequences with the same limits. Thus g and g0 are either both complete or
both incomplete. This finishes the proof of Proposition 5.1.
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