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A very new theorem on the degree of approximation of the generating function by (E, 1) means of
its Fourier-Laguerre series at the frontier point x = 0 is obtained.

1. Introduction

Let >.7 u, be an infinite series with the sequence of its nth partial sums {s,}.
If

1 n
D, "CkSnk —s asn— o, (1.1)
k=0
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nzz_n

then we say that {s,} is summable by (E, 1) means (see the study by Hardy [1]), and it is
written as s, — s (E, 1), where {s,} is the sequence of nth partial sums of the series >, u,.
The Fourier-Laguerre expansion of a function f(x) € L(0, o) is given by

flx) ~ i a, L\ (x), (1.2)
n=0
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where
o= {raen (") ) e reLe (ay (13)

and L{” (x) denotes the nth Laguerre polynomial of order a > -1, defined by generating
function

i LY (x)w" = (1 - w) ™ exp ( 1"“‘“’) ) (1.4)

n=0 -

and existence of integral (1.3) is presumed.
We write

P(y) = {T(@+ 1)} "e?y*{f(y) - f(O)}. (1.5)

Gupta [2] estimated the order of the function by Cesaro means of series (1.2) at the point x = 0
after replacing the continuity condition in Szeg’s theorem [3] by a much lighter condition.
He established the following theorem.

Theorem 1.1. If

F(t) =JZ |f$/)| dy:(){log(%)}lw, t—0,-1<p<oo,

(16)
L e 2y f(y) |dy < oo,

then
ok (0) = o(log n)p+1 (1.7)

provided that k > a +1/2, a > -1, with X (0) being the nth Cesaro mean of order k.

Denoting the harmonic means by {t,}, Singh [4] estimated the order of function by
harmonic means of series (1.2) at point x = 0 by weaker conditions than those of Theorem 1.1.
He proved the following theorem.

Theorem 1.2. For -5/6 <a < -1/2,
t.(0) - £(0) = o(logn)"*", (1.8)

provided that

[ 0Ly ofiog(D)}7, 10 1<p<en o

ya+1
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6 is a fixed positive constant,

fé ey/Zy—(2a+3)/4|¢(y) |dy — O{ n—(2a+1)/4 (log n)1+p}’
(1.10)

[ e B 1oy = of togmy ), 1 — oo

n

2. Main Theorem
The objects of present paper are as follows:

(1) We prove our theorem for (E, 1) means which is entirely different from (C, k) and
harmonic means.

(2) We employ a condition which is weaker than condition (1.9) of Theorem 1.2.

(3) In our theorem the range of a is increased to -1 < a < —1/2, which is more useful
for application.

In fact, we establish the following theorem.

Theorem 2.1. If

1

E, =5

n
Z "CkSx — o0 as n — oo, (2.1)
k=0

then the degree of approximation of Fourier-Laguerre expansion (1.2) at the point x = 0 by (E, 1)
means E}, is given by

E,(0) = £(0) = of¢(n)) (2.2)

provided that

o(t) =f; |¢(y)|dy:o{t“+1§<%> } t—0, (2.3)

6 is a fixed positive constant and -1 < a < -1/2,

J: ey/Zy—(2a+3)/4|¢(y) |dy _ o{ n—(2u+l)/4§(n)}’ (2.4)

f " er2y 1 g (y) ldy = olém)), 1 — oo, (2.5)

n

where &(t) is a positive monotonic increasing function of t such that {(n) — ccasn — oo.
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3. Lemmas

Lemma 3.1 (see the study by Szego, 1959, [3, page 175]). Let a be arbitrary and real, let c and €

be fixed positive constants, and let n — oo. Then

L}(fr) (X) — O<x—(2a+1)/4n(2a—l)/4> lf E < x <€,
n
L) = 0% if0<x< %

4, Proof of the Main Theorem

Since
(@) _(n +a
wo-=("2"),
therefore,
sn(0) = 3 axL(0) = {T(a + 1)}‘1f ey f(y) X LY (v)dy
k=0 0 k=0
(a0 [Ty L ay

Now,

ELO) = 57 3 "Cusil0)
k=0
1 & n -1 * -y (a+1)
= 50 2, "Cr{l(a+ 1)} f ey f (y)LEY (y)dy.
k=0 0

Using orthogonal property of Laguerre’s polynomial and (1.5), we have

ENO) - 10 = 35 3. "k [ o)L (n)ty

k=0

1/n I3} n o n
1 " o
:U g ﬁ+f>ﬁ2cwwamww
0 1/n 6 n k=0
= Il

+ 1+ I3 + 1y (say).

(3.1)

(3.2)

(4.1)

(4.2)

(4.3)

(4.4)
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Using orthogonal property and condition (3.2) (taking a + 1 for a and 6 for €) of Lemma 3.1,
we get

1/n

3 2, "Cofw [ p)ldy

I1:2

=

M= 1M

1
2n

ool st |

: <2lz "ck§<n>>

k=

=~
i}

o

=o{é(n)} since i "Cr=2".

k=0

Further, using orthogonal property and condition (3.1) (taking a + 1 for a, 1 for ¢, and 6 for
€) of Lemma 3.1, we get

1 & 6 B
— Z_nz ncko{n(2a+1)/4}J‘ |¢(y)|y (2a+3)/4d]/. (46)
k=0 1/n
Now,
n [n/2] n
Z nckn(2a+1)/4 — Z + Z nckn(2a+1)/4
k=0 k=0 k=[n/2]+1
[n/2]
— (n)(2a+1)/4 Z an + nc[n/Z] (n)(2a+5)/4
k=0 (4.7)
< (n)(2“+1)/4 i "Ck + nC[n/Z] (n)(2a+5)/4,
k=0
n
Z nCenar/4 o (n)(2‘1+1)/42n + "Clns2) (1’1) (2a+5)/
k=0
since

=D "Ck

k=0
="Co+"C1+ "C2+++ "Cluyzy + "Clusas1 + - (4.8)
2 "Cius2) + "Ciuj2) + -+ "Can

> "Clus2) + "Cluj21 + -+ + "Cluy2) {[ ] +1} [n/2] g Cln/2)-
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Therefore,
"Clns21 < 2". (4.9)
By (4.7) and (4.9), we have,

Z an{ (2a+1) /4} (n)(2a+1)/42n +2(2n)(n)(2zx+1)/4
= (4.10)

_ O{ (n)(2u+1)/42n }

Thus,

19)
I = O{(n)(2u+1)/4} ’[1/ y—(2a+3)/4|¢(y) |d]/

n

6
a+ —(2a (2a+3) _(a
= O (m@/4) {y e +3)/4q)(y)}1/n L/ 23 el (y)dy

[ 1 o 1
-0 (n)(2a+1)/4 —(2a+3)/4o{ a+1§<_>}] + —(2a+7)/40{ a+1§<_>}d
{ }_2‘/ y y 1/n3/ Yy Y y
(2a+1)/4 [ (2a+1)/4 1 o o (2a-3)/4 1
-ofm@ ) ofym (O] +oif,, v (5 )
{ } v Yy 1/n 1/11y Yy Y

— O{(n)(2u+1)/4} [O(l) + o{n‘(2“+1)/4§(n)}] +§(1’l)o{ g y(za 3)/4dy}

1/n

of{¢(nm)} + o{ (n) D/ 4 () } { 2 3)/4dy}

9]
:O{é(n)}+o (2a+1>/4§(n) { y2a=)/4+1 }
{2a-3)/4}+1
na+1)/4 y(2u+1)/4 5
e “ {(2a+1)/4}

ofg(m)} + {(2"‘”>/4§(n)} nCa/4)

o{é(m)} +ofé(n)},
I = o{§(m)}.

(4.11)
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Now, we consider

Iy = [<2n>{z ey L e /Zy‘(2“+3)/4|gb(y)|e v/2 (21x+3)/4|L(u+1)( )Idy}]

0

_ < 217 > { .0 {naamm } f ey/zy—<2a+3>/4|¢(y)|dy} (4.12)

I = O () of (m) =V 4 (m)},  using (24),

I3 = o{é(n)}.

Finally,

L= [<2n> {zn(:) "Ck J‘oo ev/? —(3a+5)/6|¢(y)|e v/2 (3a+5)/6|L(u+1) (y)|dy}]
n - © oy/24,-1/3 ¢
()] ot [ e
Iy = [( >(2n u+1)/2n—(a+l)/2}o{§(n)}], by (2.5)
Iy = o{§(m)}.

Combining (4.4), (4.5), (4.11), (4.12), and (4.13), we get
E,(0) = £(0) = 0{¢(n))}. (4.14)

This completes the proof of the theorem.
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