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The 3x + 1 problem can be viewed, starting with the binary form for any n ∈ N, as a string of
“runs” of 1s and 0s, using methodology introduced by Błażewicz and Pettorossi in 1983. A simple
system of two unary operators rewrites the length of each run, so that each new string represents
the next odd integer on the 3x + 1 path. This approach enables the conjecture to be recast as two
assertions. (I) Every odd n ∈ N lies on a distinct 3x+ 1 trajectory between twoMersenne numbers
(2k −1) or their equivalents, in the sense that every integer of the form (4m+1)withm being odd is
equivalent tom because both yield the same successor. (II) If Tr(2k−1) → (2l−1) for any r, k, l > 0,
l < k; that is, the 3x + 1 function expressed as a map of k’s is monotonically decreasing, thereby
ensuring that the function terminates for every integer.

1. Introduction

The 3x + 1 problem is also known under various other names including Collatz’s problem,
Ulam’s problem, and the Syracuse problem. It considers the following transformation of
integers:

f(x) =

⎧
⎪⎨

⎪⎩

(3x + 1) if x is odd,

x

2
if x is even.

(1.1)

The conjecture states that, starting with any integer n (which for our purposes we will take
as positive, although there is a negative version), f(x)will eventually reach 1 under iteration
of the function. Thereafter it will enter the short cycle 4, 2, 1. The conjecture specifies that
there are no other cycles and also that the function is not divergent. Another commonly used
notation is Tk(n) for the value after k iterations.
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The conjecture has been verified up to 26× 255 as of April 2010 in independent
computations by Oliveira e Silva [1] and Roosendaal [2].

In this paper we will use another version of the problem

f(xi) =
3xi−1 + 1
2mi−1

, x0 = n, (1.2)

such that 2mi−1 | 3xi−1 + 1 but 2mi−1+1 does not divide it.
This version iterates directly from one odd integer to another, and the conjecture states

that xi = 1 for some finite value of i. However, this form is less often used by researchers
because of the difficulty of determining a priori the values ofmi−1.

For a comprehensive review of the research to date, see Lagarias’ annotated
bibliography and generalizations of the problem [3–5] and Chamberland’s 2003 update [6].
Wirsching’s lecture notes [7] consider the dynamical system generated by the function. Shallit
[8] treats the function from the viewpoint of finite automata.

Our approach builds on Błażewicz and Pettorossi’s 1983 paper [9] in which they
introduce the notion of viewing the binary representation as an alternating series of “runs” of
1s and 0s. These can be rewritten using two unary operators and include appending a carry
1 as necessary to the output string to achieve the iterations correctly according to the 3x + 1
algorithm.

Clearly the binary notation can be expressed as lengths of runs. For example, we
express n = 27 as 120112. We point out that this particular starting point is especially
interesting because—as noted by several writers—it generates one of two of the longest
trajectories for values of n < 103. As Table 1 shows, 41 steps are required to reach 1 in terms
of odd integers. The other long trajectory in that range is for n = 703.

Wewill dispensewith explicitly showing 1s and 0s unless otherwise indicated because,
as we will show, the same rewriting rules apply to both. Hence n = 27 becomes {2 1 2}, and
all positive odd integers are represented in this way, the only constraint being that the string
is of odd length. Even values of n appear as trailing 0s and are simply deleted in the rewriting
process.

2. The String Rewriting System (SRS) for the 3x + 1 Problem

Wewill now list the String Rewriting System (SRS) process specific to the 3x+1 problem and
then prove that it replicates the algorithm for odd integers. Since the rewriting will involve
deletions as well as additions, for convenience, we will invert the normal sequence, so that
deletions occur on the left (least significant digits) and additions of carry 1s at right (most
significant digits).

(i) At the start of each iteration, we delete any leading 1s in pairs. This action
corresponds to the removal of (4k + 1) factors whenever k is odd, which has no
impact on the calculation.

(ii) Reset the output string to a null string.
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Table 1: 3x + 1 path (odd integers) for n = 27 expressed in integer and run notations.

No. Integer Run notation No. integer Run notation

0 27 2 1 2 21 283 2 1 2 3 1

1 41 1 2 1 1 1 22 425 1 2 1 1 1 1 2

2 31 5 23 319 6 2 1

3 47 4 1 1 24 479 5 1 3

4 71 3 3 1 25 719 4 2 2 1 1

5 107 2 1 1 1 2 26 1079 3 1 2 4 1

6 161 1 4 1 1 1 27 1619 2 2 1 1 1 2 2

7 121 1 2 4 28 2429 1 1 5 1 1 2 1

8 91 2 1 2 1 1 29 911 4 3 3

9 137 1 2 1 3 1 30 1367 3 1 1 1 1 1 1 1 1

10 103 3 2 2 31 2051 2 9 1

11 155 2 1 2 2 1 32 3077 1 1 1 7 2

12 233 1 2 1 1 3 33 577 1 5 1 2 1

13 175 4 1 1 1 1 34 433 1 3 2 1 2

14 263 3 5 1 35 325 1 1 1 3 1 1 1

15 395 2 1 1 3 2 36 61 1 1 4

16 593 1 3 1 1 1 2 1 37 23 3 1 1

17 445 1 1 4 1 2 38 19 2 3 1

18 169 3 2 1 1 1 39 53 1 1 1 1 2

19 251 2 1 5 40 5 1 1 1

20 377 1 2 4 1 1 41 1 1

(iii) Apply the following rewriting rules, one integer at a time, and concatenate to the
output string, using the unary operators f and g. Every iteration starts with f :

(i) for k = 1 f1 → +1g or g1 → +1f,

(ii) for k = 2 g2 → 2g or f2 → 1 1g,

(iii) for k ≥ 3 gk → 1 (k − 2) 1g or fk → (k − 1) 1g,

(iv) for k = φ
(
end of input string

)
, gφ −→ 1f.

(2.1)

Note that, while in general we concatenate to the output string, the + sign (first rule) requires
that we add 1 to the last integer on the output string. If there is no previous integer (output
string is empty), then the 1 is simply discarded.

Proof. For this proof only, we will revert to the usual binary representation (least significant
digits at right) and perform the 3n + 1 calculation by adding a 1 to the right of n and add n.
We summarize some findings of Błażewicz and Pettorossi as follows.
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(i) A run ρ of 1s is translated by the function into 0ρ0, and a run of 0s changes to 1ρ1,
so long as the length of ρ satisfies |ρ| ≥ 2. For example, runs of |ρ| = 5 are shown
pictorially as follows; the operation f 5 is on the left and g 5 is on the right:

000111111
00011111
01011110

110000011
11000001

1001000100
(2.2)

(ii) An alternating series of 1 and 0 results in a string of 0s

010101011
101010101

1000000000
(2.3)

this corresponds to a succession of (4k + 1) factors which can be removed if they
occur at right.

(iii) Single 0s or 1s disappear into the structures of their neighbors

1110111
1110111
1100111

0001000
0001000

00011000
(2.4)

(iv) It is easily seen that the rewriting rules (ii) and (iii)maintain the parity of the string
for operator g and change it to even for f . Rule 1 has no effect on the parity. Hence,
if the output string (which always starts with f) ends with g, we must add a 1 (the
carry bit) to it to preserve the requirement that its length be odd.

Rule (ii) can similarly be proved. Using the above, one can confirm that the rewriting rules
(2.1) satisfy all the requirements of the 3x + 1 algorithm.

The above SRS has some useful properties.
A Mersenne number (2k − 1) which in binary is a row of k 1s is represented in our

notation simply as {k}.
It is easy to see that every integer of the form (4m + 1) withm being odd is equivalent

to m because both yield the same successor. In binary, the string for an odd integer m is
followed by a 0 and a 1 to produce (4m + 1). In our notation this translates even more simply
as a pair of leading 1s. Given any odd integer one can write or immediately recognize an
infinite number of equivalents simply by adding (or removing) pairs of 1s. Only adding 1s in
pairs will maintain the correct parity of the string.

3. The 3x + 1 Problem and Mersenne Numbers

It is rather surprising that the Mersenne numbers should play a helpful role in the 3x + 1
problem because—as several writers have noted, for example, Kuttler [10]—it is easy to show
that Tk(2k − 1) = (3k − 1); that is, the values appear to grow quickly (we caution here that
Kuttler uses a variant of our definition (1.1) which results in a different set of iterations).



International Journal of Mathematics and Mathematical Sciences 5

2

3

8

10

9

12

15

16

7

13
14

19

4

5

6

11

20

17

18

Figure 1: The 3x + 1 map expressed as values of k ≤ 20 for endpoints (2k − 1).

However, if we complete the numerical evidence for small values of k (≤20), an interesting
structure emerges. Figure 1 shows each vertex containing the kth Mersenne number and each
edge representing the 3x + 1 trajectory from that kth Mersenne number to the next. For
example, the trajectory for n = 27 is largely represented by the single edge between k = 5
and k = 4, that is, n = 31 and n = 61, where the latter is the equivalent of n = 15 which
cannot have a predecessor since it is 0 (mod 3). Note that all the values of k in Figure 1 are
monotonically decreasing in the direction of the arrows.

Define as usual the stopping time of n, denoted by σ(n), as being the least k such that
Tk(n) < n. It is easy to verify, as in Garner [11], the following stopping times; the σ(n) have
been adjusted to count odd integers only:

σ(n) = 1 if n ≡ 1 (mod 4),

σ(n) = 2 if n ≡ 3 (mod 16),

σ(n) = 3 if n ≡ 11 or 23 (mod 32),

σ(n) = 4 if n ≡ 7, 15 or 59 (mod 128),

σ(n) = 5 if n ≡ 39, 79, 95, 123, 175, 199, or 219 (mod 256).

(3.1)

Equivalently (see [12]), σ(n) ≤ 5 unless n is congruent mod 256 one of the following:

27 31 47 63 71 103 111 127 155 159 167 191 207 223 231 239 251 255. (3.2)

Clearly we can always find an n with arbitrarily long stopping time σ(n) = k. In our run
notation, this means simply choosing an integer of the form {k · · · }. So stopping times alone
will not suffice to resolve the problem. Looking at Figure 1 suggests that we consider the
3x + 1 problem as a combination of two propositions: one for predecessors and another for
successors.
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(i) First we must show that every odd n ∈ N lies on the map described by Figure 1,
either on the path between two Mersenne numbers (2k − 1) or as the Mersenne
numbers themselves. While we cannot predict where a particular n will fall on
the map, we can say that this corresponds to the hypothesis that every n or an
equivalent must have a Mersenne number as a predecessor. This condition is met
if we can always find a valid predecessor of n smaller than n; that is, T−k(n) < n,
identical to the stopping time condition except in the reverse direction. Note that,
if n is 0 (mod3), we can convert it to an equivalent (in fact an infinite number of
them) which has a valid predecessor.

(ii) The second proposition is that if Tr(2k −1) → (2l −1) for any r, k, l > 0, l < k; that is,
the 3x + 1 function expressed as a map of k’s is monotonically decreasing, thereby
ensuring that the function terminates for every integer. Note that we need only to
concern ourselves here with Mersenne numbers, not all the points in between.

Hence a counterexample must satisfy Tk(n) > n for all k’s (positive and negative); that is, n
must be a minimum with respect to its successor trajectory as well as its infinite number of
predecessor paths.

It remains to be seen whether the String Rewriting System (SRS) approach can lead to
further advances in the 3x + 1 problem.
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[9] J. Błażewicz and A. Pettorossi, “Some properties of binary sequences useful for proving Collatz’s

conjecture,” Foundations of Control Engineering, vol. 8, no. 2, pp. 53–63, 1983.
[10] J. R. Kuttler, “On the 3x + 1 problem,” Advances in Applied Mathematics, vol. 15, no. 2, pp. 183–185,

1994.
[11] L. E. Garner, “On the Collatz 3n + 1 algorithm,” Proceedings of the American Mathematical Society, vol.

82, no. 1, pp. 19–22, 1981.
[12] V. Klee and S. Wagon, Old & New Unsolved Problems in Plane Geometry & Number Theory, vol. 11 of The

Dolciani Mathematical Expositions, Mathematical Association of America, Washington, DC, USA, 1991.


