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Generalizations of a part of the paper (Ma et al., 2009) are considered. As a generalization of an
(∈,∈ ∨q)-fuzzy filter, the notion of an (∈,∈ ∨qk)-fuzzy filter is introduced, and its characterizations
are provided. The implication-based fuzzy filters of an R0-algebra are discussed.

1. Introduction

One important task of artificial intelligence is to make the computers simulate beings in
dealing with certainty and uncertainty in information. Logic appears in a “sacred” (resp.,
a “profane”) form which is dominant in proof theory (resp., model theory). The role of logic
in mathematics and computer science is twofold—as a tool for applications in both areas,
and a technique for laying the foundations. Nonclassical logic including many-valued logic
and fuzzy logic takes the advantage of classical logic to handle information with various
facets of uncertainty (see [1] for generalized theory of uncertainty), such as fuzziness and
randomness. Nonclassical logic has become a formal and useful tool for computer science
to deal with fuzzy information and uncertain information. Among all kinds of uncertainties,
incomparability is an important one which can be encountered in our life. The concept of
R0-algebras was first introduced by Wang in [2] by providing an algebraic proof of the
completeness theorem of a formal deductive system [3]. Obviously, R0-algebras are different
from the BL-algebras. Jun and Lianzhen [4] studied filters ofR0-algebras. Lianzhen and Kaitai
[5] discussed the fuzzy set theory of filters in R0-algebras. As a generalization of the notion
of fuzzy filters, Ma et al. [6] dealt with the notion of (∈,∈ ∨q)-fuzzy filters in R0-algebras.



2 International Journal of Mathematics and Mathematical Sciences

In this article, we try to get more general form of the notion of (∈,∈ ∨q)-fuzzy filters.
We introduce the notion of (∈,∈ ∨qk)-fuzzy filters and investigate related properties. We
establish characterizations of an (∈,∈ ∨qk)-fuzzy filter and finally consider the implication-
based fuzzy filters of an R0-algebra. The important achievement of the study with an (∈,∈
∨qk)-fuzzy filter is that the notion of an (∈,∈ ∨q)-fuzzy filter is a special case of an (∈,∈ ∨qk)-
fuzzy filter, and thus the related results obtained in the paper [6] are a corollary of our results
obtained in this paper.

2. Preliminaries

Definition 2.1 (see [2]). Let L be a bounded distributive lattice with order-reversing involution
¬ and a binary operation → . Then (L,∧,∨,¬, → ) is called an R0-algebra if it satisfies the
following axioms:

(R1) x → y = ¬y → ¬x,
(R2) 1 → x = x,

(R3) (y → z) ∧ ((x → y) → (x → z)) = y → z,

(R4) x → (y → z) = y → (x → z),

(R5) x → (y ∨ z) = (x → y) ∨ (x → z),

(R6) (x → y) ∨ ((x → y) → (¬x ∨ y)) = 1.

Let L be an R0-algebra. For any x, y ∈ L, we define x � y = ¬(x → ¬y) and x ⊕ y =
¬x → y. It is proved that � and ⊕ are commutative, associative, and x ⊕ y = ¬(¬x � ¬y), and
(L,∧,∨,�, → , 0, 1) is a residuated lattice.

Example 2.2 (see [5]). Let L = [0, 1]. For any x, y ∈ L, we define x ∧ y = min{x, y}, x ∨ y =
max{x, y},¬x = 1 − x, and

x −→ y :=

⎧
⎨

⎩

1 if x ≤ y,

¬x ∨ y if x > y.
(2.1)

Then (L,∧,∨,¬, → ) is an R0-algebra which is neither a BL-algebra nor a lattice implication
algebra.

An R0-algebra has the following useful properties.

Proposition 2.3 (see [7]). For any elements x, y, and z of an R0-algebra L, one has the following
properties:

(a1) x ≤ y if and only if x → y = 1,

(a2) x ≤ y → x,

(a3) ¬x = x → 0,

(a4) (x → y) ∨ (y → x) = 1,

(a5) x ≤ y implies y → z ≤ x → z,

(a6) x ≤ y implies z → x ≤ z → y,
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(a7) ((x → y) → y) → y = x → y,

(a8) x ∨ y = ((x → y) → y) ∧ ((y → x) → x),

(a9) x � ¬x = 0 and x ⊕ ¬x = 1,

(a10) x � y ≤ x ∧ y and x � (x → y) ≤ x ∧ y,
(a11) (x � y) → z = x → (y → z),

(a12) x ≤ y → (x � y),
(a13) x � y ≤ z if and only if x ≤ y → z,

(a14) x ≤ y implies x � z ≤ y � z,
(a15) x → y ≤ (y → z) → (x → z),

(a16) (x → y) � (y → z) ≤ x → z.

A nonempty subset A of an R0-algebra L is called a filter of L if it satisfies the following
two conditions:

(b1) 1 ∈ A,
(b2) (for all x ∈ A)(for all y ∈ L)(x → y ∈ A⇒ y ∈ A).

It can be easily verified that a nonempty subset A of an R0-algebra L is a filter of L if and only
if it satisfies the following conditions:

(b3) (for all x, y ∈ A)(x � y ∈ A),

(b4) (for all y ∈ L)(∃x ∈ A)(x ≤ y ⇒ y ∈ A).

Definition 2.4. A fuzzy set μ in an R0-algebra L is called a fuzzy filter of L if it satisfies the
following:

(c1) (for all x, y ∈ L)(μ(x � y) ≥ min{μ(x), μ(y)}),
(c2) μ is order-preserving, that is, (for all x, y ∈ L)(x ≤ y ⇒ μ(x) ≤ μ(y)).

Theorem 2.5. A fuzzy set μ in an R0-algebra L is a fuzzy filter of L if and only if it satisfies the
following:

(c3) (for all x ∈ L)(μ(1) ≥ μ(x)),
(c4) (for all x, y ∈ L)(μ(y) ≥ min{μ(x → y), μ(x)}).

For any fuzzy set μ in L and t ∈ (0, 1], the set

U
(
μ; t
)
=
{
x ∈ L | μ(x) ≥ t

}
(2.2)

is called a level subset of L. A fuzzy set μ in a set L of the form

μ
(
y
)

:=

⎧
⎨

⎩

t ∈ (0, 1] if y = x,

0 if y /=x
(2.3)

is said to be a fuzzy point with support x and value t and is denoted by (x, t).
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Table 1: Hasse diagram and Cayley tables.

x ¬x

0 1
a c
b b
c a
1 0

→ 0 a b c 1

0 1 1 1 1 1
a c 1 1 1 1
b b b 1 1 1
c a a b 1 1
1 0 a b c 1

0
a
b

c

1

For a fuzzy point (x, t) and a fuzzy set μ in a set L, Pu and Liu [8] introduced the
symbol (x, t)αμ, where α ∈ {∈,q,∈ ∨q,∈ ∧q}. To say that (x, t) ∈ μ (resp. (x, t)qμ), we mean
μ(x) ≥ t (resp. μ(x) + t > 1), and in this case, (x, t) is said to belong to (resp. be quasi-coincident
with) a fuzzy set μ. To say that (x, t) ∈ ∨qμ (resp. (x, t) ∈ ∧qμ), we mean that (x, t) ∈ μ or
(x, t)qμ (resp. (x, t) ∈ μ and (x, t)qμ).

3. Generalizations of (∈,∈ ∨q)-Fuzzy Filters

In what follows, L is an R0-algebra and let k denote an arbitrary element of [0, 1) unless
otherwise specified. To say that (x, t)qk μ, we mean μ(x) + t + k > 1. To say that (x, t) ∈ ∨qkμ,
we mean (x, t) ∈ μ or (x, t)qk μ. For α ∈ {∈,∈ ∨qk}, to say that (x, t)αμ, we mean (x, t)αμ
does not hold.

Definition 3.1. A fuzzy set μ in L is said to be an (∈,∈ ∨qk)-fuzzy filter of L if it satisfies the
following:

(d1) (x, t) ∈ μ&(y, r) ∈ μ⇒ (x � y,min{t, r}) ∈ ∨qkμ,

(d2) (x, t) ∈ μ&x ≤ y ⇒ (y, t) ∈ ∨qkμ

for all x, y ∈ L and t, r ∈ (0, 1].

An (∈,∈ ∨qk)-fuzzy filter of L with k = 0 is called an (∈,∈ ∨q)-fuzzy filter of L.

Example 3.2. Let L = {0, a, b, c, 1} be a set with Hasse diagram and Cayley tables which are
given in Table 1. Then (L,∧,∨,¬, → , 0, 1) is an R0-algebra (see [5]), where x ∧ y = min{x, y}
and x ∨ y = max{x, y}. Define a fuzzy set μ in L by

μ =

(
0 a b c 1

0.3 0.3 0.3 0.8 0.45

)

. (3.1)

It is routine to verify that μ is an (∈,∈ ∨q0.2)-fuzzy filter of L. But it is neither a fuzzy filter
nor an (∈,∈ ∨q)-fuzzy filter of L since μ(1) = 0.45/≥ 0.8 = μ(c), and c ≤ 1 and (c, 0.5) ∈ μ but
(1, 0.5) ∈ ∨qμ.

Theorem 3.3. Every fuzzy filter is an (∈,∈ ∨qk)-fuzzy filter.

Proof. It is straightforward.
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Example 3.2 shows that the converse of Theorem 3.3 may not be true and shows that
an (∈,∈ ∨qk)-fuzzy filter may not be an (∈,∈ ∨q)-fuzzy filter in general.

We establish characterizations of an (∈,∈ ∨qk)-fuzzy filter.

Theorem 3.4. A fuzzy set μ in L is an (∈,∈ ∨qk)-fuzzy filter of L if and only if it satisfies the
following:

(d3) (for all x, y ∈ L)(μ(x � y) ≥ min{μ(x), μ(y), (1 − k)/2}),

(d4) (for all x, y ∈ L)(x ≤ y ⇒ μ(y) ≥ min{μ(x), (1 − k)/2}).

Proof. Let μ be an (∈,∈ ∨qk)-fuzzy filter of L. Assume that (d3) is not valid. Then there exist
a, b ∈ L such that

μ(a � b) < min
{

μ(a), μ(b),
1 − k

2

}

. (3.2)

If min{μ(a), μ(b)} < (1 − k)/2, then μ(a � b) < min{μ(a), μ(b)}. Hence

μ(a � b) < t ≤ min
{
μ(a), μ(b)

}
(3.3)

for some t ∈ (0, (1−k)/2]. It follows that (a, t) ∈ μ and (b, t) ∈ μ, but (a� b, t) ∈μ. Moreover,
μ(a�b)+ t < 2t < 1−k, and so (a�b, t) qkμ. Consequently (a�b, t) ∈ ∨qkμ, a contradiction. If
min{μ(a), μ(b)} ≥ (1 − k)/2, then μ(a) ≥ (1 − k)/2, μ(b) ≥ (1 − k)/2 and μ(a � b) < (1 − k)/2.
Thus (a, (1 − k)/2) ∈ μ and (b, (1 − k)/2) ∈ μ, but (a � b, (1 − k)/2) ∈μ. Also,

μ(a � b) + 1 − k
2

<
1 − k

2
+

1 − k
2

= 1 − k, (3.4)

that is, (a�b, (1−k)/2) qkμ. Hence (a�b, (1−k)/2) ∈ ∨qkμ, again, a contradiction. Therefore
(d3) is valid. Let x, y ∈ L be such that x ≤ y. Assume that μ(y) < min{μ(x), (1 − k)/2}. Then

μ
(
y
)
< r ≤ min

{

μ(x),
1 − k

2

}

(3.5)

for some r ∈ (0, (1 − k)/2]. If μ(x) < (1 − k)/2, then μ(y) < r ≤ μ(x) by (3.5). Hence (x, r) ∈ μ
and (y, r)∈μ. Furthermore, μ(y) + r < 2r ≤ 1 − k, that is, (y, r)qkμ. Thus (y, r)∈ ∨qkμ, a
contradiction. If μ(x) ≥ (1 − k)/2, then μ(y) < r ≤ (1 − k)/2 by (3.5). Hence (x, (1 − k)/2) ∈
μ and (y, (1 − k)/2)∈μ. Also, μ(y) + (1 − k)/2 ≤ 1 − k, that is, (y, (1 − k)/2) qkμ. Thus
(y, (1 − k)/2) ∈ ∨qkμ which is also a contradiction. Therefore μ(y) ≥ min{μ(x), (1 − k)/2} for
all x, y ∈ L with x ≤ y; that is, (d4) is valid.
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Conversely, let μ be a fuzzy set in L satisfying two conditions (d3) and (d4). Let x, y ∈
L and t, r ∈ (0, 1] be such that (x, t) ∈ μ and (y, r) ∈ μ. Then μ(x) ≥ t and μ(y) ≥ r. It follows
from (d3) that

μ
(
x � y

)
≥ min

{

μ(x), μ
(
y
)
,

1 − k
2

}

≥ min
{

t, r,
1 − k

2

}

=

⎧
⎪⎪⎨

⎪⎪⎩

min{t, r} if t ≤ 1 − k
2

or r ≤ 1 − k
2

,

1 − k
2

if t >
1 − k

2
and r >

1 − k
2

.

(3.6)

The case μ(x � y) ≥ min{t, r} implies that (x � y,min{t, r}) ∈ μ. From the case μ(x � y) ≥
(1 − k)/2, we have

μ
(
x � y

)
+ min{t, r} > 1 − k

2
+

1 − k
2

= 1 − k, (3.7)

that is, (x�y,min{t, r})qk μ. Hence (x�y,min{t, r}) ∈ ∨qkμ. Finally let x, y ∈ L and t ∈ (0, 1]
be such that x ≤ y and (x, t) ∈ μ. Then μ(x) ≥ t, and so

μ
(
y
)
≥ min

{

μ(x),
1 − k

2

}

≥ min
{

t,
1 − k

2

}

(3.8)

by (d4). If t ≤ (1−k)/2, then μ(y) ≥ t, and thus (y, t) ∈ μ. If t > (1−k)/2, then μ(y) ≥ (1−k)/2
which implies that μ(y)+ t > (1−k)/2+(1−k)/2 = 1−k, that is, (y, t)qkμ. Thus (y, t) ∈ ∨qkμ.
Consequently, μ is an (∈,∈ ∨qk)-fuzzy filter of L.

If we take k = 0 in Theorem 3.4, then we have the following corollary.

Corollary 3.5 (see [6]). A fuzzy set μ in L is an (∈,∈ ∨q)-fuzzy filter of L if and only if it satisfies
the following:

(1) (for all x, y ∈ L)(μ(x � y) ≥ min{μ(x), μ(y), 0.5}),

(2) (for all x, y ∈ L)(x ≤ y ⇒ μ(y) ≥ min{μ(x), 0.5}).

Theorem 3.6. A fuzzy set μ in L is an (∈,∈ ∨qk)-fuzzy filter of L if and only if it satisfies the
following:

(d5) (for all x ∈ L)(μ(1) ≥ min{μ(x), (1 − k)/2}),

(d6) (for all x, y ∈ L)(μ(y) ≥ min{μ(x), μ(x → y), (1 − k)/2}).
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Proof. Let μ be an (∈,∈ ∨qk)-fuzzy filter of L. Since x ≤ 1 for all x ∈ L, it follows from (d4)
that μ(1) ≥ min{μ(x), (1 − k)/2} for all x ∈ L. Let x, y ∈ L. Since x ≤ (x → y) → y, we have
x � (x → y) ≤ y by (a13). Using (d4) and (d3), we obtain

μ
(
y
)
≥ min

{

μ
(
x �
(
x −→ y

))
,

1 − k
2

}

≥ min
{

μ(x), μ
(
x −→ y

)
,

1 − k
2

}

. (3.9)

Conversely, let μ be a fuzzy set in L satisfying two conditions (d5) and (d6). Let x, y ∈
L be such that x ≤ y. Then x → y = 1, and so

μ
(
y
)
≥ min

{

μ(x), μ
(
x −→ y

)
,

1 − k
2

}

= min
{

μ(x), μ(1),
1 − k

2

}

= min
{

μ(x),
1 − k

2

}

(3.10)

by (d6) and (d5). Note from (a11) that

x −→
(
y −→

(
x � y

))
=
(
x � y

)
−→
(
x � y

)
= 1 (3.11)

for all x, y ∈ L. It follows from (d5) and (d6) that

μ
(
x � y

)
≥ min

{

μ
(
y
)
, μ
(
y −→

(
x � y

))
,

1 − k
2

}

≥ min
{

μ
(
y
)
,min

{

μ(x), μ
(
x −→

(
y −→

(
x � y

)))
,

1 − k
2

}

,
1 − k

2

}

= min
{

μ
(
y
)
,min

{

μ(x), μ(1),
1 − k

2

}

,
1 − k

2

}

= min
{

μ(x), μ
(
y
)
,

1 − k
2

}

.

(3.12)

Using Theorem 3.4, we conclude that μ is an (∈,∈ ∨qk)-fuzzy filter of L.

Corollary 3.7 (see [6]). A fuzzy set μ in L is an (∈,∈ ∨q)-fuzzy filter of L if and only if it satisfies
the following:

(1) (for all x ∈ L)(μ(1) ≥ min{μ(x), 0.5}),
(2) (for all x, y ∈ L)(μ(y) ≥ min{μ(x), μ(x → y), 0.5}).

Proof. It is straightforward by taking k = 0 in Theorem 3.6.

Corollary 3.8. If μ is an (∈,∈ ∨qk)-fuzzy filter of L with μ(1) < (1 − k)/2, then μ is a fuzzy filter.

If we take k = 0 in Corollary 3.8, then we obtain the following corollary.
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Corollary 3.9 (see [6]). If μ is an (∈,∈ ∨q)-fuzzy filter of L with μ(1) < 0.5, then μ is a fuzzy filter.

Theorem 3.10. A fuzzy set μ in L is an (∈,∈ ∨qk)-fuzzy filter of L if and only if it satisfies the
following:

(d7) (for all x, y, z ∈ L)(x ≤ y → z⇒ μ(z) ≥ min{μ(x), μ(y), (1 − k)/2}).

Proof. Assume that μ is an (∈,∈ ∨qk)-fuzzy filter of L. Let x, y, z ∈ L be such that x ≤ y → z.
It follows from (d4) that μ(y → z) ≥ min{μ(x), (1 − k)/2} and so from (d6) that

μ(z) ≥ min
{

μ
(
y
)
, μ
(
y −→ z

)
,

1 − k
2

}

≥ min
{

μ(x), μ
(
y
)
,

1 − k
2

}

. (3.13)

Conversely, let μ be a fuzzy set in L satisfying (d7). Since x ≤ x → 1 for all x ∈ L,
we have μ(1) ≥ min{μ(x), (1 − k)/2} by (d7). Note that x → y ≤ x → y for all x, y ∈ L. It
follows from (d7) that

μ
(
y
)
≥ min

{

μ(x), μ
(
x −→ y

)
,

1 − k
2

}

. (3.14)

Using Theorem 3.6, we conclude that μ is an (∈,∈ ∨qk)-fuzzy filter of L.

Corollary 3.11 (see [6]). A fuzzy set μ in L is an (∈,∈ ∨q)-fuzzy filter of L if and only if it satisfies
the following:

(
for all x, y, z ∈ L

) (
x ≤ y −→ z =⇒ μ(z) ≥ min

{
μ(x), μ

(
y
)
, 0.5
})
. (3.15)

Proof. It is obvious by taking k = 0 in Theorem 3.10.

Theorem 3.12. For an (∈,∈ ∨qk)-fuzzy filter μ of L, the followings are equivalent:

(1) (for all x, y, z ∈ L)(μ(x → z) ≥ min{μ(x → (y → z)), μ(x → y), (1 − k)/2}),
(2) (for all x, y ∈ L)(μ(x → y) ≥ min{μ(x → (x → y)), (1 − k)/2}),
(3) (for all x, y, z ∈ L)(μ((x → y) → (x → z)) ≥ min{μ(x → (y → z)), (1 − k)/2}).

Proof. (1)⇒(2): Suppose that μ satisfies the condition (1). If we take z = y and y = x in (1),
then

μ
(
x −→ y

)
≥ min

{

μ
(
x −→

(
x −→ y

))
, μ(x −→ x),

1 − k
2

}

= min
{

μ
(
x −→

(
x −→ y

))
, μ(1),

1 − k
2

}

= min
{

μ
(
x −→

(
x −→ y

))
,

1 − k
2

}

(3.16)

for all x, y ∈ L by (d5).
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(2)⇒(3): Assume that μ satisfies the condition (2). Note that

x −→
(
y −→ z

)
≤ x −→

((
x −→ y

)
−→ (x −→ z)

)
(3.17)

for all x, y, z ∈ L. It follows from (R4), (2), and (d4) that

μ
((
x −→ y

)
−→ (x −→ z)

)
= μ
(
x −→

((
x −→ y

)
−→ z

))

≥ min
{

μ
(
x −→

(
x −→

((
x −→ y

)
−→ z

)))
,

1 − k
2

}

= min
{

μ
(
x −→

((
x −→ y

)
−→ (x −→ z)

))
,

1 − k
2

}

≥ min
{

min
{

μ
(
x −→

(
y −→ z

))
,

1 − k
2

}

,
1 − k

2

}

= min
{

μ
(
x −→

(
y −→ z

))
,

1 − k
2

}

(3.18)

for all x, y, z ∈ L.
(3)⇒(1): Suppose that μ satisfies the condition (3). Using (d6), we have

μ(x −→ z) ≥ min
{

μ
(
x −→ y

)
, μ
((
x −→ y

)
−→ (x −→ z)

)
,

1 − k
2

}

≥ min
{

μ
(
x −→ y

)
,min

{

μ
(
x −→

(
y −→ z

))
,

1 − k
2

}

,
1 − k

2

}

= min
{

μ
(
x −→ y

)
, μ
(
x −→

(
y −→ z

))
,

1 − k
2

}

(3.19)

for all x, y, z ∈ L.

Corollary 3.13 (see [6]). For an (∈,∈ ∨q)-fuzzy filter μ of L, the followings are equivalent:

(1) (for all x, y, z ∈ L)(μ(x → z) ≥ min{μ(x → (y → z)), μ(x → y), 0.5}),
(2) (for all x, y ∈ L)(μ(x → y) ≥ min{μ(x → (x → y)), 0.5}),
(3) (for all x, y, z ∈ L)(μ((x → y) → (x → z)) ≥ min{μ(x → (y → z)), 0.5}).

Theorem 3.14. A fuzzy set μ in L is an (∈,∈ ∨qk)-fuzzy filter of L if and only if it satisfies the
following:

(

∀t ∈
(

0,
1 − k

2

])
(
U
(
μ; t
)
/= ∅ =⇒ U

(
μ; t
)
is a filter of L

)
. (3.20)

Proof. Assume that μ is an (∈,∈ ∨qk)-fuzzy filter of L. Let t ∈ (0, (1 − k)/2] be such that
U(μ; t)/= ∅. Let x, y ∈ U(μ; t). Then μ(x) ≥ t and μ(y) ≥ t.Hence μ(x�y) ≥ min{μ(x), μ(y), (1−
k)/2} ≥ min{t, (1 − k)/2} = t by (d3), and so x � y ∈ U(μ; t). Let x, y ∈ L be such that x ≤ y.
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If x ∈ U(μ; t), then

μ
(
y
)
≥ min

{

μ(x),
1 − k

2

}

≥ min
{

t,
1 − k

2

}

= t (3.21)

by (d4). This shows that y ∈ U(μ; t). Therefore U(μ; t) is a filter of L.
Conversely, let μ be a fuzzy set in L satisfying (3.20). If there exist a, b ∈ L such that

μ(a � b) < min{μ(a), μ(b), (1 − k)/2}, then

μ(a � b) < t ≤ min
{

μ(a), μ(b),
1 − k

2

}

(3.22)

for some t ∈ (0, (1 − k)/2]. Thus a, b ∈ U(μ; t) and a � b /∈U(μ; t), which is a contradiction.
Hence μ(x � y) ≥ min{μ(x), μ(y), (1 − k)/2} for all x, y ∈ L. Let x, y ∈ L be such that x ≤ y. If
μ(y) < min{μ(x), (1 − k)/2}, then

μ
(
y
)
< r ≤ min

{

μ(x),
1 − k

2

}

(3.23)

for some r ∈ (0, (1 − k)/2]. It follows that x ∈ U(μ; r) and y /∈U(μ; r), a contradiction.
Therefore μ(y) ≥ min{μ(x), (1 − k)/2} for all x, y ∈ L with x ≤ y. Using Theorem 3.4, we
conclude that μ is an (∈,∈ ∨qk)-fuzzy filter of L.

Corollary 3.15 (see [6]). A fuzzy set μ in L is an (∈,∈ ∨q)-fuzzy filter of L if and only if it satisfies
the following:

(∀t ∈ (0, 0.5])
(
U
(
μ; t
)
/= ∅ =⇒ U

(
μ; t
)
is a filter of L

)
. (3.24)

Theorem 3.16. If A is a filter of L, then a fuzzy set μ in L such that μ(x) = t1 for x ∈ A and
μ(x) = t2 otherwise, where t1 ∈ [(1 − k)/2, 1] and t2 ∈ (0, (1 − k)/2), is an (∈,∈ ∨qk)-fuzzy filter of
L.

Proof. Note that

U
(
μ; r
)
=

⎧
⎪⎨

⎪⎩

A if r ∈
(

t2,
1 − k

2

]

,

L if r ∈ (0, t2],
(3.25)

which is a filter of L. It follows from Theorem 3.14 that μ is an (∈,∈ ∨qk)-fuzzy filter of L.

Corollary 3.17. If A is a filter of L, then a fuzzy set μ in L such that μ(x) = t1 for x ∈ A and
μ(x) = t2 otherwise, where t1 ∈ [0.5, 1] and t2 ∈ (0, 0.5), is an (∈,∈ ∨q)-fuzzy filter of L.
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For any fuzzy set μ in L and any t ∈ (0, 1], we consider four subsets:

Q(μ; t) := {x ∈ L | (x, t)qμ}, [μ]t := {x ∈ L | (x, t) ∈ ∨qμ},

Qk(μ; t) := {x ∈ L | (x, t)qkμ}, [μ]
k
t := {x ∈ L | (x, t) ∈ ∨qkμ}.

It is clear that [μ]t = U(μ; t) ∪Q(μ; t) and [μ]kt = U(μ; t) ∪Qk(μ; t).

Theorem 3.18. If μ is an (∈,∈ ∨qk)-fuzzy filter of L, then

(

∀t ∈
(

1 − k
2

, 1
])(

Qk(μ; t
)
/= ∅ =⇒ Qk(μ; t

)
is a filter of L

)
. (3.26)

Proof. Assume that μ is an (∈,∈ ∨qk)-fuzzy filter of L and let t ∈ ((1 − k)/2, 1] be such that
Qk(μ; t)/= ∅. Let x, y ∈ Qk(μ; t). Then (x, t)qkμ and (y, t)qkμ, that is, μ(x) + t + k > 1 and
μ(y) + t + k > 1. Using (d3), we have

μ
(
x � y

)
≥ min

{

μ(x), μ
(
y
)
,

1 − k
2

}

=

⎧
⎪⎪⎨

⎪⎪⎩

min
{
μ(x), μ

(
y
)}

if min
{
μ(x), μ

(
y
)}

<
1 − k

2
,

1 − k
2

if min
{
μ(x), μ

(
y
)}
≥ 1 − k

2

> 1 − t − k,

(3.27)

that is, (x � y, t)qkμ. Hence x � y ∈ Qk(μ; t). Let x, y ∈ L be such that x ≤ y. If x ∈ Qk(μ; t),
then (x, t)qkμ, that is, μ(x) + t + k > 1. It follows from (d4) that

μ
(
y
)
≥ min

{

μ(x),
1 − k

2

}

=

⎧
⎪⎪⎨

⎪⎪⎩

1 − k
2

if μ(x) ≥ 1 − k
2

,

μ(x) if μ(x) <
1 − k

2
,

> 1 − t − k,

(3.28)

that is, (y, t)qkμ. Hence y ∈ Qk(μ; t). Therefore Qk(μ; t) is a filter of L.

Corollary 3.19. If μ is an (∈,∈ ∨q)-fuzzy filter of L, then

(∀t ∈ (0.5, 1])
(
Q
(
μ; t
)
/= ∅ =⇒ Q

(
μ; t
)
is a filter of L

)
. (3.29)

Proof. It is clear by taking k = 0 in Theorem 3.18.
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Theorem 3.20. For any fuzzy set μ in L, the followings are equivalent:

(1) μ is an (∈,∈ ∨qk)-fuzzy filter of L,

(2) (for all t ∈ (0, 1])([μ]kt /= ∅ ⇒ [μ]kt is a filter of L).

Proof. Assume that μ is an (∈,∈ ∨qk)-fuzzy filter of L and let t ∈ (0, 1] be such that [μ]kt /= ∅.
Let x, y ∈ [μ]kt . Then μ(x) ≥ t or μ(x) + t + k > 1, and μ(y) ≥ t or μ(y) + t + k > 1. We can
consider four cases:

μ(x) ≥ t, μ
(
y
)
≥ t, (3.30)

μ(x) ≥ t, μ
(
y
)
+ t + k > 1, (3.31)

μ(x) + t + k > 1, μ
(
y
)
≥ t, (3.32)

μ(x) + t + k > 1, μ
(
y
)
+ t + k > 1. (3.33)

For the first case, (d3) implies that

μ
(
x � y

)
≥ min

{

μ(x), μ
(
y
)
,

1 − k
2

}

≥ min
{

t,
1 − k

2

}

=

⎧
⎪⎨

⎪⎩

1 − k
2

if t >
1 − k

2
,

t if t ≤ 1 − k
2

,

(3.34)

and so μ(x � y) + t + k > (1 − k)/2 + (1 − k)/2 + k = 1, that is, (x � y)tqkμ, or x � y ∈ U(μ; t).
Therefore x�y ∈ U(μ; t)∪Qk(μ; t) = [μ]kt . For the case (3.31), assume that t > (1−k)/2. Then
1 − t − k ≤ 1 − t < (1 − k)/2, and so

μ
(
x � y

)
≥ min

{

μ(x), μ
(
y
)
,

1 − k
2

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
{

μ
(
y
)
,

1 − k
2

}

> 1 − t − k if min
{

μ
(
y
)
,

1 − k
2

}

≤ μ(x),

μ(x) ≥ t if min
{

μ
(
y
)
,

1 − k
2

}

> μ(x).

(3.35)

Thus x�y ∈ U(μ; t)∪Qk(μ; t) = [μ]kt . Suppose that t ≤ (1−k)/2. Then 1− t ≥ (1−k)/2, which
implies that

μ
(
x � y

)
≥ min

{

μ(x), μ
(
y
)
,

1 − k
2

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
{

μ(x),
1 − k

2

}

≥ t if min
{

μ(x),
1 − k

2

}

≤ μ
(
y
)
,

μ
(
y
)
> 1 − t − k if min

{

μ(x),
1 − k

2

}

> μ
(
y
)
,

(3.36)
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and thus x � y ∈ U(μ; t) ∪ Qk(μ; t) = [μ]kt . We have similar result for the case (3.32). For the
final case, if t > (1 − k)/2, then 1 − t − k ≤ 1 − t < (1 − k)/2. Hence

μ
(
x � y

)
≥ min

{

μ(x), μ
(
y
)
,

1 − k
2

}

=

⎧
⎪⎪⎨

⎪⎪⎩

1 − k
2

> 1 − t − k if min
{
μ(x), μ

(
y
)}
≥ 1 − k

2
,

min
{
μ(x), μ

(
y
)}

> 1 − t − k if min
{
μ(x), μ

(
y
)}

<
1 − k

2
,

(3.37)

and so x � y ∈ Qk(μ; t) ⊆ [μ]kt . If t ≤ (1 − k)/2, then

μ
(
x � y

)
≥ min

{

μ(x), μ
(
y
)
,

1 − k
2

}

=

⎧
⎪⎪⎨

⎪⎪⎩

1 − k
2
≥ t if min

{
μ(x), μ

(
y
)}
≥ 1 − k

2
,

min
{
μ(x), μ

(
y
)}

> 1 − t − k if min
{
μ(x), μ

(
y
)}

<
1 − k

2
,

(3.38)

which implies that x�y ∈ U(μ; t)∪Qk(μ; t) = [μ]kt . Let x, y ∈ L be such that x ≤ y. If x ∈ [μ]kt ,
then μ(x) ≥ t or μ(x) + t + k > 1. Assume that μ(x) ≥ t. (d4) implies that

μ
(
y
)
≥ min

{

μ(x),
1 − k

2

}

≥ min
{

t,
1 − k

2

}

=

⎧
⎪⎪⎨

⎪⎪⎩

t if t ≤ 1 − k
2

,

1 − k
2

> 1 − t − k if t >
1 − k

2

(3.39)

so that y ∈ U(μ; t) ∪Qk(μ; t) = [μ]kt . Suppose that μ(x) + t + k > 1. If t > (1 − k)/2, then

μ
(
y
)
≥ min

{

μ(x),
1 − k

2

}

=

⎧
⎪⎪⎨

⎪⎪⎩

1 − k
2

> 1 − t − k if μ(x) ≥ 1 − k
2

,

μ(x) > 1 − t − k if μ(x) <
1 − k

2
,

(3.40)

and thus y ∈ Qk(μ; t) ⊆ [μ]kt . If t ≤ (1 − k)/2, then

μ
(
y
)
≥ min

{

μ(x),
1 − k

2

}

=

⎧
⎪⎪⎨

⎪⎪⎩

1 − k
2
≥ t if μ(x) ≥ 1 − k

2
,

μ(x) > 1 − t − k if μ(x) <
1 − k

2
,

(3.41)

which implies that y ∈ U(μ; t) ∪Qk(μ; t) = [μ]kt . Therefore [μ]kt is a filter of L.
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Conversely, let μ be a fuzzy set in L such that [μ]kt is a filter of L whenever it is
nonempty for all t ∈ (0, 1]. If there exists a ∈ L such that μ(1) < min{μ(a), (1 − k)/2}, then
μ(1) < ta ≤ min{μ(a), (1−k)/2} for some ta ∈ (0, (1−k)/2]. It follows that a ∈ U(μ; ta) ⊆ [μ]kta
but 1/∈U(μ; ta). Also, μ(1) + ta < 2ta ≤ 1 − k, and so (1, ta)qkμ, that is, 1/∈Qk(μ; ta). Therefore
1/∈ [μ]kta , a contradiction. Hence μ(1) ≥ min{μ(x), (1 − k)/2} for all x ∈ L. Suppose that there
exist a, b ∈ L such that μ(b) < min{μ(a), μ(a → b), (1 − k)/2}. Then

μ(b) < tb ≤ min
{

μ(a), μ(a −→ b),
1 − k

2

}

(3.42)

for some tb ∈ (0, (1 − k)/2], which implies that a, a → b ∈ U(μ; tb) ⊆ [μ]ktb and so from
(b2) that b ∈ [μ]ktb = U(μ; tb) ∪ Qk(μ; tb) since [μ]ktb is a filter of L. But, (3.42) implies that
b /∈U(μ; tb) and μ(b) + tb < 2tb ≤ 1 − k, that is, b /∈Qk(μ; tb). This is a contradiction, and
therefore μ(y) ≥ min{μ(x), μ(x → y), (1 − k)/2} for all x, y ∈ L. Using Theorem 3.6, we
conclude that μ is an (∈,∈ ∨qk)-fuzzy filter of L.

If we take k = 0 in Theorem 3.20, then we have the following corollary.

Corollary 3.21. For any fuzzy set μ in L, the followings are equivalent:

(1) μ is an (∈,∈ ∨q)-fuzzy filter of L,

(2) (for all t ∈ (0, 1])([μ]t /= ∅ ⇒ [μ]t is a filter of L).

4. Implication-Based Fuzzy Filters

Fuzzy logic is an extension of set theoretic multivalued logic in which the truth values are
linguistic variables or terms of the linguistic variable truth. Some operators, for example,
∧,∨,¬, → in fuzzy logic are also defined by using truth tables and the extension principle
can be applied to derive definitions of the operators. In fuzzy logic, the truth value of fuzzy
proposition Φ is denoted by [Φ]. For a universe U of discourse, we display the fuzzy logical
and corresponding set-theoretical notations used in this paper:

[
x ∈ μ

]
= μ(x), (4.1)

[Φ ∧Ψ] = min{[Φ], [Ψ]}, (4.2)

[Φ −→ Ψ] = min{1, 1 − [Φ] + [Ψ]}, (4.3)

[∀xΦ(x)] = inf
x∈U

[Φ(x)], (4.4)

� Φ iff [Φ] = 1 for all valuations. (4.5)

The truth valuation rules given in (4.3) are those in the Łukasiewicz system of continuous-
valued logic. Of course, various implication operators have been defined. We show only a
selection of them in the following.
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(a) Gaines-Rescher implication operator (IGR) is

IGR(a, b) =

⎧
⎨

⎩

1 if a ≤ b,

0 otherwise.
(4.6)

(b) Gödel implication operator (IG) is

IG(a, b) =

⎧
⎨

⎩

1 if a ≤ b,

b otherwise.
(4.7)

(c) The contraposition of Gödel implication operator (IcG) is

IcG(a, b) =

⎧
⎨

⎩

1 if a ≤ b,

1 − a otherwise.
(4.8)

Ying [9] introduced the concept of fuzzifying topology. We can expand his/her idea to
R0-algebras, and we define a fuzzifying filter as follows.

Definition 4.1. A fuzzy subset μ of L is called a fuzzifying filter of L if it satisfies the following
conditions:

(1) for all x ∈ L, we have

�
[
x ∈ μ

]
−→
[
1 ∈ μ

]
; (4.9)

(2) for all x, y ∈ R, we get

�
[
x ∈ μ

]
∧
[
x −→ y ∈ μ

]
−→
[
y ∈ μ

]
. (4.10)

Obviously, conditions (4.9) and (4.10) are equivalent to (c3) and (c4), respectively.
Therefore a fuzzifying filter is an ordinary fuzzy filter.

In [10], the concept of t-tautology is introduced, that is,

�tΦ iff [Φ] ≥ t for all valuations. (4.11)
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Definition 4.2. Let μ be a fuzzy set in L and t ∈ (0, 1]. Then μ is called a t-implication-based fuzzy
filter of L if it satisfies the following conditions:

(1) for all x ∈ L, we have

�t
[
x ∈ μ

]
−→
[
1 ∈ μ

]
, (4.12)

(2) for all x, y ∈ R, we get

�t
[
x ∈ μ

]
∧
[
x −→ y ∈ μ

]
−→
[
y ∈ μ

]
. (4.13)

Let I be an implication operator. Clearly, μ is a t-implication-based fuzzy filter of L if
and only if it satisfies the following:

(1) (for all x ∈ L)(I(μ(x), μ(1)) ≥ t),

(2) (for all x, y ∈ L)(I(min{μ(x), μ(x → y)}, μ(y)) ≥ t).

Theorem 4.3. For any fuzzy set μ in L, one has the following.

(1) If I = IGR, then μ is a 0.5-implication-based fuzzy filter of L if and only if μ is a fuzzy filter
of L.

(2) If I = IG, then μ is a ((1 − k)/2)-implication-based fuzzy filter of L if and only if μ is an
(∈,∈ ∨qk)-fuzzy filter of L.

(3) If I = IcG, then μ is a ((1−k)/2)-implication-based fuzzy filter of L if and only if μ satisfies
the following conditions:

(3.1) (for all x ∈ L)(max{μ(1), (1 − k)/2} ≥ min{μ(x), 1}).
(3.2) (for all x, y ∈ L)(max{μ(y), (1 − k)/2} ≥ min{μ(x), μ(x → y), 1}).

Proof. (1) It is straightforward.
(2) Assume that μ is a ((1 − k)/2)-implication-based fuzzy filter of L. Then

(i) (for all x ∈ L)(IG(μ(x), μ(1)) ≥ (1 − k)/2),

(ii) (for all x, y ∈ L)(IG(min{μ(x), μ(x → y)}, μ(y)) ≥ (1 − k)/2).

From (i), we have μ(1) ≥ μ(x) or μ(x) ≥ μ(1) ≥ (1 − k)/2, and so μ(1) ≥ min{μ(x), (1 − k)/2}.
The second case implies that μ(y) ≥ min{μ(x), μ(x → y)} or min{μ(x), μ(x → y)} > μ(y) ≥
(1 − k)/2. It follows that

μ
(
y
)
≥ min

{

μ(x), μ
(
x −→ y

)
,

1 − k
2

}

. (4.14)

Using Theorem 3.6, we know that μ is an (∈,∈ ∨qk)-fuzzy filter of L.
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Conversely, suppose that μ is an (∈,∈ ∨qk)-fuzzy filter of L. From (d5), if min{μ(x), (1−
k)/2} = μ(x), then IG(μ(x), μ(1)) = 1 ≥ (1−k)/2. Otherwise, IG(μ(x), μ(1)) ≥ (1−k)/2. From
(d6), if

min
{

μ(x), μ
(
x −→ y

)
,

1 − k
2

}

= min
{
μ(x), μ

(
x −→ y

)}
, (4.15)

then μ(y) ≥ min{μ(x), μ(x → y)} and so

IG
(
min
{
μ(x), μ

(
x −→ y

)}
, μ
(
y
))

= 1 ≥ 1 − k
2

. (4.16)

If min{μ(x), μ(x → y), (1 − k)/2} = (1 − k)/2, then μ(y) ≥ (1 − k)/2 and thus

IG
(
min
{
μ(x), μ

(
x −→ y

)}
, μ
(
y
))
≥ 1 − k

2
. (4.17)

Consequently, μ is a ((1 − k)/2)-implication-based fuzzy filter of L.
(3) Suppose that μ satisfies (3.5) and (3.20). In (3.5), if μ(x) = 1, then max{μ(1), (1 −

k)/2} = 1 and hence IcG(μ(x), μ(1)) = 1 ≥ (1 − k)/2. If μ(x) < 1, then

max
{

μ(1),
1 − k

2

}

≥ μ(x). (4.18)

If max{μ(1), (1 − k)/2} = μ(1) in (4.18), then μ(1) ≥ μ(x). Hence

IcG
(
μ(x), μ(1)

)
= 1 ≥ 1 − k

2
. (4.19)

If max{μ(1), (1 − k)/2} = (1 − k)/2 in (4.18), then μ(x) ≤ (1 − k)/2 which implies that

IcG
(
μ(x), μ(1)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

1 ≥ 1 − k
2

if μ(1) ≥ μ(x),

1 − μ(x) ≥ 1 − k
2

otherwise.
(4.20)

In (3.20), if min{μ(x), μ(x → y), 1} = 1, then max{μ(y), (1 − k)/2} = 1 and so μ(y) = 1 ≥
min{μ(x), μ(x → y)}. Therefore

IcG
(
min
{
μ(x), μ

(
x −→ y

)}
, μ
(
y
))

= 1 ≥ 1 − k
2

. (4.21)

If min{μ(x), μ(x → y), 1} = min{μ(x), μ(x → y)}, then

max
{

μ
(
y
)
,

1 − k
2

}

≥ min
{
μ(x), μ

(
x −→ y

)}
. (4.22)
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Thus, if max{μ(y), (1 − k)/2} = (1 − k)/2 in (4.22), then μ(y) ≤ (1 − k)/2 and

min
{
μ(x), μ

(
x −→ y

)}
≤ 1 − k

2
. (4.23)

Therefore

IcG
(
min
{
μ(x), μ

(
x −→ y

)}
, μ
(
y
))

=

⎧
⎪⎪⎨

⎪⎪⎩

1 ≥ 1 − k
2

if μ
(
y
)
≥ min

{
μ(x), μ

(
x −→ y

)}
,

1 −min
{
μ(x), μ

(
x −→ y

)}
≥ 1 − k

2
otherwise.

(4.24)

If max{μ(y), (1 − k)/2} = μ(y) in (4.22), then μ(y) ≥ min{μ(x), μ(x → y)} and so

IcG
(
min
{
μ(x), μ

(
x −→ y

)}
, μ
(
y
))

= 1 ≥ 1 − k
2

. (4.25)

Consequently, μ is a ((1 − k)/2)-implication-based fuzzy filter of L.
Conversely assume that μ is a ((1 − k)/2)-implication-based fuzzy filter of L. Then

(iii) (for all x ∈ L) (IcG(μ(x), μ(1)) ≥ (1 − k)/2),

(iv) (for all x, y ∈ L) (IcG(min{μ(x), μ(x → y)}, μ(y)) ≥ (1 − k)/2).

The case (iii) implies that IcG(μ(x), μ(1)) = 1, that is, μ(x) ≤ μ(1), or 1 − μ(x) ≥ (1 − k)/2 and
so μ(x) ≤ (1 − k)/2. It follows that

max
{

μ(1),
1 − k

2

}

≥ μ(x) = min
{
μ(x), 1

}
. (4.26)

From (iv), we have

IcG
(
min
{
μ(x), μ

(
x −→ y

)}
, μ
(
y
))

= 1, (4.27)

that is, min{μ(x), μ(x → y)} ≤ μ(y), or 1 −min{μ(x), μ(x → y)} ≥ (1 − k)/2. Hence

max
{

μ
(
y
)
,

1 − k
2

}

≥ min
{
μ(x), μ

(
x −→ y

)}
= min

{
μ(x), μ

(
x −→ y

)
, 1
}
. (4.28)

This completes the proof.
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Corollary 4.4. For any fuzzy set μ in L, one has the following.

(1) If I = IG, then μ is a 0.5-implication-based fuzzy filter of L if and only if μ is an (∈,∈ ∨qk)-
fuzzy filter of L.

(2) If I = IcG, then μ is a 0.5-implication-based fuzzy filter of L if and only if μ satisfies the
following conditions:

(2.1) (for all x ∈ L) (max{μ(1), 0.5} ≥ min{μ(x), 1}).
(2.2) (for all x, y ∈ L) (max{μ(y), 0.5} ≥ min{μ(x), μ(x → y), 1}).

5. Conclusions

We introduced the notion of an (∈,∈ ∨qk)-fuzzy filter which is a generalization of an (∈,∈ ∨q)-
fuzzy filter in R0-algebras. We investigated related properties and provided characterizations
of an (∈,∈ ∨qk)-fuzzy filter in R0-algebras. We discussed the implication-based fuzzy filters
of an R0-algebra. Using our notions/results, we know that the related results in the paper [6]
are induced from the notions/results in this paper.
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