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For each N ≥ 4, we define a monoidal functor from Elias and Khovanov’s diagrammatic version
of Soergel’s category of bimodules to the category of sl(N) foams defined by Mackaay, Stošić, and
Vaz. We show that through these functors Soergel’s category can be obtained from the sl(N) foams.

1. Introduction

In [1] Soergel categorified the Hecke algebra using bimodules. Just as the Hecke algebra is
important for the construction of the HOMFLY-PT link polynomial, so is Soergel’s category
for the construction of Khovanov and Rozansky’s HOMFLY-PT link homology [2], as
explained by Khovanov in [3]. Elias and Khovanov [4] constructed a diagrammatic version
of the Soergel category with generators and relations, which Elias and Krasner [5] used for a
diagrammatic construction of Rouquier’s complexes associated to braids.

In [6] Bar-Natan gave a new version of Khovanov’s [7] original link homology, also
called the sl(2) link homology, using 2d-cobordisms modulo certain relations, which we will
call sl(2) foams. Using 2d-cobordisms with a particular sort of singularity modulo certain
relations, which we will call sl(3) foams, Khovanov constructed the sl(3) link homology [8].
Khovanov and Rozansky [9] then constructed the sl(N) link homologies, for any N ≥ 1,
using matrix factorizations. These link homologies are closely related to the HOMFLY-PT link
homology by Rasmussen’s spectral sequences [10], withE1-page isomorphic to the HOMFLY-
PT homology and converging to the sl(N) homology, for any N ≥ 1. In [11] Mackaay
et al. gave an alternative construction of these sl(N) link homologies, for N ≥ 4, using
sl(N) foams, which are 2d-cobordisms with two types of singularities satisfying relations
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determined by a formula from quantum field theory, originally obtained by Kapustin and Li
[12] and later adapted by Khovanov and Rozansky [13].

Khovanov and Rozansky in [2, 9] and Rasmussen in [10] used matrix factorizations
for their constructions. Therefore, the question arises whether their results can be understood
in diagrammatic terms and what could be learned from that. In [14] Vaz constructed functors
from Elias and Khovanov’s diagrammatic version of Soergel’s category to the categories
of sl(2) and sl(3) foams. In this paper we construct the analogous functors from the same
version of Soergel’s category to the category of sl(N) foams for N ≥ 4. To complete the
picture, one would like to construct the analogues of Rasmussen’s spectral sequences in this
setting. However for this, one would first have to understand the Hochschild homology
of bimodules in diagrammatic terms, which has not been accomplished yet. Hochschild
homology plays an integral part of the construction. Nevertheless, there is an interesting
result which can already be shown using the functors in this paper. In a certain technical
sense, which we will make precise in Proposition 4.2, Soergel’s category can be obtained from
the sl(N) foams, and therefore from the Kapustin-Li formula, using our functors. This result
should be compared to Rasmussen’s Theorem 1 in [10].

We thank Catharina Stroppel for pointing out the connection of our work to results in
[15]. We quote her directly: In [15] a categorification of ”special trivalent” graphs modulo the
MOY relations was constructed by exact functors acting between certain blocks of parabolic
category O. Using Soergel’s functor passing from Lie theory to the combinatorial bimodule
category the construction in [15] in fact produces an action of the diagrammatic Soergel
category on these various category Os.

We have tried to make the paper as self-contained as possible, but the reader should
definitely leaf through [4, 5, 11, 14] before reading the rest of this paper.

In Section 2 we recall Elias and Khovanov’s version of Soergel’s category. In Section 3
we review sl(N) foams, as defined by Mackaay, Stošic’, and Vaz. Section 4 contains the
new results: the definition of our functors, the proof that they are indeed monoidal, and a
statement on faithfulness in Proposition 4.2.

2. Elias and Khovanov’s Version of Soergel’s Category

This section is a reminder of the diagrammatics for Soergel categories introduced by Elias
and Khovanov in [4]. Actually we give the version which they explained in [4, Section 4.5]
and which can be found in detail in [5].

Fix a positive integer n. The categorySC1 is the category whose objects are finite length
sequences of points on the real line, where each point is colored by an integer between 1 and
n. We read sequences of points from left to right. Two colors i and j are called adjacent if
|i − j| = 1 and distant if |i − j| > 1. The morphisms of SC1 are given by generators modulo
relations. A morphism of SC1 is a C-linear combination of planar diagrams constructed by
horizontal and vertical gluings of the following generators (by convention no label means a
generic color j)

(i) Generators involving only one color are

EndDot StartDot Merge Split

(2.1)
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It is useful to define the cap and cup as

≡ ≡ (2.2)

(ii) Generators involving two colors are

–The 4-valent vertex, with distant colors,

i j

(2.3)

and the 6-valent vertex, with adjacent colors i and j,

i j ij

, (2.4)

read from bottom to top. In this setting a diagram represents a morphism from the bottom
boundary to the top. We can add a new colored point to a sequence and this endows SC1

with a monoidal structure on objects, which is extended to morphisms in the obvious way.
Composition of morphisms consists of stacking one diagram on top of the other.

We consider our diagrams modulo the following relations.
“Isotopy” relations are

= = (2.5)

= = (2.6)

= = (2.7)



4 International Journal of Mathematics and Mathematical Sciences

= = (2.8)

= = (2.9)

The relations are presented in terms of diagrams with generic colorings. Because of
isotopy invariance, one may draw a diagram with a boundary on the side, and view it as a
morphism in SC1 by either bending the line up or down. By the same reasoning, a horizontal
line corresponds to a sequence of cups and caps.
One color relations are

= (2.10)

= 0 (2.11)

+ = 2 (2.12)

Relations involvingtwo distant colors are

= (2.13)

= (2.14)

= (2.15)
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Relations involving two adjacent colors are

= + (2.16)

= − (2.17)

= (2.18)

=
1
2

− − (2.19)

Relations involving three colors are (adjacency is determined by the vertices which appear)

= (2.20)

= (2.21)

= (2.22)
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Furthermore, we also have a useful implication of relation (2.12) as follows:

=
1
2

+ (2.23)

Introduce a q-grading on SC1 declaring that dots have degree 1, trivalent vertices have
degree −1, and 4- and 6-valent vertices have degree 0.

Definition 2.1. The category SC2 is the category containing all direct sums and grading shifts
of objects in SC1 and whose morphisms are the grading-preserving morphisms from SC1.

Definition 2.2. The category SC is the Karoubi envelope of the category SC2.

Elias and Khovanov’s main result in [4] is the following theorem.

Theorem 2.3 (Elias-Khovanov). The category SC is equivalent to the Soergel category in [1].

From Soergel’s results from [1] we have the following corollary.

Corollary 2.4. The Grothendieck algebra of SC is isomorphic to the Hecke algebra.

Notice that SC is an additive category but not abelian and we are using the (additive)
split Grothendieck algebra.

In Section 4 we will define a a family of functors from SC1,n to the category of sl(N)
foams, one for each N ≥ 4. These functors are grading preserving, so they obviously extend
uniquely to SC2,n. By the universality of the Karoubi envelope, they also extend uniquely to
functors between the respective Karoubi envelopes.

3. Foams

3.1. Prefoams

In this section we recall the basic facts about foams. For the definition of the Kapustin-Li
formula, for proofs of the relations between foams, and for other details, see [11, 16]. The
foams in this paper are composed of three types of facets: simple, double, and triple facets.
The double facets are coloured and the triple facets are marked to show the difference.
Intersecting such a foam with a generic plane results in a web, as long as the plane avoids
the singularities where six facets meet, such as on the right in Figure 1.

Definition 3.1. Let sγ be a finite oriented closed 4-valent graph, which may contain disjoint
circles and loose endpoints. We assume that all edges of sγ are oriented. A cycle in sγ is
defined to be a circle or a closed sequence of edges which form a piecewise linear circle. Let
Σ be a compact orientable possibly disconnected surface, whose connected components are
simple, double, or triple, denoted by white, coloured, or marked. Each component can have
a boundary consisting of several disjoint circles and can have additional decorations which
we discuss below. A closed prefoam u is the identification space Σ/sγ obtained by gluing
boundary circles of Σ to cycles in sγ such that every edge and circle in sγ are glued to exactly
three boundary circles of Σ and such that for any point p ∈ sγ ,



International Journal of Mathematics and Mathematical Sciences 7

∗ ∗

Figure 1: Some elementary prefoams.

(1) if p is an interior point of an edge, then p has a neighborhood homeomorphic to the
letter Y times an interval with exactly one of the facets being double, and at most
one of them being triple; for an example see Figure 1,

(2) if p is a vertex of sγ , then it has a neighborhood as shown in Figure 1.

We call sγ the singular graph, its edges and vertices singular arcs and singular vertices, and the
connected components of u − sγ the facets.

Furthermore the facets can be decorated with dots. A simple facet can only have black
dots (•), a double facet can also have white dots (◦), and a triple facet besides black and white
dots can have double dots (�). Dots can move freely on a facet but are not allowed to cross
singular arcs.

Note that the cycles to which the boundaries of the simple and the triple facets are
glued are always oriented, whereas the ones to which the boundaries of the double facets
are glued are not, as can be seen in Figure 1. Note also that there are two types of singular
vertices. Given a singular vertex v, there are precisely two singular edges which meet at v
and bound a triple facet: one oriented toward v, denoted as e1, and one oriented away from
v, denoted as e2. If we use the “left-hand rule”, then the cyclic ordering of the facets incident
to e1 and e2 is either (3, 2, 1) or (3, 1, 2), respectively, or the other way around. We say that v is
of type I in the first case and of type II in the second case. When we go around a triple facet,
we see that there have to be as many singular vertices of type I as there are of type II for the
cyclic orderings of the facets to match up. This shows that for a closed prefoam the number
of singular vertices of type I is equal to the number of singular vertices of type II.

We can intersect a prefoam u generically by a plane W in order to get a closed web, as
long as the plane avoids the vertices of sγ . The orientation of sγ determines the orientation of
the simple edges of the web according to the convention in Figure 2.

Suppose that, for all but a finite number of values i ∈]0, 1[, the plane W × i intersects u
generically. Suppose also that W ×0 and W ×1 intersect u generically and outside the vertices
of sγ . Furthermore, suppose that D ⊂ W is a disc in W and C ⊂ D its boundary circle such
thatC×[0, 1]∩u is a disjoint union of vertical line segments. This means that we are assuming
that sγ does not intersect C × [0, 1]. We call D × [0, 1] ∩ u an open prefoam between the open
webs D × {0} ∩ u and D × {1} ∩ u. Interpreted as morphisms, we read open prefoams from
bottom to top, and their composition consists of placing one prefoam on top of the other, as
long as their boundaries are isotopic and the orientations of the simple edges coincide.

Definition 3.2. Let Pfoam be the category whose objects are webs and whose morphisms are
Q-linear combinations of isotopy classes of prefoams with the obvious identity prefoams and
composition rule.

We now define the q-degree of a prefoam. Let u be a prefoam, u1, u2, and u3 the
disjoint union of its simple, double, and marked facets, respectively, and sγ(u) its singular
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Figure 2: Orientations near a singular arc.

graph. Furthermore, let b1, b2, and b3 be the number of simple, double, and marked vertical
boundary edges of u, respectively. Define the partial q-gradings of u as

qi(u) = χ(ui) −
1
2
χ(∂ui ∩ ∂u) −

1
2
bi, i = 1, 2, 3,

qsγ (u) = χ
(
sγ(u)

)
− 1

2
χ
(
∂sγ(u)

)
,

(3.1)

where χ is the Euler characteristic and ∂ denotes the boundary.

Definition 3.3. Let u be a prefoam with d• dots of type •, d◦ dots of type ◦, and d� dots of type
�. The q-grading of u is given by

q(u) = −
3∑

i=1

i(N − i)qi(u) − 2(N − 2)qsγ (u) + 2d• + 4d◦ + 6d�. (3.2)

The following result is a direct consequence of the definitions.

Lemma 3.4. q(u) is additive under the gluing of prefoams.

We denote a simple facet with i dots by

i · (3.3)

Recall that the two-variable Schur polynomial πk,m can be expressed in terms of the
elementary symmetric polynomials π1,0 and π1,1. By convention, the latter correspond to •
and ◦ on a double facet, respectively, so that

(k,m) (3.4)
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is defined to be the linear combination of dotted double facets corresponding to the
expression of πk,m in terms of π1,0 and π1,1. Analogously we can express the three-variable
Schur polynomial πp,q,r in terms of the elementary symmetric polynomials π1,0,0, π1,1,0, and
π1,1,1. By convention, the latter correspond to •, ◦, and � on a triple facet, respectively, so we
can make sense of

∗(p, q, r) · (3.5)

3.2. Foams

In [11, 16] we gave a precise definition of the Kapustin-Li formula, following Khovanov and
Rozansky’s work [13]. We will not repeat that definition here, since it is complicated and
unnecessary for our purposes in this paper. The only thing one needs to remember is that
the Kapustin-Li formula associates a number to any closed prefoam and that those numbers
have very special properties, some of which we will recall below. By 〈u〉KL, we denote the
Kapustin-Li evaluation of a closed prefoam u.

Definition 3.5. The category FoamN is the quotient of the category Pfoam by the kernel
of 〈〉KL, that is, by the following identifications: for any webs Γ, Γ′ and finite sets fi ∈
HomPfoam(Γ,Γ′) and ci ∈ Q we impose the relations

∑

i

cifi = 0⇐⇒
∑

i

ci〈fi〉KL = 0, (3.6)

for any fixed way of closing the fi, denoted by fi. By “fixed” we mean that all the fi are closed
in the same way. The morphisms of FoamN are called foams.

In the next proposition we recall those relations in FoamN that we need in the sequel.
For their proofs and other relations we refer to [11].

Proposition 3.6. The following identities hold in FoamN

The dot conversion relations are

i = 0 if i ≥N, (3.7)

(k,m) = 0 if k ≥N − 1, (3.8)

∗(p, q, r) = 0 if p ≥N − 2. (3.9)
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The dot migration relations are

= + (3.10)

= (3.11)

=∗ ∗ ∗+ (3.12)

=∗ ∗ ∗+ (3.13)

=∗ ∗ (3.14)

The neck cutting relations are (these were called cutting neck relations in [11, 16])

=
N−1∑

i=0

N − 1 − i

i

(NC1) (3.15)

= −
∑

0≤j≤i≤N−2

(i, j)

(̂i, j)

(i, j, k)

̂(i, j, k)

(NC2) ∗

∗

∗

= −
∑

0≤k≤j≤i≤N−3

(NC∗) (3.16)



International Journal of Mathematics and Mathematical Sciences 11

The sphere relations are

i
= =

=

1, i =N − 1

0, else 0, else
(S2)

−1, i = j =N − 2

(i, j, k)

(i, j)

∗

(S1)

−1, i = j = k =N − 3

0, else·

(S∗)

(3.17)

The Θ-foam relations are

N − 1 N − 2

N − 2 N − 1

(N − 3,N − 3,N − 3)

(N − 3,N − 3,N − 3)

∗

∗
= −1 = −= −1 = − (�) and (�∗)· (3.18)

Inverting the orientation of the singular circle of (�∗) inverts the sign of the corresponding foam. A
theta-foam with dots on the double facet can be transformed into a theta-foam with dots only on the
other two facets, using the dot migration relations.

The Matveev-Piergalini relation is

=

∗

, .=

∗

∗ ∗
(MP)

The disc removal relations are

= − (RD1)

∗ = − + (RD2)

The digon removal relations are

= − (DR1)
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∗ ∗ ∗ ∗ ∗
= − + − (DR31)

∗

∗
(i, j, 0)

∗
(N − 3 − j,N − 3 − i, 0)

=
∑

0≤j≤i≤N−3 (DR32)

The square removal relations are

= − a

c

d

b

+
∑

a+b+c+d=N−3
(SqR1)

= − −
∗ (SqR2)

i

(p,q,r) ∗
=

−

−

(q, r) if p =N − 3 − i

(p + 1, q + 1) if r =N − 1 − i

(p + 1, r) if q =N − 2 − i

0 else

(3.19)

j

i

=

− (i − 1, j) if i > j ≥ 0

(j − 1, i) if j > i ≥ 0

0 if i = j

(3.20)
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4. The Functors FN,n

Let n ≥ 1 and N ≥ 4 be arbitrary but fixed. In this section we define a monoidal functor FN,n

between the categories SC1,n and FoamN .
On Objects. FN,n sends the empty sequence to 1n and the one-term sequence (j) to wj :

(∅) �−→

1 2 n

· · · (j) �−→

1 n

· · · · · ·

j j + 1

(4.1)

with FN,n(jk) given by the vertical composite wjwk.
On Morphisms.

(i) The empty diagram is sent to n parallel vertical sheets:

∅ �−→

1 2 n

· · ·

n − 1

(4.2)

(ii) The vertical line coloured j is sent to the identity cobordism of wj :

�−→

j + 1j

j
(4.3)

The remaining n − 2 vertical parallel sheets on the r.h.s. are not shown for simplicity, a
convention that we will follow from now on.

(iii) The StartDot and EndDot morphisms are sent to the zip and the unzip, respectively:
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�−→

j + 1j

j �−→

j + 1j

j
(4.4)

(iv) Merge and Split are sent to cup and cap cobordisms:

�−→

j + 1j

j �−→

j + 1j

j (4.5)

(v) The 4-valent vertex with distant colors. For j + 1 < k we have

�−→

k j

· · ·j j + 1 k k + 1

(4.6)

The case j > k + 1 is given by reflexion around a horizontal plane.

(vi) For the 6-valent vertices we have

�−→

j + 1 j

∗
j

j + 1
j + 2

(4.7)

The case with the colors switched is given by reflection in a vertical plane. Notice that FN,n

respects the gradings of the morphisms.

Proposition 4.1. FN,n is a monoidal functor.
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Proof. The assignment given by FN,n clearly respects the monoidal structures of SC1,n and
FoamN . So we only need to show that FN,n is a functor, that is, it respects the relations (2.5)
to (2.22) of Section 2.

“Isotopy Relations”. Relations (2.5) to (2.9) are straightforward to check and correspond
to isotopies of their images under FN,n. For the sake of completeness we show the first
equality in (2.5). We have

FN,n j =

j j + 1

∼= = FN,n j

j j + 1

(4.8)

One Color Relations. For relation (2.10) we have

FN,n ,∼= FN,n
∼= FN,n (4.9)

where the first equivalence follows from relations (2.5) and (2.7) and the second from isotopy
of the foams involved.

For relation (2.11) we have

FN,n

j

= = 0

j j + 1

by equation (23).
(4.10)

Relation (2.12) requires some more work. We have

FN,n
j

j

= −=

j j + 1jj + 1 j j + 1

(4.11)
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where the second equality follows from the (DR1) relation. We also have

FN,n
j

= −=

j j + 1jj + 1 j j + 1

(4.12)

Using (3.12), we obtain

FN,n
j

= 2 −

j j + 1jj + 1

(4.13)

FN,n
j

= −2 +

j j + 1jj + 1

(4.14)

and, therefore, we have that

FN,n ·+FN,n = 2FN,n (4.15)

Two Distant Colors. Relations (2.13) to (2.15) correspond to isotopies of the foams involved
and are straightforward to check.

Adjacent Colors. We prove the case where “blue” corresponds to j and “red”
corresponds to j + 1. The relations with colors reversed are proved the same way. To prove
relation (2.16) we first notice that using the (MP) move we get

∼=FN,n ·∗

j
j + 1
j + 2

(4.16)
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Apply (SqR1) to the simple-double square tube perpendicular to the triple facet to obtain two
terms. The first term contains a double-triple digon tube which is the left-hand side of the
(DR32) relation rotated by 1800 around a vertical axis. Next apply the (DR32) relation and use
(MP) to remove the four singular vertices, which results in simple-triple bubbles (with dots)
in the double facets. Using (3.19) to remove these bubbles gives

j j + 1 j + 2

(4.17)

which is FN,n . The second term contains

∗

a b

c
∑

a+b+c+d=N−3 (4.18)

behind a simple facet with d dots (notice that all dots are on simple facets). Using the (MP)
relation to get a simple-triple bubble in the double facet, followed by (RD2) and (S1) we
obtain

j j + 1 j + 2

(4.19)

which equals FN,n .
We now prove relation (2.17). We have an isotopy equivalence

FN,n
∼=

j
j + 1
j + 2

(4.20)
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Notice that FN,n is the l.h.s. of the (SqR2) relation. The first term on the r.h.s. of (SqR2) is
isotopic to −FN,n . For the second term on the r.h.s. of (SqR2) we notice thatFN,n contains

∗

∗

(4.21)

Applying (DR31) followed by (MP) to remove the singular vertices creating simple-simple
bubbles on the two double facets and using (3.20) to remove these bubbles, we conclude that
FN,n is the second term on the r.h.s. of (SqR2).

We now prove relation (2.18) in the form

= · (4.22)

The image of the l.h.s. also contains a bit like the one in (4.21). Simplifying it like we did in
the proof of (2.17), we obtain that FN,n reduces to

− ∗

j
j + 1
j + 2

(4.23)

For the r.h.s. we have

∗ ∗

j
j + 1
j + 2

(4.24)

Using (DR31) on the vertical digon, followed by (MP) and the Bubble relation (3.20), we
obtain (4.23).

Relation (2.19) follows from straightforward computation and is left to the reader.
Relations Involving Three Colors. Relations (2.20) and (2.21) follow from isotopies of

the foams involved. To show that FN,n respects relation (2.22), we use a different type
of argument. First of all, we note that the images under FN,n of both sides of relation
(2.22) are multiples of each other, because the graded vector space of morphisms in FoamN
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between the bottom and top webs has dimension one in degree zero. Verifying this only
requires computing the coefficient of q−(4N−4) (this includes the necessary shift!) in the MOY
polynomial associated to the web

, (4.25)

which is a standard calculation left to the reader. To see that the multiplicity coefficient is
equal to one, we close both sides of relation (2.22) simply by putting a dot on each open end.
Using relations (2.14) and (2.16) to reduce these closed diagrams, we see that both sides give
the same nonzero sum of disjoint unions of coloured StartDot-EndDot diagrams. Note that we
have already proved that FN,n respects relations (2.14) and (2.16). By applying foam relation
(4.12) to the images of all nonzero terms in the sum, we obtain a nonzero sum of dotted
sheets. This implies that both sides of (2.22) have the same image under FN,n.

We have now proved that FN,n is a monoidal functor for all N ≥ 4. Our main result
about the whole family of these functors, that is, for all N ≥ 4 together, is the proposition
below. It implies that all the defining relations in Soergel’s category can be obtained from the
corresponding relations between sl(N) foams, when all N ≥ 4 are considered, and that there
are no other independent relations in Soergel’s category corresponding to relations between
foams.

Proposition 4.2. Let i, j be two arbitrary objects in SC1,n and let f ∈ Hom(i, j) be arbitrary. If
FN,n(f) = 0 for allN ≥ 4, then f = 0.

Proof. Let us first suppose that i = j = ∅. Suppose also that f has degree 2d and that N ≥
max{4, d + 1}. Recall that, as shown in [5, Corollary 3], we know that Hom(∅, ∅) is the free
commutative polynomial ring generated by the StartDot-EndDots of all possible colors. So f
is a polynomial in StartDot-EndDots, and therefore a sum of monomials. Letm be one of these
monomials, no matter which one, and let mj denote the power of the StartDot-EndDot with
color j in m. Close FN,n(f) by gluing disjoint discs to the boundaries of all open simple facets
(i.e., the vertical ones with corners in the pictures). For each color j, put N−1−mj dots on the
left simple open facet corresponding to j and also putN−1 dots on the rightmost simple open
facet. Note that, after applying (RD1), we get a linear combination of dotted simple spheres.
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Only one term survives and is equal to ±1, because only in that term each sphere has exactly
N − 1 dots. This shows that FN,n(f)/= 0, because it admits a nonzero closure.

Now let us suppose that i = ∅ and j is arbitrary. By [4, Corollaries 4.11 and 4.12], we
know that Hom(∅, j) is the free Hom(∅, ∅)-module of rank one generated by the disjoint union
of StartDots coloured by j. Closing off the StartDots by putting dots on all open ends gives an
element of Hom(∅, ∅), whose image under FN,n is nonzero for N big enough by the above.
This shows that the generator of Hom(∅, j) has nonzero image under FN,n for N big enough,
because FN,n is a functor.

Finally, the general case, for i and j arbitrary, can be reduced to the previous case by
[4, Corollary 4.12].
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