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A new generalised derivative operator μn,m
λ1 ,λ2

is introduced. This operator generalised many
well-known operators studied earlier by many authors. Using the technique of differential
subordination, we will study some of the properties of differential subordination. In addition we
investigate several interesting properties of the new generalised derivative operator.

1. Introduction and Preliminaries

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akz
k, where ak is complex number, (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1} on the complex plane
C. Let S, S∗(α), C(α) (0 ≤ α < 1) denote the subclasses of A consisting of functions that
are univalent, starlike of order α, and convex of order α in U, respectively. In particular, the
classes S∗(0) = S∗ and C(0) = C are the familiar classes of starlike and convex functions inU,
respectively. A function f ∈ C(α) if Re(1 + zf ′′/f ′) > α. Furthermore a function f analytic in
U is said to be convex if it is univalent and f(U) is convex.

Let H(U) be the class of holomorphic function in unit discU = {z ∈ C : |z| < 1}.
Let

An =
{
f ∈ H(U) : f(z) = z + an+1zn+1 + · · · , (z ∈ U)

}
, (1.2)

withA1 = A.
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For a ∈ C and n ∈ N = {1, 2, 3, . . .}we let

H[a, n] =
{
f ∈ H(U) : f(z) = z + anzn + an+1zn+1 + · · · , (z ∈ U)

}
. (1.3)

Let f(z) = z +
∑∞

k=2 akz
k and g(z) = z +

∑∞
k=2 bkz

k be analytic in the open unit disc U = {z ∈
C : |z| < 1}. Then the Hadamard product (or convolution) f ∗ g of the two functions f , g is
defined by

f(z) ∗ g(z) = (f ∗ g)(z) = z +
∞∑

k=2

akbkz
k. (1.4)

Next, we state basic ideas on subordination. If f and g are analytic in U, then the function f
is said to be subordinate to g, and can be written as

f ≺ g, f(z) ≺ g(z), (z ∈ U), (1.5)

if and only if there exists the Schwarz function w, analytic in U, with w(0) = 0 and |w(z)| <
1 such that f(z) = g(w(z)), (z ∈ U) .

Furthermore if g is univalent in U, then f ≺ g if and only if f(0) = g(0) and f(U) ⊂
g(U) (see [1, page 36]).

Let ψ : C
3 ×U → C and let h be univalent in U. If p is analytic in U and satisfies the

(second-order) differential subordination

ψ
(
p(z), zp′(z), z2p′′(z); z

)
≺ h(z), (z ∈ U), (1.6)

then p is called a solution of the differential subordination.
The univalent function q is called a dominant of the solutions of the differential

subordination, or more simply a dominant, if p ≺ q for all p satisfying (1.6). A dominant
q̃ that satisfies q̃ ≺ q for all dominants q of (1.6) is said to be the best dominant of (1.6). (Note
that the best dominant is unique up to a rotation ofU.)

Now, (x)k denotes the Pochhammer symbol (or the shifted factorial) defined by

(x)k =

⎧
⎨

⎩
1 for k = 0, x ∈ C \ {0},
x(x + 1)(x + 2) · · · (x + k − 1) for k ∈ N = {1, 2, 3, . . .}, x ∈ C.

(1.7)

To prove our results, we need the following equation throughout the paper:

μn,m+1
λ1,λ2

f(z) = (1 − λ1)
[
μn,mλ1,λ2f(z) ∗ φλ2(z)

]
+ λ1z

[
μn,mλ1,λ2f(z) ∗ φλ2(z)

]′
, (z ∈ U), (1.8)

where n,m ∈ N0 = {0, 1, 2, . . .}, λ2 ≥ λ1 ≥ 0, and φλ2(z) is analytic function given by

φλ2(z) = z +
∞∑

k=2

zk

1 + λ2(k − 1)
. (1.9)
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Here μn,mλ1, λ2 is the generalized derivative operator which we shall introduce later in the paper.
Moreover, we need the following lemmas in proving our main results.

Lemma 1.1 (see [2, page 71]). Let h be analytic, univalent, and convex in U, with h(0) = a, γ /= 0
and, Re γ ≥ 0. If p ∈ H[a, n] and

p(z) +
zp′(z)
γ

≺ h(z), (z ∈ U), (1.10)

then

p(z) ≺ q(z) ≺ h(z), (z ∈ U), (1.11)

where q(z) = (γ/nzγ/n)
∫z
0 h(t) t

(γ/n)−1dt, (z ∈ U).

The function q is convex and is the best (a, n)-dominant.

Lemma 1.2 (see [3]). Let g be a convex function inU and let

h(z) = g(z) + nαzg ′(z), (1.12)

where α > 0 and n is a positive integer.
If

p(z) = g(0) + pnzn + pn+1zn+1 + · · · , (z ∈ U), (1.13)

is holomorphic inU and

p(z) + αzp′(z) ≺ h(z), (z ∈ U), (1.14)

then

p(z) ≺ g(z), (1.15)

and this result is sharp.

Lemma 1.3 (see [4]). Let f ∈ A, if

Re
(
1 +

zf ′′(z)
f ′(z)

)
> −1

2
, (1.16)

then

2
z

∫z

0
f(t)dt, (z ∈ U, z/= 0), (1.17)

belongs to the class of convex functions.
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2. Main Results

In the present paper, we will use the method of differential subordination to derive certain
properties of generalised derivative operator μn,mλ1,λ2f(z). Note that differential subordination
has been studied by various authors, and here we follow similar works done by Oros [5] and
G. Oros and G. I. Oros [6].

In order to derive our new generalised derivative operator, we define the analytic
function

Fmλ1,λ2(z) = z +
∞∑

k=2

(1 + λ1(k − 1))m

(1 + λ2(k − 1))m−1 z
k, (2.1)

where m ∈ N0 = {0, 1, 2, . . .} and λ2 ≥ λ1 ≥ 0. Now, we introduce the new generalised
derivative operator μn,m

λ1,λ2
as follows.

Definition 2.1. For f ∈ A the operator μn,m
λ1,λ2

is defined by μn,m
λ1,λ2

: A → A

μn,mλ1,λ2f(z) = F
m
λ1,λ2

(z) ∗ Rnf(z), (z ∈ U), (2.2)

where n,m ∈ N0 = N ∪ {0}, λ2 ≥ λ1 ≥ 0, and Rnf(z) denotes the Ruscheweyh derivative
operator [7], given by

Rnf(z) = z +
∞∑

k=2

c(n, k)akzk, (n ∈ N0, z ∈ U), (2.3)

where c(n, k) = (n + 1)k−1/(1)k−1.
If f is given by (1.1), then we easily find from equality (2.2) that

μn,mλ1,λ2f(z) = z +
∞∑

k=2

(1 + λ1(k − 1))m

(1 + λ2(k − 1))m−1 c(n, k)akz
k, (z ∈ U), (2.4)

where n,m ∈ N0 = {0, 1, 2 . . .}, λ2 ≥ λ1 ≥ 0, and c(n, k) = (
n+k−1
n ) = (n + 1)k−1/(1)k−1.

Remark 2.2. Special cases of this operator include the Ruscheweyh derivative operator in two
cases μn,10,λ2

≡ Rn and μn,0λ1,0 ≡ Rn [7], the Salagean derivative operator μ0,m
1,0 ≡ Sn [8], the

generalised Ruscheweyh derivative operator in two cases μn,1
λ1,λ2

≡ Rn
λ
and μn,0

λ1,λ2
≡ Rn

λ
[9],

the generalised Salagean derivative operator μ0,m
λ1,0

≡ Sn
β
introduced by Al-Oboudi [10], and

the generalised Al-Shaqsi and Darus derivative operator μn,mλ1,0 ≡ Dn
λ,β that can be found in

[11].

Now, we remind the well-known Carlson-Shaffer operator L(a, c) [12] associated with
the incomplete beta function φ(a, c; z), defined by

L(a, c) : A → A,

L(a, c)f(z) := φ(a, c; z) ∗ f(z), (z ∈ U),
(2.5)
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where

φ(a, c; z) = z +
∞∑

k=2

(a)k−1
(c)k−1

zk, (2.6)

a is any real number, and c /∈ z−0 ; z−0 = {0,−1,−2, . . .}.
It is easily seen that

μ0,0
λ1,0

f(z) = μ0,m
0,0 f(z) = μ

0,1
0,λ2

f(z) = μ1,2
0,1f(z) = L(a, a)f(z) = f(z),

μ1,0
λ1,0

f(z) = μ1,m
0,0 f(z) = μ

1,1
0,λ2

f(z) = μ0,0
λ1,1

f(z) = L(2, 1)f(z) = zf ′(z),
(2.7)

and also

μa−1,0λ1,0
f(z) = μa−1,10,λ2

f(z) = μa−1,m0,0 f(z) = L(a, 1)f(z), (2.8)

where a = 1, 2, 3, . . . .
Next, we give the following.

Definition 2.3. For n,m ∈ N0, λ2 ≥ λ1 ≥ 0, and 0 ≤ α < 1, let Rn,m
λ1,λ2

(α) denote the class of
functions f ∈ A which satisfy the condition

Re
(
μn,m
λ1,λ2

f(z)
)′
> α, (z ∈ U). (2.9)

Also let Kn,m
λ1,λ2

(δ) denote the class of functions f ∈ A which satisfy the condition

Re
(
μn,mλ1,λ2f(z) ∗ φλ2(z)

)′
> δ, (z ∈ U). (2.10)

Remark 2.4. It is clear that R0,1
λ1,0

(α) ≡ R(λ1, α), and the class of functions f ∈ A satisfying

Re
(
λ1zf

′′(z) + f ′(z)
)
> α, (z ∈ U) (2.11)

is studied by Ponnusamy [13] and others.

Now we begin with the first result as follows.

Theorem 2.5. Let

h(z) =
1 + (2α − 1)z

1 + z
, (z ∈ U), (2.12)

be convex in U, with h(0)=1 and 0 ≤ α < 1. If n,m ∈ N0, λ2 ≥ λ1 ≥ 0, and the differential
subordination

(
μ
n,m+1
λ1,λ2

f(z)
)′ ≺ h(z), (z ∈ U), (2.13)
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holds, then

(
μn,mλ1,λ2f(z) ∗ φλ2(z)

)′ ≺ q(z) = 2α − 1 +
2(1 − α)
λ1z1/λ1

σ

(
1
λ1

)
, (2.14)

where σ is given by

σ(x) =
∫z

0

tx−1

1 + t
dt, (z ∈ U). (2.15)

The function q is convex and is the best dominant.

Proof. By differentiating (1.8), with respect to z, we obtain

(
μn,m+1
λ1,λ2

f(z)
)′

=
[
μn,m
λ1,λ2

f(z) ∗ φλ2(z)
]′
+ λ1z

[
μn,m
λ1,λ2

f(z) ∗ φλ2(z)
]′′
. (2.16)

Using (2.16) in (2.13), differential subordination (2.13) becomes

[
μn,m
λ1,λ2

f(z) ∗ φλ2(z)
]′
+ λ1z

[
μn,m
λ1,λ2

f(z) ∗ φλ2(z)
]′′ ≺ h(z) = 1 + (2α − 1)z

1 + z
. (2.17)

Let

p(z) =
[
μn,m
λ1,λ2

f(z) ∗ φλ2(z)
]′
=

[
z +

∞∑

k=2

(1 + λ1(k − 1))m

(1 + λ2(k − 1))m
c(n, k)akzk

]′

= 1 + p1z + p2z2 + · · · , (
p ∈ H[1, 1], z ∈ U).

(2.18)

Using (2.18) in (2.17), the differential subordination becomes

p(z) + λ1zp′(z) ≺ h(z) = 1 + (2α − 1)z
1 + z

. (2.19)

By using Lemma 1.1, we have

p(z) ≺ q(z) = 1
λ1z1/λ1

∫z

0
h(t) t(1/λ1)−1dt

=
1

λ1z1/λ1

∫z

0

(
1 + (2α − 1)t

1 + t

)
t(1/λ1)−1dt

= 2α − 1 +
2(1 − α)
λ1z1/λ1

σ

(
1
λ1

)
,

(2.20)
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where σ is given by (2.15), so we get

[
μn,mλ1,λ2f(z) ∗ φλ2(z)

]′
≺ q(z) = 2α − 1 +

2(1 − α)
λ1z1/λ1

σ

(
1
λ1

)
. (2.21)

The function q is convex and is the best dominant. The proof is complete.

Theorem 2.6. If n,m ∈ N0, λ2 ≥ λ1 ≥ 0, and 0 ≤ α < 1, then one has

Rn,m+1
λ1,λ2

(α) ⊂ Kn,m
λ1,λ2

(δ), (2.22)

where

δ = 2α − 1 +
2(1 − α)
λ1

σ

(
1
λ1

)
, (2.23)

and σ is given by (2.15).

Proof. Let f ∈ Rn,m+1
λ1,λ2

(α), then from (2.9) we have

Re
(
μn,m+1
λ1,λ2

f(z)
)′
> α, (z ∈ U), (2.24)

which is equivalent to

(
μn,m+1
λ1,λ2

f(z)
)′ ≺ h(z) = 1 + (2α − 1)z

1 + z
. (2.25)

Using Theorem 2.5, we have

[
μn,m
λ1,λ2

f(z) ∗ φλ2(z)
]′ ≺ q(z) = 2α − 1 +

2(1 − α)
λ1z1/λ1

σ

(
1
λ1

)
. (2.26)

Since q is convex and q(U) is symmetric with respect to the real axis, we deduce that

Re
[
μn,m
λ1,λ2

f(z) ∗ φλ2(z)
]′
> Re q(1) = δ = δ(α, λ1)

= 2α − 1 +
2(1 − α)
λ1

σ

(
1
λ1

)
,

(2.27)

from which we deduce Rn,m+1
λ1,λ2

(α) ⊂ Kn,m
λ1,λ2

(δ). This completes the proof of Theorem 2.6.

Remark 2.7. Special case of Theorem 2.6 with λ2 = 0 was given earlier in [11].

Theorem 2.8. Let q be a convex function inU, with q(0) = 1, and let

h(z) = q(z) + λ1zq′(z), (z ∈ U). (2.28)
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If n,m ∈ N0, λ2 ≥ λ1 ≥ 0,and f ∈ A and satisfies the differential subordination

(
μn,m+1
λ1,λ2

f(z)
)′ ≺ h(z), (z ∈ U), (2.29)

then

[
μn,mλ1,λ2f(z) ∗ φλ2(z)

]′ ≺ q(z), (z ∈ U), (2.30)

and this result is sharp.

Proof. Using (2.18) in (2.16), differential subordination (2.29) becomes

p(z) + λ1zp′(z) ≺ h(z) = q(z) + λ1zq′(z), (z ∈ U). (2.31)

Using Lemma 1.2, we obtain

p(z) ≺ q(z), (z ∈ U). (2.32)

Hence

[
μn,mλ1,λ2f(z) ∗ φλ2(z)

]′ ≺ q(z), (z ∈ U). (2.33)

And the result is sharp. This completes the proof of the theorem.

We give a simple application for Theorem 2.8.

Example 2.9. For n = 0, m = 1, λ2 ≥ λ1 ≥ 0, q(z) = (1 + z)/(1 − z), f ∈ A, and z ∈ U and
applying Theorem 2.8, we have

h(z) =
1 + z
1 − z + λ1z

(
1 + z
1 − z

)′
=

1 + 2λ1z − z2
(1 − z)2

. (2.34)

By using (1.8) we find that

μ0,1
λ1,λ2

f(z) = (1 − λ1)f(z) + λ1zf ′(z). (2.35)

Now,

μ0,1
λ1,λ2

f(z) ∗ φλ2(z) = (1 − λ1)
[
z +

∞∑

k=2

akz
k

1 + λ2(k − 1)

]
+ λ1

[
z +

∞∑

k=2

akkz
k

1 + λ2(k − 1)

]
. (2.36)
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A straightforward calculation gives the following:

[
μ0,1
λ1,λ2

f(z) ∗ φλ2(z)
]′
= 1 +

∞∑

k=2

(1 + λ1(k − 1))kak
1 + λ2(k − 1)

zk−1

=
z +
∑∞

k=2(kak(1 + λ1(k − 1))/(1 + λ2(k − 1)))zk

z

=

[
f(z) ∗ φλ2(z)

] ∗ [z +∑∞
k=2 k(1 + λ1(k − 1))zk

]

z
.

(2.37)

Similarly, using (1.8), we find that

μ0,2
λ1,λ2

f(z) = (1 − λ1)
[
μ0,1
λ1,λ2

f(z) ∗ φλ2(z)
]
+ λ1z

[
μ0,1
λ1,λ2

f(z) ∗ φλ2(z)
]′
, (2.38)

then

(
μ0,2
λ1,λ2

f(z)
)′

=
(
μ0,1
λ1,λ2

f(z) ∗ φλ2(z)
)′

+ λ1z
(
μ0,1
λ1,λ2

f(z) ∗ φλ2(z)
)′′
. (2.39)

By using (2.37)we obtain

(
μ0,1
λ1,λ2

f(z) ∗ φλ2(z)
)′′

=
∞∑

k=2

k(k − 1)ak(1 + λ1(k − 1))
1 + λ2(k − 1)

zk−2. (2.40)

We get

(
μ0,2
λ1,λ2

f(z)
)′

= 1 +
∞∑

k=2

kak(1 + λ1(k − 1))
1 + λ2(k − 1)

zk−1 + λ1
∞∑

k=2

k(k − 1)ak(1 + λ1(k − 1))
1 + λ2(k − 1)

zk−1

= 1 +
∞∑

k=2

kak(1 + λ1(k − 1))2

1 + λ2(k − 1)
zk−1

=

[
f(z) ∗ φλ2(z)

] ∗
[
z +
∑∞

k=2 k(1 + λ1(k − 1))2zk
]

z
.

(2.41)

From Theorem 2.8 we deduce that

[
f(z) ∗ φλ2(z)

] ∗
[
z +
∑∞

k=2 k(1 + λ1(k − 1))2zk
]

z
≺ 1 + 2λ1z − z2

(1 − z)2
, (2.42)

implies that

[
f(z) ∗ φλ2(z)

] ∗ [z +∑∞
k=2 k(1 + λ1(k − 1))zk

]

z
≺ 1 + z

1 − z , (z ∈ U). (2.43)
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Theorem 2.10. Let q be a convex function inU, with q(0) = 1 and let

h(z) = q(z) + zq′(z), (z ∈ U). (2.44)

If n,m ∈ N0, λ2 ≥ λ1 ≥ 0, and f ∈ A and satisfies the differential subordination

(
μn,mλ1,λ2f(z)

)′ ≺ h(z), (2.45)

then

μn,m
λ1,λ2

f(z)

z
≺ q(z), (z ∈ U). (2.46)

And the result is sharp.

Proof. Let

p(z) =
μn,m
λ1,λ2

f(z)

z

=
z +
∑∞

k=2

(
(1 + λ1(k − 1))m/(1 + λ2(k − 1))m−1

)
c(n, k)akzk

z

= 1 + p1z + p2z2 + · · · , (
p ∈ H[1, 1], z ∈ U).

(2.47)

Differentiating (2.47), with respect to z, we obtain

(
μn,m
λ1,λ2

f(z)
)′

= p(z) + zp′(z), (z ∈ U). (2.48)

Using (2.48), (2.45) becomes

p(z) + zp′(z) ≺ h(z) = q(z) + zq′(z). (2.49)

Using Lemma 1.2, we deduce that

p(z) ≺ q(z), (z ∈ U), (2.50)

and using (2.47), we have

μn,mλ1,λ2f(z)

z
≺ q(z), (z ∈ U). (2.51)

This proves Theorem 2.10.

We give a simple application for Theorem 2.10.
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Example 2.11. For n = 0, m = 1, λ2 ≥ λ1 ≥ 0, q(z) = 1/(1 − z), f ∈ A, and z ∈ U and applying
Theorem 2.10, we have

h(z) =
1

1 − z + z
(

1
1 − z

)′
=

1

(1 − z)2
. (2.52)

From Example 2.9, we have

μ0,1
λ1,λ2

f(z) = (1 − λ1)f(z) + λ1zf ′(z), (2.53)

so

(
μ0,1
λ1,λ2

f(z)
)′

= f ′(z) + λ1zf ′′(z). (2.54)

Now, from Theorem 2.10 we deduce that

f ′(z) + λ1zf ′′(z) ≺ 1

(1 − z)2 (2.55)

implies that

(1 − λ1)f(z) + λ1zf ′(z)
z

≺ 1
1 − z . (2.56)

Theorem 2.12. Let

h(z) =
1 + (2α − 1)z

1 + z
, (z ∈ U), (2.57)

be convex in U, with h(0) = 1 and 0 ≤ α < 1. If n,m ∈ N0, λ2 ≥ λ1 ≥ 0, f ∈ A, and the differential
subordination holds as

(
μn,m
λ1,λ2

f(z)
)′ ≺ h(z), (2.58)

then

μn,m
λ1,λ2

f(z)

z
≺ q(z) = 2α − 1 +

2(1 − α) ln(1 + z)
z

. (2.59)

The function q is convex and is the best dominant.



12 International Journal of Mathematics and Mathematical Sciences

Proof. Let

p(z) =
μn,mλ1,λ2f(z)

z

=
z +
∑∞

k=2

(
(1 + λ1(k − 1))m/(1 + λ2(k − 1))m−1

)
c(n, k) akzk

z

= 1 + p1z + p2z2 + · · · , (
p ∈ H[1, 1], z ∈ U).

(2.60)

Differentiating (2.60), with respect to z, we obtain

(
μn,mλ1,λ2f(z)

)′
= p(z) + zp′(z), (z ∈ U). (2.61)

Using (2.61), the differential subordination (2.58) becomes

p(z) + zp′(z) ≺ h(z) = 1 + (2α − 1)z
1 + z

, (z ∈ U). (2.62)

From Lemma 1.1, we deduce that

p(z) ≺ q(z) = 1
z

∫z

0
h(t)dt

=
1
z

∫z

0

(
1 + (2α − 1)t

1 + t

)
dt

=
1
z

[∫z

0

1
1 + t

dt + (2α − 1)
∫z

0

t

1 + t
dt

]

= 2α − 1 +
2(1 − α) ln(1 + z)

z
.

(2.63)

Using (2.60), we have

μn,m
λ1,λ2

f(z)

z
≺ q(z) = 2α − 1 +

2(1 − α) ln(1 + z)
z

. (2.64)

The proof is complete.

From Theorem 2.12, we deduce the following corollary.

Corollary 2.13. If f ∈ Rn,m
λ1,λ2

(α), then

Re

(
μn,m
λ1,λ2

f(z)

z

)
> (2α − 1) + 2(1 − α) ln 2, (z ∈ U). (2.65)
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Proof. Since f ∈ Rn,m
λ1,λ2

(α), from Definition 2.3 we have

Re
(
μn,m
λ1,λ2

f(z)
)′
> α, (z ∈ U), (2.66)

which is equivalent to

(
μn,mλ1,λ2f(z)

)′ ≺ h(z) = 1 + (2α − 1)z
1 + z

. (2.67)

Using Theorem 2.12, we have

μn,mλ1,λ2f(z)

z
≺ q(z) = (2α − 1) + 2(1 − α) ln(1 + z)

z
. (2.68)

Since q is convex and q(U) is symmetric with respect to the real axis, we deduce that

Re

(
μn,mλ1,λ2f(z)

z

)
> Re q(1) = (2α − 1) + 2(1 − α) ln 2, (z ∈ U). (2.69)

Theorem 2.14. Let h ∈ H(U), with h(0) = 1, h′(0)/= 0 which satisfy the inequality

Re

(
1 +

zh′′′(z)
h′(z)

)
> −1

2
, (z ∈ U). (2.70)

If n,m ∈ N0, λ2 ≥ λ1 ≥ 0,and f ∈ A and satisfies the differential subordination

(
μn,m
λ1,λ2

f(z)
)′ ≺ h(z), (z ∈ U), (2.71)

then

μn,mλ1,λ2f(z)

z
≺ q(z) = 1

z

∫z

0
h(t)dt. (2.72)

Proof. Let

p(z) =
μn,m
λ1,λ2

f(z)

z

=
z +
∑∞

k=2

(
(1 + λ1(k − 1))m/(1 + λ2(k − 1))m−1

)
c(n, k)akzk

z

= 1 + p1z + p2z2 + · · · , (
p ∈ H[1, 1], z ∈ U).

(2.73)
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Differentiating (2.73), with respect to z, we have

(
μn,mλ1,λ2f(z)

)′
= p(z) + zp′(z), (z ∈ U). (2.74)

Using (2.74), the differential subordination (2.71) becomes

p(z) + zp′(z) ≺ h(z), (z ∈ U). (2.75)

From Lemma 1.1, we deduce that

p(z) ≺ q(z) = 1
z

∫z

0
h(t)dt, (2.76)

and using (2.73), we obtain

μn,m
λ1,λ2

f(z)

z
≺ q(z) = 1

z

∫z

0
h(t)dt. (2.77)

From Lemma 1.3, we have that the function q is convex, and from Lemma 1.1, q is the best
dominant for subordination (2.71). This completes the proof of Theorem 2.14.

3. Conclusion

We remark that several subclasses of analytic univalent functions can be derived and studied
using the operator μn,m

λ1,λ2
.

Acknowledgment

This work is fully supported by UKM-ST-06-FRGS0107-2009, MOHE, Malaysia.

References

[1] K. S. Padmanabhan and R. Manjini, “Certain applications of differential subordination,” Publications
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