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This paper is concerned with instability of periodic travelling wave solutions of the modified
Boussinesq equation. Periodic travelling wave solutions with a fixed fundamental period Lwill be
constructed by using Jacobi’s elliptic functions. It will be shown that these solutions, called dnoidal
waves, are nonlinearly unstable in the energy space for a range of their speeds of propagation and
periods.

1. Introduction

The original Boussinesq equations are among the classical models for the propagation of
small amplitude, planar long waves on the surface of water [1, 2]. These equations possess
special travelling wave solutions known as Scott Russel’s solitary waves or solitons [3, 4],
cnoidal waves [5], and dnoidal waves ([6], Section 3 below). The cnoidal and dnoidal wave
solutions are periodic travelling waves written in terms of the Jacobi elliptic functions.

Our purpose is to investigate the nonlinear stability of periodic travelling wave
solutions φ(x − ct) of the modified Boussinesq equation

utt − uxx +
(
u3 + uxx

)
xx

= 0. (1.1)

The above equation (1.1), has the following equivalent form as a Hamiltonian system

ut = vx,

vt =
(
u − uxx − u3

)
x

(1.2)
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for x ∈ R, t > 0. Here subscripts t and x denote partial differentiation with respect to t and x.
The above equation conserves energy, namely, the integral

H(u, v) =
1
2

∫L
0

(
u2 + v2 + u2x −

u4

2

)
dx (1.3)

does not depend on the time t. Another conservation law is the momentum

I(u, v) =
∫L
0
uvdx (1.4)

which turns out to be a relevant quantity in the investigation of stability properties of
travelling waves.

To make precise the notion of stability we use, let τs be the translation by s, τsφ(x) =
φ(x+s) for x ∈ R and let

−→
φc = (φc(x−ct), ψc(x−ct)) be an L-periodic travelling wave solution

to system (1.2), where φc : R → R, ψc : R → R, L > 0 is the period of φc and ψc, and c is the
wave’s speed of propagation. If we define the

−→
φc-orbit to be the set Ω−→

φc
= {−→φc(· + s), s ∈ R},

−→
φc is called orbitally stable if profiles near its orbit remain near the orbit for as long as it exists.

So, we have the following definition. Let X be a Hilbert space.

Definition 1.1 (Orbital Stability). Let
−→
φc = (φc(x − ct), ψc(x − ct)) ∈ X be an L-periodic

travelling wave solution to system (1.2). We say that the orbit Ω−→
φc

is stable in the X-sense

by the flow of system (1.2) if for each ε > 0 there exists δ = δ(ε) > 0 such that if −→u0 ∈ X and
infs∈R‖−→u0 − τs(

−→
φc)‖X < δ, then the solution −→u(t) of (1.2) with −→u(0) = −→u0 satisfies, for all t for

which −→u = (u, v) exists,

inf
s∈R

∥∥∥−→u(t) − τs
(−→
φc

)∥∥∥
X
< ε. (1.5)

Otherwise, we say that Ω−→
φc

is X-unstable.

Here, X := H1
per([0, L]) × L2

per([0, L]). (The choice of norm in (1.5) is dictated by the

form of the Hessian or “linearized Hamiltonian”H ′′(
−→
φc) + cI

′′(
−→
φc) and varies from problem

to problem.)
Inserting the L-periodic travelling wave solution

−→
φc = (φc(x − ct), ψc(x − ct)) in (1.2)

leads to the system

−cφ′
c(ξ) = ψ

′
c(ξ),

−cψ ′
c(ξ) =

(
φc − φ′′

c − φ3
c

)′
(ξ),

(1.6)
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where ’ connotes d/dξ and ξ = x − ct. Integrating the latter system, we obtain the nonlinear
system

−cφ(ξ) = ψ(ξ) +K1,

−cψ(ξ) = φ(ξ) − φ′′(ξ) − φ3(ξ) +K2,
(1.7)

whereK1, K2 are integration constants, which will be considered equal to zero here. Then, we
obtain

(
H ′ + cI ′

)(−→
φc

)
= 0. (1.8)

Next observe that relation (1.8) characterizes
−→
φc = (φc, ψc) as a critical point of H subject to

the constraint I(u, v) = I(φc, ψc). In order to prove instability for
−→
φc, we will examine the

relation between the concavity properties of the function

d(c) = H
(−→
φc(·)
)
+ cI
(−→
φc(·)
)
, (1.9)

and the properties of the functional H near the critical point
−→
φc under the constraint I =

constant.
Bona and Sachs in [3] proved that the well-known solitary waves

−→
φ = (φc(x−ct), ψc(x−

ct)) of the generalized Boussinesq equation

ut = vx,

vt = (u − uxx − up)x
(1.10)

are stable in theH1(R) × L2(R) norm for speeds c such that (p − 1)/4 < c2 < 1 if d in (1.9) is a
convex function of c. The aim of this paper is to prove that the solutions given by Theorem 3.2
below are unstable if d(c) is concave. The proof follows the main ideas of Liu [4] (see also
Bona et al. in [7]). Differently from the solitary wave solutions case, we do not know explicit
periodic travelling wave solutions in the x-variable for the system (1.10) for every p. For this
reason, we will treat here only the case p = 3. Stability of dnoidal waves for this case is also
treated by the author in a forthcoming paper [6]. Regarding the classical case p = 2, in [5] the
author proves nonlinear stability properties of a class of L-periodic travelling wave solutions,
called cnoidal waves, in the energy space H1

per([0, L]) × L2
per([0, L]), by periodic disturbances

with period L.
In this paper, we first show the existence of a smooth curve c �→ −→

φc = (φc, ψc) of
dnoidal wave solutions to system (1.2), with a fixed period L (Theorem 3.2 below). Then, a
proof of orbital instability of these solutions is established in X for a certain range of their
speeds of propagation and periods, based on a modification of the general procedure of
[8]. More precisely, our main result regarding stability of the dnoidal waves

−→
φc, given by

Theorem 3.2 below, is the following.
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Theorem 1.2 (Instability Theorem). Let c ∈ (−1, 1) and L > π
√
2. Then the orbit Ω−→

φc
is X-

unstable with respect to the flow of the modified Boussinesq equation, provided c2 < 1/2 and 1 − c2 >
2π2/L2.

The plan of this paper is as follows. A discussion of the evolution equation (1.1) and
its natural invariants is given in Section 2. In Section 3 we introduce a smooth family {−→φc}c
on the parameter c, of positive dnoidal wave solutions to system (1.2), with a fixed period
L (Theorem 3.2 below) and in Section 4 we present a complete study of the spectrum of the
operator Lc. The existence of the smooth curve c �→ −→

φc will allow us to differentiate the
function d(c). Then, in section 5, we prove that d(c) is indeed concave, for a certain range of
speeds and periods of

−→
φc, which will imply our result. In Section 6 the Lyapunov functional

[8, 9] is constructed and the instability result is proved. In Appendix, we give a review of
those results about Jacobian elliptic functions which we use throughout the paper.

We remark that orbital instability of
−→
φ is established with respect to perturbations of

periodic functions of the same period L in X.
The following notation will be used:

〈
f, g
〉
0 =
〈
f, g
〉
L2
per([0,L])

=
∫L
0
fgdx,

〈
f, g
〉
1 =
〈
f, g
〉
H1

per([0,L])
=
∫L
0
fgdx +

∫L
0
f ′g ′dx,

∥∥f∥∥0 =
∥∥f∥∥L2

per([0,L])
=

(∫L
0
f2dx

)1/2

,

∥∥f∥∥1 =
∥∥f∥∥H1

per([0,L])
=

(∫L
0
f2dx +

∫L
0
f

′2dx

)1/2

,

〈(
f, g
)
, (u, v)

〉
=
〈(
f, g
)
, (u, v)

〉
L2
per([0,L])×L2

per([0,L])
=
∫L
0
fudx +

∫L
0
gvdx,

∥∥(f, g)∥∥ = ∥∥(f, g)∥∥L2
per([0,L])×L2

per([0,L])
=

(∫L
0
f2dx +

∫L
0
g2dx

)1/2

,

∥∥(f, g)∥∥X =
∥∥(f, g)∥∥H1

per([0,L])×L2
per([0,L])

=

(∫L
0
f2dx +

∫L
0
f

′2dx +
∫L
0
g2dx

)1/2

.

(1.11)

2. The Evolution Equation

The next lemma is the periodic version of a particular case of [4, Lemma 1.1].

Lemma 2.1. Let −→u0 = (u0, v0) ∈ X ≡ H1
per([0, L]) × L2

per([0, L]). Then there exist T > 0 and a
uniquely weak solution −→u = (u, v) of (1.2) with −→u(0) = −→u0.
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Proof. In order to obtain the existence of weak solutions for the system (1.2), we consider the
approximate problem

−→ut +A−→u = F
(−→u),

−→u(0) = −→un0 ,
(2.1)

with −→un0 ∈ D(A) = H3
per([0, L]) ×H1

per([0, L]) and
−→un0 → −→u0 in X, where

A =
(

0 −∂x
−∂x + ∂3x 0

)
(2.2)

and −A is the infinitesimal generator of a C0 group of unitary operators in X and F =
F(t, u, v) =

(
0

−∂x(u3)
)
. Since F ∈ C∞, the map (u, v) → (0, ∂x(u3)) is locally Lipschitz on

X. But then for all −→un0 ∈ D(A), there exists a Tn > 0 such that the initial value problem (2.1)
has a unique solution −→un ∈ C([0, Tn);D(A)) ∩ C1([0, Tn);X). Moreover, if Tn <∞, then

lim
t→ Tn

∥∥∥−→un(t)
∥∥∥
X
= ∞, (2.3)

by the semigroup theory [10]. By (2.1), we estimate on [0, Tn)

1
2
d

dt

∥∥∥−→un(t)
∥∥∥
2

X
=
〈−→un(t), ∂t−→un(t)

〉
X
=
〈−→un,−A−→un + F

(−→un
)〉

X

≤
∣∣∣∣∣
∫L
0
∂x(un)

3(t) · vn(t)dx
∣∣∣∣∣ ≤
∥∥∥∂x(un)3(t)

∥∥∥
0
‖vn(t)‖0

= 3

(∫L
0

∣∣∣(un(t))2(un(t))x
∣∣∣
2
dx

)1/2

‖vn(t)‖0

≤ 3‖un(t)‖2∞
(∫L

0
(unx(t))

2dx

)1/2

‖vn(t)‖0

≤ 3S(L)‖un(t)‖21‖unx‖0‖vn(t)‖0

≤ 3S(L)
∥∥∥−→un(t)

∥∥∥
2

X

∥∥∥−→un
∥∥∥
2

X
,

(2.4)

where we used in the first equality above that −A−→un ∈ X.
Consider now f̃(s) = 3S(L)s, which is a continuous, positive and increasing function

on R
+. Then by Gronwall’s inequality, it follows that

∥∥∥−→un(t)
∥∥∥
2

X
≤
∥∥∥−→un0
∥∥∥
2

X
exp

[∫ t
0
f̃

(∥∥∥−→un(τ)
∥∥∥
2

X

)
dτ

]
, on [0, Tn). (2.5)
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We compare ‖−→un(t)‖2X with the maximal solution y(t)

y(t) ≡
1
(
supn
∥∥∥−→un0
∥∥∥
X

)2

1 − 3St
(
supn
∥∥∥−→un0
∥∥∥
X

)2 ,

t ∈ [0, T0) ≡

⎡
⎢⎣0, 1

3S
(
supn
∥∥∥−→un0
∥∥∥
X

)2

⎞
⎟⎠

(2.6)

of the scalar Cauchy problem

dy

dt
= f̃
(
y
)
y,

y(0) = y0 = sup
n

∥∥∥−→un0
∥∥∥
2

X
.

(2.7)

It follows that

∥∥∥−→un(t)
∥∥∥
2

X
≤ y(t), on [0, Tn) ∩ [0, T0). (2.8)

Let T < T0. Then
−→un is defined on [0, T] for all n. Moreover,

∥∥∥−→un(t)
∥∥∥
2

X
≤ C0y0 = K2 (2.9)

on [0, T], where K is a constant independent of n, since by (2.5), (2.8), and the fact that y(t)
is bounded on [0, T], we have the following inequality on [0, T]:

∥∥∥−→un(t)
∥∥∥
2

X
≤
∥∥∥−→un0
∥∥∥
2

X
exp

[∫ t
0
f̃

(∥∥∥−→un(τ)
∥∥∥
2

X

)
dτ

]

≤
∥∥∥−→un0
∥∥∥
2

X
exp

[∫T
0
f̃
(
y(τ)
)
dτ

]
≤ C0(T)

∥∥∥−→un0
∥∥∥
2

X
≤ C0(T)y0.

(2.10)

Finally, from (2.9) and standard weak limit arguments, we have the existence of a
unique solution −→u(t) ∈ C([0, T];X).

Proposition 2.2. The unique solution −→u(t) of (1.2) with initial data −→u(0) = −→u0, which is given by
Lemma 2.1, satisfies

H
(−→u(t)) = H(u, v) = constant, 0,

I
(−→u(t)) = I(u, v) = constant, 0.

(2.11)

The proof is elementary.
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3. Existence of a Smooth Curve of Dnoidal Wave Solutions with
a Fixed Period L for the System (1.2)

This section is devoted to establish the existence of a smooth curve of periodic travelling
wave solutions for the system (1.2), which are solutions of the form

−→u(x, t) = (u(x, t), v(x, t)) =
(
φ(x − ct), ψ(x − ct)). (3.1)

Substituting (3.1) in (1.2) leads to the system

−cφ′(ξ) = ψ ′(ξ),

−cψ ′(ξ) =
(
φ − φ′′ − φ3

)′
(ξ),

(3.2)

where ’ denotes d/dξ and ξ = x − ct. Integrating (3.2), we obtain the nonlinear system

−cφ(ξ) = ψ(ξ) +K1,

−cψ(ξ) = φ(ξ) − φ′′(ξ) − φ3(ξ) +K2,
(3.3)

where K1, K2 are integration constants, which will be considered equal to zero here. Then, φ
must satisfy

φ′′ −wφ + φ3 = 0, (3.4)

where w = w(c) = 1 − c2 will be considered positive.
Next, we show how to construct a smooth curve of solutions for (3.4) with a fixed

fundamental period L, and depending on the parameter c. In order to do this, we first observe
from (3.4) that φ satisfies the first-order equation

(
φ′)2 = 1

2

[
−φ4 + 2wφ2 + 4Bφ

]
=

1
2

(
η21 − φ2

)(
φ2 − η22

)
, (3.5)

where Bφ is an integration constant and −η1, η1, −η2, η2 are the real zeros of the polynomial
pφ(t) = −t4 + 2wt2 + 4Bφ, which satisfy the relations

2w = η21 + η
2
2,

4Bφ = −η21η22.
(3.6)

Moreover, we assume without lost of generality that η1 > η2 > 0 and we obtain from (3.5)
that η2 ≤ φ ≤ η1. By defining ϕ = φ/η1 and k2 = (η21 −η22)/η21, (3.5) becomes (ϕ′)2 = (η21/2)(1−
ϕ2)(ϕ2 − 1 + k2). We also impose the crest of the wave to be at ξ = 0, that is, φ(0) = 1. Now,
we define a further variable ψ via the relation ϕ2 = 1 − k2sin2ψ and so we get that (ψ ′)2 =
(η21/2)(1 − k2sin2ψ). Then we obtain for l = η1/

√
2 that

∫ψ(ξ)
0 (dt/

√
1 − k2sin2t) = lξ. Therefore,
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from the definition of the Jacobian elliptic function y = sn(u; k) (see in the appendix or in
Byrd and Friedman [11]), we can write the last equality as sinψ = sn(lξ; k) and hence ϕ(ξ) =√
1 − k2sn2(lξ; k) = dn(lξ; k). Returning to the initial variable, we obtain the called dnoidal

wave solution associated to (3.4),

φ(ξ) ≡ φ(ξ;η1, η2
)
= η1dn

(
η1√
2
ξ; k
)

(3.7)

with

k2 =
η21 − η22
η21

, η21 + η
2
2 = 2w, 0 < η2 < η1. (3.8)

Next, dn has fundamental period 2K, dn(u + 2K; k) = dn(u; k), where K = K(k) represents
the complete elliptic integral of the first kind (see appendix); it follows that the dnoidal wave
φ in (3.7) has fundamental period, Tφ, given by

Tφ ≡ 2
√
2

η1
K(k). (3.9)

Now, we show that Tφ >
√
2π/

√
w. First, we express Tφ as a function of η2 and w. In fact,

for every η2 ∈ (0,
√
w), there is a unique η1 ∈ (

√
w,

√
2w) satisfying the first relation in (3.6),

namely, η1 =
√
2w − η22. So, from (3.9)we obtain

Tφ
(
η2, w

)
=

2
√
2√

2w − η22
K
(
k
(
η2
))
, with k2

(
η2, w

)
=

2w − 2η22
2w − η22

. (3.10)

Then, by fixing w > 0, we have that Tφ → +∞ as η2 → 0 and Tφ(η2) → (π
√
2/

√
w)

as η2 → √
w. So, since the mapping η2 �→ Tφw(η2) is strictly decreasing (see proof of

Proposition 3.1), it follows that Tφ >
√
2π/

√
w.

Now, we obtain a dnoidal wave solution with period L. For w0 > 2π2/L2, there is a
unique η2,0 ∈ (0,

√
w0) such that Tφ(η2,0, w0) = L. So, for η1,0 such that η21,0 + η

2
2,0 = 2w0, the

dnoidal wave φ(·) = φ(·, η1,0, η2,0) has a fundamental period L and satisfies (3.4)withw = w0.
By the above analysis the dnoidal wave φ(·, η1, η2) in (3.7) is completely determined

by w and η2 and will be denoted by φw(·;η2) or φw.
The next result, which corresponds to Theorem 2.1 and Corollary 2.2 in [12], is

concerned with the existence of a smooth curve of dnoidal wave solutions for (3.4).

Proposition 3.1. Let L > 0 be arbitrary but fixed. Consider w0 > 2π2/L2 and the unique η2,0 =
η2(w0) ∈ (0,

√
w0) such that Tφw0

= L. Then,
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(1) there exist an interval I(w0) around w0, an interval J(η2,0) around η2,0, and a unique
smooth function Λ : I(w0) → J(η2,0) such that Λ(w0) = η2,0 and

2
√
2√

2w − η22
K(k) = L, (3.11)

where w ∈ I(w0), η2 = Λ(w), and k2 = k2(w) ∈ (0, 1) is defined by (3.10);

(2) the positive dnoidal wave solution in (3.7), φw(·;η1, η2), determined by η1 ≡ η1(w) =√
2w − η22, η2 ≡ η2(w), has fundamental period L and satisfies (3.4). Moreover, the

mapping w ∈ I(w0) → φw ∈ H1
per([0, L])is a smooth function;

(3) I(w0) can be chosen as (2π2/L2,+∞);

(4) the mapping Λ : (2π2/L2,+∞) → J(η2,0) is strictly decreasing.

Proof (see [12]). From this result we conclude the following existence theorem.

Theorem 3.2. Let L > π
√
2. Then there exists a smooth curve of dnoidal wave solutions for the

system (1.2) inHn
per([0, L]) ×Hm

per([0, L]), n,m ≥ 0 which satisfy the system (3.3) with integration
constants K1 = K2 = 0; this curve is given, for w(c) = 1 − c2, by

c ∈
⎛
⎝−
√
1 − 2π2

L2
,

√
1 − 2π2

L2

⎞
⎠ −→ (φw(c), ψw(c)

)
. (3.12)

Moreover, φc(ξ) := φw(c)(ξ) =
√
2w − η22dn[(

√
2w − η22/

√
2)ξ; k], ψw(c) = −cφw(c), where

the smooth function η2 ≡ η2(w(c)) is given by Proposition 3.1 and k = k(w(c)) by (3.10).

Remark 3.3. ∂
−→
φc/∂c is in H∞

per([0, L]) × H∞
per([0, L]) as soon as in H1

per([0, L]) × H1
per([0, L]).

This follows from the equation and a bootstrap argument.

4. Spectral Analysis

In this section, we study the spectral properties associated to the linear operator

Lc = H ′′(φw(c), ψw(c)
)
+ cI ′′

(
φw(c), ψw(c)

)
(4.1)

determined by the periodic solutions (φw(c), ψw(c)) found in Theorem 3.2. We compute the
Hessian operator Lc by calculating the associated quadratic form, which is denoted by Qc.
By definition, Qc(g, h) is the coefficient of ε2 in

H
(
φw(c) + εg, ψw(c) + εh

)
+ cI
(
φw(c) + εg, ψw(c) + εh

)
, (4.2)
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and so is given by

Qc

(
g, h
)
=
∫L
0

{
1
2

(
g2 + g2

x + h
2
)
− 3
2
φ2
w(c)g

2 + cgh
}
dx

=
∫L
0

{
1
2

[(
1 − c2

)
g2 + g

′2 − 3φ2
w(c)g

2
]
+
1
2
(
h + cg

)2
dx

}

:= Q1
c

(
g
)
+
1
2
∥∥h + cg

∥∥2
0.

(4.3)

Note thatQc is the sum of the quadratic formQ1
c associated to the operator −(d2/dx2)+1−c2−

3φ2
w and the nonnegative term (1/2)‖h + cg‖20. From (3.2) for the dnoidal wave (φw(c), ψw(c)),

it follows that g = φ′
w(c) and h = ψ ′

w(c) satisfy Lc(g, h) = 0. To see that this is the only
eigenfunction corresponding to the eigenvalue zero and the other expected properties of the
operatorLc, wewill first consider the following result about the periodic eigenvalue problem:

Ldnξ :=

(
− d2

dx2
+w − 3φ2

w

)
ξ = λ,

ξ(0) = ξ(L), ξ′(0) = ξ′(L),

(4.4)

where φw is given by Proposition 3.1.
The following result is a consequence of the Floquet theory (Magnus andWinkler [13])

and can be found in [12].

Theorem 4.1. Let Ldn be the linear operator defined on H2
per([0, L]) by (4.4). Then the first three

eigenvalues β1, β2, and β3 of Ldn are simple, and satisfy β1 < 0 = β2 < β3, and φ′ is the eigenfunction
of β2. Moreover, the rest of the spectrum consists of a discrete set of eigenvalues which are double.

To prove that the kernel of Lc is spanned by (d/dx)(φw(c), ψw(c)), consider the
quadratic formQc(g, h) as the pairing of (g, h) against (g̃, h̃) in theH1

per([0, L])×L2
per([0, L])−

H−1
per([0, L]) × L2

per([0, L]) duality, where (g̃, h̃)t is the unbounded operator

L̃c :=

(
1 − ∂xx − 3φ2

w(c) c

c 1

)
(4.5)

applied to (g, h)t. Then L̃c(g, h)
t = 0 implies

−g ′′ +
(
1 − c2

)
g − 3φ2

w(c)g = 0,

h = −cg.
(4.6)

Now, from the properties of the operator Ldn = −∂2x +w − 3φ2
w established in Theorem 4.1, it

follows that g = λφ′
w(c) and h = −cg = −cλφ′

w(c) = λψ
′
w(c), where λ/= 0 ∈ R.
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To show that there is a single, simple, negative eigenvalue, consider Q1
c defined in

(4.3) above. By Theorem 4.1, the operator Ldn has exactly one negative eigenvalue which is
simple, say λ0, with associated eigenfunction ζ > 0. Thus, Q1

c achieves a negative value and
so does Qc. In fact, considering

−→
ζ = (ζ,−cζ), we have Lc(

−→
ζ ) = Q1

c(ζ) + (1/2)‖cζ − cζ‖2 =
Q1
c(ζ) = (1/2)λ0 < 0. Denoting by β0 the lowest eigenvalue of Lc, we will show that the next

eigenvalue β1 is 0, which is known to be simple, and consequently β2 is in fact strictly positive.
These results are proved using the (min-max) Rayley-Ritz characterization of eigenvalues
(see [14, 15]), namely,

β1 = max
(φ1,ψ1)∈X

min
(g,h)∈X\{0}

〈g,φ1〉1
+〈h,ψ1〉0

=0

Qc

(
g, h
)

∥∥g∥∥21 + ‖h‖20
. (4.7)

Choosing φ1 = ζ, ψ1 = 0, we obtain the lower estimate

β1 ≥ min
(g,h)∈X\{0}
〈g,ζ〉1

=0

Qc

(
g, h
)

∥∥g∥∥21 + ‖h‖20
. (4.8)

The right-hand side of (4.8) is nonnegative on the subspace {(g, h) ∈ X \ {0}; (g, ζ)1 = 0},
since Q1

c(g) ≥ 0 by Theorem 4.1. Thus, β1 = 0 and, from earlier considerations, β1 is simple
and β2 > 0.

The above analysis can be summarized in the form of the following theorem.

Theorem 4.2. LetLc be the linear operator defined onH2
per([0, L])×H1

per([0, L]) by (4.1). Then the

first two eigenvalues β0 and β1 of Lc are simple and satisfy β0 < β1 = 0;
−→
ζ c = (ζ1,c, ζ2,c), with ζ1,c > 0

and
−→
φ

′
c being the eigenfunctions of β0 and β1, respectively. Moreover, the rest of the spectrum consists

of a discrete set of eigenvalues and the mapping c → −→
ζ c is continuous with values inH2

per([0, L]) ×
H1

per([0, L]).

5. Concavity of d(c)

Lemma 5.1. Let c ∈ (−1, 1) and L > π
√
2. Then the function d(c) is concave, provided c2 < 1/2

and 1 − c2 > 2π2/L2.

Remark 5.2. Relation (1.8) implies that d′′(c) < 0 is equivalent to the condition

d

dc
I
(
φw(c), ψw(c)

)
< 0. (5.1)
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Proof of Lemma 5.1. Note that

d

dc
I
(
φw, ψw

)
=

d

dc

∫L
0
φwψw = −

∫L
0
φ2
wdx − c d

dw

[∫L
0
φ2
wdx

]
dw

dc

= −
∫L
0
φ2
wdx + 2c2

d

dw

[∫L
0
φ2
wdx

]
.

(5.2)

Now,

d

dw

1
2

∫L
0
φ2
wdx =

4
L

d

dk
[K(k)E(k)]

dk

dw
> 0. (5.3)

Indeed, we observe from (3.7), (3.8), and (3.11) that

∥∥φw
∥∥2 =

√
2η1

∫ (η1/√2)L

0
dn2(x; k)dx =

8K(k)
L

∫K
0
dn2(x; k)dx, (5.4)

where we used the fact that the Jacobi elliptic function dn has fundamental period 2K and
is an even function. Now, by using that

∫K
0 cn2(x; k)dx = (1/k2)[E(k) − (k′)2K(k)] and

dn2(x; k) = 1 − k2 + k2cn2(x; k), it follows from (5.4) that

1
2

∫L
0
φ2
wdx =

4
L
K(k)E(k). (5.5)

Now, Proposition 3.1 and Theorem 3.2 imply that the map w → Λ(w) ≡ η2(w) is strictly
decreasing and from (3.10), with η2 = η2(w), we have that

dk

dw
=

1
2k

⎡
⎣2η

2
2 − 4wη2η′2(
2w − η22

)2

⎤
⎦ > 0. (5.6)

Thus, since k ∈ (0, 1) → K(k)E(k) is strictly increasing (see Appendix), the claim (5.3)
follows from (5.5) and (5.6).

So, from (5.2), (5.3), and (5.5), we get

d

dc
I
(
φw, ψw

)
= − 8

L
K(k)E(k) +

16c2

L

d

dk
[K(k)E(k)]

dk

dw
. (5.7)
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Now, considering the function Ψ defined by (2.12) in [12] and using (5.6), we obtain

∂Ψ
∂w

=
2
√
2
√
2w − η22(dK/dw)

(
k
(
η2, w

)) − 2
√
2K
(
k
(
η2, w

))(
2w − η22

)−(1/2)
(
2w − η22

)

=
2
√
2
√
2w − η22(dK/dk)

(
k
(
η2, w

))(
η22/k

(
2w − η22

)2)

(
2w − η22

)

− 2
√
2K
(
k
(
η2, w

))(
2w − η22

)−(1/2)
(
2w − η22

) ,

(5.8)

hence

dk

dw
=

1

2k
(
2w − η22

)2
{
2η22 − 4w

[
k
(
2w − η22

)
K − η22(dK/dk)

k
(
2w − η22

)
K − 2w(dK/dk)

]}
> 0. (5.9)

From (5.7), (5.9), and using that 2w − η22 = η22/(k
′)2, we obtain θ(L/8)(dI(φw, ψw)/

dc) = θ{−EK + 2c2((E2 − k′2K2)/kk
′2)(dk/dw)} = −θEK + 2c2(E2 − k′2K2)K(η22 − 2w)(k′)2 =

K{−η22E(k2η22K − 2wE + 2wk
′2K)} +K{2c2(E2 − k′2K2)(k′)2(η22 − 2w)}, or equivalently,

θ
L

8K
dI
(
φw, ψw

)

dc
= −η22E

(
k2η22K − 2wE + 2wk

′2K
)
+ 2c2

(
k′
)2(

E2 − k′2K2
)(
η22 − 2w

)

= η22
(
−2wk′2 − η22k2

)
EK +

(
2c2
(
k′
)2
η22 − 4c2w

(
k′
)2 + 2wη22

)
E2

+ 2c2
(
k′
)2
η22K

2,

(5.10)

where θ = η22(k
2η22K − 2wE + 2wk

′2K) < 0.
Now, given that (k′)2 = η22/(2w − η22), we rewrite the coefficient of E2 in (5.10) as

2c2
(
k′
)2
η22 − 4c2w

(
k′
)2 + 2wη22 = 2c2

η42
2w − η22

− 4c2w
η22

2w − η22
+ 2wη22

=
2c2η42 − 4c2wη22 + 4w2η22 − 2wη42

2w − η22

=
η22
(
2w − η22

)(
2w − 2c2

)

2w − η22
= η22
(
2w − 2c2

)
.

(5.11)

Also, the coefficient of EK can be rewritten as η22(−2wk
′2 − η22k2) = 2η42. Thus,

L

8K
dI
(
φw, ψw

)

dc
=

−2η42EK + 2η22
(
w − c2)E2 + 2c2(k′)2η22K

2

η22
(
k2η22K − 2wE + 2wk′2K

) . (5.12)
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We remark that we can write w as a function of complete elliptic integrals. In fact, by
integrating (3.4) from 0 to L, we obtain

w = w(c) =

∫L
0 φ

3
w(ξ)dξ∫L

0 φw(ξ)dξ
, (5.13)

which is well defined, since the solution φw is positive.
Now, using (3.7), the expression 314.01 in [11], and the fact that F(π/2; k) = K(k) (see

Appendix), we obtain

∫L
0
φw(ξ)dξ =

∫L
0
η1dn

(
η1√
2
ξ; k
)
dξ =

√
2
∫η1L/√2

0
dn
(
y; k
)
dy

=
√
2
∫2K
0

dn
(
y; k
)
dy = 2

√
2
∫K
0
dn
(
y; k
)
dy = π

√
2.

(5.14)

Similarly using (3.7), the expression 314.03 in [11], and the special values sn0 = 0, and snK =
1, cnK = 0 (see Appendix), it follows that

∫L
0
φ3
w(ξ)dξ =

∫L
0
η31dn

3
(
η1√
2
ξ; k
)
dξ =

√
2η21

∫2K
0

dn3(y; k)dξ

= 2
√
2η21

∫K
0
dn3(y; k)dξ = 16

√
2
K2

L2

1
2

[(
1 +
(
k′
)2)π

2
+ k2snKcnK

]

= 4π
√
2
(
1 +
(
k′
)2)K2

L2
.

(5.15)

Substituting (5.14) and (5.15) in (5.13), we deduce that

w(c) = 1 − c2 = 4
(
1 +
(
k′
)2)K2

L2
. (5.16)

Using (5.16) and η22 = 2w(k′)2/(1 + (k′)2), the numerator of (5.12)will be positive if and only
if c2(k′)2K2 > (c2 −w)E2 + η22EK ⇔ (1 −w)(k′)2K2 > (1 − 2w)E2 + (2w(k′)2/(1 + (k′)2))EK ⇔
w[2E2−(k′)2K2−(2(k′)2/(1+k′2))EK] > E2−(k′)2K2 ⇔ w > ((E2−(k′)2K2)/((2E2−(k′)2K2)−
(2(k′)2/(1 + k

′2))EK)).

Remark 5.3. 2E2 − (k′)2K2 − (2(k′)2/(1 + k
′2))EK > 0 since the functions EK and E + K are

strictly increasing (see Appendix).

claim 1.

lim
k→ 0

E2 − (k′)2K2

2E2 − (k′)2K2 −
(
2(k′)2/(1 + k′2)

)
EK

=
2
5
. (5.17)
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Proof of claim. Indeed, denoting by f(k) := E2−(k′)2K2 and by g(k) := E2−(2(k′)2/(1+k′2))EK,
we use L′Hospital’s rule to find the limit (5.17). Specifically, we show using (A.3) that

lim
k→ 0

f (j)(k) = lim
k→ 0

g(j)(k) = 0,
(
j = 0, 1, 2, 3

)
,

lim
k→ 0

f (4)(k) =
3π2

4
, lim

k→ 0
g(4)(k) =

9π2

8
,

(5.18)

which implies our claim.

Note that, by limk→ 1k
′2K2 = 0, we have that

lim
k→ 1

E2 − (k′)2K2

E2 − (k′)2K2 + E2 −
(
2(k′)2/(1 + k′2)

)
EK

=
1
2
. (5.19)

Moreover, 0 < ((E2−(k′)2K2)/(E2−(k′)2K2+E2−(2(k′)2/(1+k′2))EK)) < 1/2 for all k ∈ (0, 1),
since E2 − (2k

′2/(1+k
′2))K2 > E2 −k′2K2 for all k ∈ (0, 1). In, addition we get (1+k

′2)K > 2E,
since the functionm(k) := (1 + k

′2)K − 2E has the following properties:m(0) = 0 andm′(k) >
0 for all k ∈ (0, 1). We conclude that the function

f(k)
f(k) + g(k)

=
E2 − (k′)2K2

E2 − (k′)2K2 + E2 −
(
2(k′)2/(1 + k′2)

)
EK

(5.20)

is strictly positive on [0, 1]. Now, continuity plus (5.17) and (5.19) implies that c0 :=
max0≤k≤1(f(k)/(f(k) + g(k))) satisfies 0 < c0 ≤ 1/2.

This concludes the lemma.

6. Instability

Consider the function d(c) defined by (1.9). We now examine the relation between concavity
properties of d and the properties of the functionalH near the critical point

−→
φc subject to the

constraint I(−→u) = I(−→φc).

Theorem 6.1. Let c /= 0 be fixed. If d′′(c) < 0, then there exists a curve w → −→
Φw which satisfies

I(
−→
Φw) = I(

−→
φc),

−→
Φc =

−→
φc, and on whichH(−→u) has a strict local maximum at −→u =

−→
φc.

Proof. We follow the ideas of [3, 8, 9]. Let
−→
ζ c be the unique, negative eigenfunction of Lc.

Define
−→
Φw :=

−→
φw +s(w)

−→
ζ c, forw near c, where s(w) satisfies s(c) = 0 and I(

−→
Φw) = I(

−→
φc). The

function s(w) can be defined by the implicit function theorem, since

∂

∂s
I
(−→
φw + s

−→
ζ c

)∣∣∣∣
{s=0,w=c}

=
∫L
0

(
φcζ2,c + ψcζ1,c

)
dx, (6.1)
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where
−→
ζ c = (ζ1,c, ζ2,c) with ζ2,c = (c/(β0 − 1))ζ1,c, and β0 is the unique negative eigenvalue of

Lc and ψc = −cφc, φc > 0. Thus

∂

∂s
I
(−→
φw + s

−→
ζ c

)∣∣∣∣
{s=0,w=c}

= −c
(
1 +

1
1 − β0

)∫L
0
φcζ1,cdx /= 0. (6.2)

It is easy to see that

d2

dw2
I
(−→
Φw

)∣∣∣∣∣
{w=c}

=
〈Lc

−→y,−→y〉, (6.3)

where −→y = ∂
−→
Φw/∂w|{w=c} = ∂

−→
φc/∂c + s

′(c)
−→
ζ c. In fact, by some calculations, we have that

d′′(c) = −s′(c)
〈
I ′
(−→
φc

)
,
−→
ζ c

〉
,

Lc
−→y = −I ′

(−→
φc

)
+ s′(c)Lc

−→
ζ c,

(6.4)

so that
〈Lc

−→y,−→y〉 = −s′(c)
〈
I ′
(−→
φc

)
,
−→
ζ c

〉
+ s′(c)2

〈−→
ζ c,Lc

−→
ζ c

〉
< 0 (6.5)

in view of the fact that d′′(c) < 0.

To prove the instability, we need the following lemmas which are proved in [8] and as
in the analogous case of [7]; therefore, we state them without proof.

Lemma 6.2. There exist ε > 0 and a uniqueC1 mapα : Uε → R, such that, for any −→u = (u, v) ∈ Uε

and r ∈ R,

〈−→u
(
· + α(−→u), ∂x

−→
φc

)〉
= 0,

α
(−→u(· + r)) = α(−→u) − r, modulo the period,

α′
(−→u) = ∂x

−→
φc

(· − α(−→u))〈−→u, ∂2x
−→
φc

(· − α(−→u))
〉 ,

(6.6)

whereUε is the “tube”

Uε =
{
−→u ∈ X : inf

s∈R

∥∥∥−→u − τs
(−→
φc

)∥∥∥
X
< ε

}
. (6.7)

Definition 6.3. For −→u ∈ Uε, define B(
−→u) by the formula

B
(−→u) = −→y(· − α(−→u)) −K∂xα′

(−→u), (6.8)

where K =
(
0 1
1 0

)
.
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By Lemma 6.2, B may also be expressed as

B
(−→u) = −→y(· − α(−→u)) −

〈
K−→y(· − α(−→u)),−→u〉〈
∂2x

−→
φc

(· − α(−→u)),−→u
〉K∂2x

−→
φc

(· − α(−→u)). (6.9)

Lemma 6.4. B is a C1 function from Uε into X, B commutes with translations, B(
−→
φc) = −→y , and

〈B(−→u), K−→u〉 = 0, for any −→u ∈ Uε.

Lemma 6.5. There exists a C1 function

Π :
{−→v ∈ Uε : I

(−→v) = I
(−→
φc

)}
−→ R (6.10)

which is invariant under translations, such that if −→v ∈ Uε with I(
−→v) = I(

−→
φc) and

−→v not being a

translation of
−→
φc, we have

H
(−→
φc

)
< H
(−→v) + Π

(−→v)〈H ′(−→v), B(−→v)〉. (6.11)

Lemma 6.6. The curve w → −→
Φw constructed in Theorem 6.1 satisfies H(

−→
Φw) < H(

−→
φc) for w/= c,

and 〈H ′(
−→
Φw), B(

−→
Φw)〉 changes sign as w passes through c, with c /= 0.

6.1. Proof of Theorem 1.2

First, consider c /= 0 with |c| < 1. Let ε > 0 be given small enough. By Lemma 6.6, we
can choose −→u0 ∈ X arbitrarily close to

−→
φc such that I(−→u0) = I(

−→
φc), H(−→u0) < H(

−→
φc) e

〈H ′(−→u0), and B(−→u0)〉 > 0. To prove the instability of
−→
φc, it suffices to show that there are

some elements −→u0 ∈ X which are close to
−→
φc but for which the solution −→u of (1.2) with initial

data −→u0 exits fromUε in finite time. Let [0, t1) denote themaximal interval for which −→u(·, t) lies
continuously inUε. By Lemma 2.1, t1 > 0. Let T be the maximum existence time of solution −→u
in (1.1) with initial data −→u0. If T is finite, then we have the X-instability for

−→
φc by definition.

So we may assume that T = +∞ and it suffices to show that t1 < +∞.
In view of Lemma 2.1 and Proposition 2.2, −→u has the following properties: −→u ∈

C([0, t1];X), −→u(0, x) = −→u0(x), and I(−→u(t)) and H(−→u(t)) are constant for t ∈ [0, t1).
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Let ρ(t) = α(−→u(t)), where α is defined by Lemma 6.2 and define

−→y(z) = d
−→
Φc

dc
=
d
−→
φc

dc
+ s′(c)−→χc,

−→
Y (x) =

∫x
0
K−→y(z)dz,

A(t) =
∫L
0

−→
Y
(
x − ρ(t)) · −→u(x, t)dx, for 0 ≤ t < t1,

−→γ =
∫L
0
K−→y(x)dx.

(6.12)

The function A(t) serves as a Lyapunov function in our argument.
Now we estimate dA/dt. By differentiation,

dA

dt
= −ρ′(t)

∫L
0
K−→y(x − ρ(t)) · −→u(x, t)dx +

∫L
0

−→
Y
(
x − ρ(t)) · ∂

−→u
∂t

(x, t)dx, (6.13)

where ∂−→u/∂t is in distribution sense. Since ρ′(t) = dα(−→u(t))/dt = 〈α′(−→u), (∂−→u/∂t)〉,

dA

dt
=

〈
−〈K−→y(· − ρ),−→u〉α′(−→u) + −→

Y
(· − ρ), ∂

−→u
∂t

〉
. (6.14)

Since

d−→u
dt

= JH ′(−→u), where J = ∂xK, ∂x
−→
Y = K−→y, (6.15)

it follows that

dA

dt
=
〈−〈K−→y(· − ρ(t)),−→u〉∂xα′

(−→u) −K−→y(· − ρ(t)), KH ′(−→u)〉

=
〈−〈K−→y(· − ρ(t)),−→u〉K∂xα′

(−→u) − −→y(· − ρ(t)),H ′(−→u)〉

= −〈B(−→u),H ′(−→u)〉.

(6.16)

Since

0 < H
(−→
φc

)
−H(−→u0

)
= H
(−→
φc

)
−H(−→u(t)), (6.17)

Lemma 6.5 implies that

0 < Π
(−→u(t))〈B(−→u(t)),H ′(−→u(t))〉. (6.18)
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By 〈B(−→u0),H ′(−→u0)〉 > 0 and continuity, we obtain 〈B(−→u(t)),H ′(−→u(t))〉 > 0 for 0 < t < t1.
Moreover, since −→u(t) ∈ Uε and Π(

−→
φc) = 0, we may assume that 0 < Π(−→u(t)) < 1 for 0 < t < t1,

by choosing ε smaller if necessary. Therefore, for all t ∈ [0, t1), by Lemma 6.5,

〈
B
(−→u(t)),H ′(−→u(t))〉 ≥ Π

(−→u(t))〈B(−→u(t)),H ′(−→u(t))〉

> H
(−→
φc

)
−H(−→u(t)) = H

(−→
φc

)
−H(−→u0

)
> 0.

(6.19)

Hence,

−dA
dt

≥ H
(−→
φc

)
−H(−→u0

)
> 0. (6.20)

So we conclude that t1 < +∞.
Finally, consider the case c = 0 and d′′(0) < 0.
LetN = {c | the dnoidal wave

−→
φc is X-unstable}. The curve c → −→

φc is continuous in
X. From the definition of stability, the setN is closed. Since

d′′(c) =

〈
I ′
(−→
φc

)
,
∂
−→
φc

∂c

〉
(6.21)

by Theorem 3.2, d′′(c) is continuous on (−
√
1 − (2π2/L2),

√
1 − (2π2/L2)) ⊂ (−1, 1). For any

nonzero sequence cn → 0, we have d′′(cn) → d′′(0) < 0. Hence d′′(cn) < 0 for large n. Thus
cn ∈N, for large n. It follows that c = 0 ∈N.

Appendix

In this Appendix, we recall some properties of the Jacobian elliptic integrals that have been
used in this work (see [11]).

First, we define the normal elliptic integral of the first and second kinds,

F
(
ϕ, k
)
:=
∫ϕ
0

dθ√
1 − k2sin2θ

=
∫y
0

dt√
(1 − t2)(1 − k2t2)

,

E
(
ϕ, k
)
:=
∫ϕ
0

√
1 − k2sin2θdθ =

∫y
0

√
1 − k2t2
1 − t2 dt,

(A.1)

respectively, where y = sinϕ.
In their algebraic forms, these two integrals possess the following properties: the first

is finite for all real (or complex) values of y, including infinity; the second has a simple pole
of order 1 for y = ∞. The number k is called the modulus. This number may take any real or
imaginary value. Here we wish to take 0 < k < 1. The number k′ is called the complementary
modulus and is related to k by k′ =

√
1 − k2. The variable ϕ is the argument of the normal

elliptic integrals. When y = 1, the integrals above are said to be complete. In this case, one
writes F(π/2, k) ≡ K(k) ≡ K and E(π/2, k) ≡ E(k) ≡ E.
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Some special values of K and E are K(0) = E(0) = π/2, E(1) = 1 and K(1) = +∞. For
k ∈ (0, 1), one has K′(k) > 0, K′′(k) > 0, E′(k) < 0, E′′(k) < 0, and E(k) < K(k). Moreover,
E(k) +K(k) and E(k)K(k) are strictly increasing functions in (0, 1).

Now, we give some derivatives of the complete elliptic integrals K and E and some
important limits involving these functions, that we used in this work (cf. [16] ou [11]):

dK

dk
=
E − k′2K

kk′2
,

dE

dk
=
E −K
k

,

d2E

dk2
= − 1

k

dK

dk
= −E − k′2K

k2k′2
,

(A.2)

lim
k→ 0

E − k′2K
k2

= lim
k→ 0

K − E
k2

=
π

4
,

lim
k→ 0

dE

dk
= lim

k→ 0

(E −K)
k2

k = 0,

lim
k→ 0

dK

dk
= 0, lim

k→ 0

d2E

dk2
= − lim

k→ 0

1
k

dK

dk
= −π

4
,

lim
k→ 0

d2K

dk2
= lim

k→ 0

[
1
k′2

K +

(
3k2 − 1

)

kk′2
dK

dk

]
=
π

4
,

lim
k→ 0

d3E

dk3
= 0, lim

k→ 0

d3K

dk3
= 0, lim

k→ 0

d4E

dk4
= −9π

16
, lim

k→ 0

d4K

dk4
=

27π
16

,

lim
k→ 0

1
k

(
dK

dk

)2

= lim
k→ 0

1
k′4

(
E − k′2K

)

k2
dK

dk
= 0.

(A.3)

Remark .7. To see that limk→ 0(d3K/dk3) = 0, we write K(k) = (π/2){∑∞
r=0((2r)!(2r)!/

24r(r!)4)k2r} (see [16, page 110]), and then we get

d3K

dk3
=
π

2
k

{∑
r≥2

(2r)!(2r)!

24r(r!)4
2r(2r − 1)(2r − 2)k2r−2

}
, (A.4)

where the series converges absolutely. Actually, denoting by ar := ((2r)!(2r)!/24r(r!)4)2r(2r −
1)(2r − 2)k2r−2, we have |ar+1|/|ar | = ((2r + 2)2(2r + 1)3/23(r + 1)3(2r − 1)(2r − 2))k; then we
get limr→∞(|ar+1|/|ar |) < 1. So, limk→ 0(d3K/dk3) = 0.

To see that limk→ 0(d3E/dk3) = 0, we write E(k) = (π/2){1 − ∑∞
r=1((2r − 2)!(2r)!/

24r−1(r − 1)!(r!)3)k2r} (see [16, page 110]), from which we get

d3E

dk3
= −π

2

{∑
r≥2

(2r − 2)!(2r)!

24r−1(r − 1)!(r!)3
2r(2r − 1)(2r − 2)k2r−3

}
. (A.5)

Proceeding as before, we obtain the desired limit.
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To see that limk→ 0(d4K/dk4) = 27π/16 and limk→ 0(d4E/dk4) = −(9π/16), dif-
ferentiating again the series in (A.4) and (A.5), we get d4K/dk4 = (π/2)

∑∞
r=2 br2r(2r −

1)(2r − 2)(2r − 3)k2r−4 and d4E/dk4 = −(π/2)∑∞
r=2 cr2r(2r − 1)(2r − 2)(2r − 3)k2r−4, where

br := ((2r)!(2r)!/24r(r!)4)2r(2r − 1)(2r − 2)(2r − 3)k2r−4 and cr := ((2r − 2)!(2r)!/24r−1(r −
1)!(r!)3)2r(2r − 1)(2r − 2)(2r − 3)k2r−4. It is easy to see that d4K/dk4 → (π/2)b24! = 27π/16
and d4E/dk4 → −(π/2)c24! = −(9π/16), as k → 0.
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