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The original classiffcation of PBIBDs defined group divisible designs GDD(v = v1 + v2 + · · · +
vg, g, k, λ1, λ2) with λ1 /= 0. In this paper, we prove that the necessary conditions are suffcient for
the existence of the group divisible designs with two groups of unequal sizes and block size three
with λ2 = 1.

1. Introduction

A pairwise balanced design is an ordered pair (S,B), denoted PBD(S,B), where S is a finite set
of symbols, and B is a collection of subsets of S called blocks, such that each pair of distinct
elements of S occurs together in exactly one block of B. Here |S| = v is called the order of the
PBD. Note that there is no condition on the size of the blocks in B. If all blocks are of the same
size k, then we have a Steiner system S (v, k). A PBD with index λ can be defined similarly;
each pair of distinct elements occurs in λ blocks. If all blocks are same size, say k, then we get
a balanced incomplete block design BIBD(v, b, r, k, λ). In other words, a BIBD(v, b, r, k, λ) is
a set S of v elements together with a collection of b k-subsets of S, called blocks, where each
point occurs in r blocks, and each pair of distinct elements occurs in exactly λ blocks (see
[1–3]).

Note that in a BIBD(v, b, r, k, λ), the parameters must satisfy the necessary conditions

(1) vr = bk and

(2) λ(v − 1) = r(k − 1).

With these conditions, a BIBD(v, b, r, k, λ) is usually written as BIBD(v, k, λ).
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A group divisible design GDD(v = v1 + v2 + · · · + vg, g, k, λ1, λ2) is an ordered triple
(V,G,B), where V is a v-set of symbols, G is a partition of V into g sets of size v1, v2, . . . , vg ,
each set being called group, andB is a collection of k-subsets (called blocks) of V , such that each
pair of symbols from the same group occurs in exactly λ1 blocks, and each pair of symbols
from different groups occurs in exactly λ2 blocks (see [1, 2, 4]). Elements occurring together in
the same group are called first associates, and elements occurring in different groups we called
second associates. We say that the GDD is defined on the set V . The existence of such GDDs
has been of interest over the years, going back to at least the work of Bose and Shimamoto
in 1952 who began classifying such designs [5]. More recently, much work has been done on
the existence of such designs when λ1 = 0 (see [6] for a summary), and the designs here are
called partially balanced incomplete block designs (PBIBDs) of group divisible type in [6].
The existence question for k = 3 has been solved by Fu and Rodger [1, 2]when all groups are
the same size.

In this paper, we continue to focus on blocks of size 3, solving the problem when the
required designs having two groups of unequal size, namely, we consider the problem of
determining necessary conditions for an existence of GDD(v = m + n, 2, 3, λ1, λ2) and prove
that the conditions are sufficient for some infinite families. Since we are dealing on GDDs
with two groups and block size 3, wewill use GDD(m,n;λ1, λ2) for GDD(v = m+n, 2, 3, λ1, λ2)
from now on, and we refer to the blocks as triples. We denote (X,Y ;B) for a GDD(m,n;λ1, λ2)
if X and Y arem-set and n-set, respectively. Chaiyasena, et al. [7] have written a paper in this
direction. In particular, they have completely solved the problem of determining all pairs
of integers (n, λ) in which a GDD(1, n; 1, λ) exists. We continue to investigate in this paper
all triples of integers (m,n, λ) in which a GDD(m,n;λ, 1) exists. We will see that necessary
conditions on the existence of a GDD(m,n;λ1, λ2) can be easily obtained by describing it
graphically as follows.

Let λKv denote the graph on v vertices in which each pair of vertices is joined by λ
edges. Let G1 and G2 be graphs. The graph G1∨λG2 is formed from the union of G1 and G2

by joining each vertex in G1 to each vertex in G2 with λ edges. A G-decomposition of a graph
H is a partition of the edges of H such that each element of the partition induces a copy of
G. Thus the existence of a GDD(m,n;λ1, λ2) is easily seen to be equivalent to the existence
of a K3-decomposition of λ1Km∨λ2λ1Kn. The graph λ1Km∨λ2λ1Kn is of order m + n and size
λ1[(m

2 ) + ( n
2 )] +λ2mn. It containsm vertices of degree λ1(m− 1) +λ2n and n vertices of degree

λ1(n − 1) + λ2m. Thus the existence of a K3-decomposition of λ1Km∨λ2λ1Kn implies

(1) 3 | λ1[(m
2 ) + ( n

2 )] + λ2mn, and

(2) 2 | λ1(m − 1) + λ2n and 2 | λ1(n − 1) + λ2m.

2. Preliminary Results

We will review some known results concerning triple designs that will be used in the sequel,
most of which are taken from [3].

Theorem 2.1. Let v be a positive integer. Then there exists a BIBD(v, 3, 1) if and only if v ≡
1 or 3 (mod 6).

A BIBD(v, 3, 1) is usually called Steiner triple system and is denoted by STS(v). Let
(V,B) be an STS(v). Then the number of triples b = |B| = v(v − 1)/6. A parallel class in an
STS(v) is a set of disjoint triples whose union is the set V . A parallel class contains v/3 triples,
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and, hence, an STS(v) having a parallel class can exist only when v ≡ 3 (mod 6). When the
set B can be partitioned into parallel classes, such a partition R is called a resolution of the
STS(v), and the STS(v) is called resolvable. If (V,B) is an STS(v), and R is a resolution of it,
then (V,B,R) is called a Kirkman triple system, denoted by KTS(v), with (V,B) as its underlying
STS. It is well known that a KTS(v) exists if and only if v ≡ 3 (mod 6). Thus if (V,B,R) is a
KTS(v), then R contains (v − 1)/2 parallel classes.

Theorem 2.2. There exists a PBD(6k + 5) with one block of size 5 and 6k2 + 9k blocks of size 3.

Example 2.3. Let S = {1, 2, 3, . . . , 11}. Then PBD(11) is an ordered pair (S,B), where B contains
the following blocks:

{1, 2, 3, 4, 5} {2, 6, 9} {3, 7, 8} {4, 8, 11}
{1, 6, 7} {2, 7, 11} {3, 9, 10} {5, 6, 8}
{1, 8, 9} {2, 8, 10} {4, 6, 10} {5, 7, 10}

{1, 10, 11} {3, 6, 11} {4, 7, 9} {5, 9, 11}.

(2.1)

A factor of a graph G is a spanning subgraph. An r-factor of a graph is a spanning r-
regular subgraph, and an r-factorization is a partition of the edges of the graph into disjoint
r-factors. A graph G is said to be r-factorable if it admits an r-factorization. In particular, a 1-
factor is a perfect matching, and a 1-factorization of an r-regular graph G is a set of 1-factors
which partition the egde set of G. The following results are well known.

Theorem 2.4. The complete graphK2n is 1-factorable,K2n+1 is 2-factorable, andK3n+1 is 3-factorable.

The following results on existence of λ-fold triple systems are well known (see, e.g.,
[3]).

Theorem 2.5. Let n be a positive integer. Then a BIBD(n, 3, λ) exists if and only if λ and n are in one
of the following cases:

(a) λ ≡ 0 (mod 6) and n/= 2,

(b) λ ≡ 1 or 5 (mod 6) and n ≡ 1 or 3 (mod 6),

(c) λ ≡ 2 or 4 (mod 6) and n ≡ 0 or 1 (mod 3), and

(d) λ ≡ 3 (mod 6) and n is odd.

The results of Chaiyasena, et al. [7] will be useful, and we will state their results as
follows.

Theorem 2.6. Let v be a positive integer with v ≥ 3. The spectrum of λ, denoted S1,v is defined as

S1,v = {λ : a GDD(1, v; 1, λ) exists}. (2.2)
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Then

(a) S1,v = {1, 3, 5, . . . , v − 1} if v ≡ 0 (mod 6),

(b) S1,v = {6, 12, 18, . . . , v − 1} if v ≡ 1 (mod 6),

(c) S1,v = {1, 7, 13, . . . , v − 1} if v ≡ 2 (mod 6),

(d) S1,v = {2, 4, 6, . . . , v − 1} if v ≡ 3 (mod 6),

(e) S1,v = {3, 9, 15, . . . , v − 1} if v ≡ 4 (mod 6), and

(f) S1,v = {4, 10, 16, . . . , v − 1} if v ≡ 5 (mod 6).

The following notations will be used throughout the paper for our constructions.

(1) Let T = {x, y, z} be a triple and a /∈ T . We use a ∗ T for three triples of the form
{a, x, y}, {a, x, z}, {a, y, z}. If T is a set of triples, then a∗T is defined as {a ∗ T : T ∈
T}.

(2) Let G = 〈V (G), E(G)〉 be a graph. If u, v ∈ V (G), e = uv ∈ E(G), and a /∈ V (G),
then we use a + e for the triple {a, u, v}. We further use a + E(G) for the collection
of triples a + e for all e ∈ E(G). In other words,

a + E(G) := {a + e : e ∈ E(G)}. (2.3)

In particular, if F = {x1y1, x2y2, . . . , xnyn} is a 1-factor of K2n and a is not in the
vertex set of K2n, then

a + F =
{{

a, x1, y1
}
,
{
a, x2, y2

}
, . . . ,

{
a, xn, yn

}}
. (2.4)

If Cm : x1, x2, . . . , xm+1 = x1 is a cycle in Kn, then

a + Cm = {{a, x1, x2}, {a, x2, x3}, . . . , {a, xm−1, xm}, {a, xm, x1}}. (2.5)

Also if G is a 2-regular graph and a /∈ V (G), then a + E(G) forms a collection
of triples such that for each u ∈ V (G), there are exactly two triples in a + E(G)
containing a and u. In general ifG is an r-regular graph and a /∈ V (G), then a+E(G)
forms a collection of triples such that for each u ∈ V (G), there are exactly r triples
in a + E(G) containing a and u.

(3) Let V be a v-set. We use K(V ) for the complete graph Kv on the vertex set V .

(4) Let V be a v-set. Let STS(V ) be defined as

STS(V ) = {B : (V,B) is an STS(v)}. (2.6)

KTS(V ) and BIBD(V, 3, λ) can be defined similarly, that is,

KTS(V ) = {B : (V,B) is a KTS(v)},

BIBD(V, 3, λ) = {B : (V,B) is a BIBD(v, 3, λ)}.
(2.7)
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Let X and Y be disjoint sets of cardinality m and n, respectively. We define
GDD(X,Y ;λ1, λ2) as

GDD(X,Y ;λ1, λ2) = {B : (X,Y ;B) is a GDD(m,n;λ1, λ2)}. (2.8)

(5) When we say that B is a collection of subsets (blocks) of a v-set V , B may contain
repeated blocks. Thus, “∪” in our construction will be used for the union of
multisets.

3. GDD(m,n;λ, 1)

Let λ be a positive integer. We consider in this section the problem of determining all pairs of
integers (m,n) in which a GDD(m,n;λ, 1) exists. Recall that the existence of GDD(m,n;λ, 1)
implies 3 | λ[m(m − 1) + n(n − 1)] + 2mn, 2 | λ(m − 1) + n and 2 | λ(n − 1) +m. Let

S(λ) := {(m,n) : a GDD(m,n;λ, 1) exists}. (3.1)

By solving systems of linear congruences, we obtain the following necessary con-
ditions.

Lemma 3.1. Let t be a nonnegative integer.

(a) If (m,n) ∈ S(6t + 1), then there exist nonnegative integers h and k such that {m,n} ∈
{{6k+1, 6h+2}, {6k+1, 6h+6}, {6k+3, 6h+4}, {6k+3, 6h+6}, {6k+5, 6h+2}, {6k+
5, 6h + 4}}.

(b) If (m,n) ∈ S(6t + 2), then there exist nonnegative integers h and k such that {m,n} ∈
{{6k + 6, 6h + 4}, {6k + 6, 6h + 6}}.

(c) If (m,n) ∈ S(6t + 3), then there exist nonnegative integers h and k such that {m,n} ∈
{{6k + 1, 6h + 6}, {6k + 3, 6h + 2}, {6k + 3, 6h + 4}, {6k + 3, 6h + 6}, {6k + 5, 6h + 6}}.

(d) If (m,n) ∈ S(6t + 4), then there exist nonnegative integers h and k such that {m,n} ∈
{{6k + 2, 6h + 2}, {6k + 2, 6h + 4}, {6k + 6, 6h + 4}, {6k + 6, 6h + 6}}.

(e) If (m,n) ∈ S(6t + 5), then there exist nonnegative integers h and k such that {m,n} ∈
{{6k + 1, 6h + 6}, {6k + 3, 6h + 4}, {6k + 3, 6h + 6}}.

(f) If (m,n) ∈ S(6t + 6), then there exist nonnegative integers h and k such that {m,n} ∈
{{6k + 6, 6h + 2}, {6k + 6, 6h + 4}, {6k + 6, 6h + 6}}.

In order to obtain sufficient conditions on an existence of GDD(m,n;λ, 1), we first observe
the following facts.

(1) Let X and Y be two disjoint sets of size m and n, respectively. Then STS(X ∪ Y )/= ∅
if and only if GDD(X,Y ; 1, 1)/= ∅.

(2) Let X and Y be two disjoint sets of size m and n; respectively, and let λ ∈
{2, 3, 4, 5, 6}. Then GDD(X,Y ;λ, 1)/= ∅ if STS(X ∪ Y )/= ∅, BIBD(X, 3, λ − 1)/= ∅, and
BIBD(Y, 3, λ − 1)/= ∅.

Thus, we have the following results.
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Lemma 3.2. Let h and k be nonnegative integers. Then

(a) (6k + 1, 6h + 6), (6k + 6, 6h + 1), (6k + 3, 6h + 6), (6k + 6, 6h + 3), (6k + 3, 6h + 4), (6k +
4, 6h + 3), (6k + 1, 6h + 2), (6k + 2, 6h + 1), (6k + 5, 6h + 2), (6k + 2, 6h + 5), (6k + 5, 6h +
4), (6k + 4, 6h + 5) ∈ S(1),

(b) (6k+1, 6h+6), (6k+6, 6h+1), (6k+3, 6h+6), (6k+6, 6h+3), (6k+3, 6h+4), (6k+4, 6h+3) ∈
S(3), and

(c) (6k+1, 6h+6), (6k+6, 6h+1), (6k+3, 6h+6), (6k+6, 6h+3), (6k+3, 6h+4), (6k+4, 6h+3) ∈
S(5).

Lemma 3.3. Let h and k be nonnegative integers. Then,

(a) (6k + 6, 6h + 6) ∈ S(2) and

(b) (6k + 6, 6h + 4), (6k + 4, 6h + 6) ∈ S(2).

Proof. (a) We first consider an existence of GDD(6, 6; 2, 1), where the groups are X =
{1, 2, 3, 4, 5, 6} and Y = {a1, a2, . . . , a6}. Let F = {F1,F2, . . . ,F5} be a 1-factorization of K(X).
Let B1 =

⋃5
i=1(ai + Fi), B2 ∈ STS(X ∪ {a6}), and B3 ∈ BIBD(Y, 3, 2). Then (X,Y ;B) forms a

GDD(6, 6; 2, 1), where B = B1 ∪ B2 ∪ B3. Thus (6, 6) ∈ S(2).
Let X and Y be two sets of size 6k + 6 and 6h + 6, respectively. Suppose that k ≤ h

and h ≥ 1. Let a1, a2, a3 ∈ Y and let Y ′ = Y − {a1, a2, a3}. Thus, KTS(Y ′)/= ∅. Let B1 ∈ KTS(Y ′)
withP1,P2, . . . ,P3h+1 as its parallel classes. Since STS(X∪Y ′) and STS(X∪{a1, a2, a3}) are not
empty, there exist B2 ∈ STS(X ∪ Y ′) and B3 ∈ STS(X ∪ {a1, a2, a3}). We now let B as

(
3⋃

i=1

(ai ∗ Pi)

)

∪
(

3h+1⋃

i=4

Pi

)

∪ B2 ∪ B3 ∪ {{a1, a2, a3}}. (3.2)

Thus, (X,Y ;B) forms a GDD(6k + 6, 6h + 6; 2, 1) and (6k + 6, 6h + 6) ∈ S(2).
(b) Let X and Y be two sets of size 6k + 6 and 6h + 4, respectively, a ∈ Y and let Y ′ =

Y − {a}. Choose B1 ∈ KTS(Y ′) with P1,P2, . . . ,P3h+1 as its parallel classes. Since STS(X ∪ Y ′)
and STS(X ∪ {a}) are not empty, there exist B2 ∈ STS(X ∪Y ′) and B3 ∈ STS(X ∪ {a}). We now
let B as

B2 ∪ B3 ∪ (a ∗ P1) ∪
(

3h+1⋃

i=2

Pi

)

. (3.3)

Thus, (X,Y ;B) forms a GDD(6k + 6, 6h + 4; 2, 1) and (6k + 6, 6h + 4) ∈ S(2).
Therefore, the proof is complete.

Part of the proof of the following lemma is based on an existence of GDD(4, 4; 2, 3)
which we now construct. Let A = {a, b, c, d} and B = {1, 2, 3, 4}. Then it is easy to
check that F ∈ GDD(A,B; 2, 3), where F = {{1, a, b}, {1, a, c}, {1, a, d}, {2, b, c}, {2, b, d}, {2,
b, a}, {3, c, d}, {3, c, a}, {3, c, b}, {4, d, a}, {4, d, b}, {4, d, c}, {a, 2, 3}, {a, 2, 4}, {a, 3, 4}, {b, 1, 3},
{b, 1, 4}, {b, 3, 4}, {c, 1, 2}, {c, 1, 4}, {c, 2, 4}, {d, 1, 2}, {d, 1, 3}, {d, 2, 3}}.

Lemma 3.4. Let h and k be nonnegative integers. Then

(6k + 2, 6h + 3), (6k + 3, 6h + 2), (6k + 5, 6h + 6), (6k + 6, 6h + 5) ∈ S(3) (3.4)
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Proof

Case 1. Let Xk be a (6k + 2)-set containing a1, a2, and Yh be a (6h + 3)-set containing 1, 2, 3.

Subcase 1 (k = 0). Let B0 = {{1, 2, 3}, {1, 2, 3}, {1, 2, 3}, {1, a1, a2}, {2, a1, a2}, {3, a1, a2}}, and
we can see that B0 ∈ GDD(X0, Y0; 3, 1). Suppose that h ≥ 1. Since X0 ∪ Yh is a set of size
6h + 5, it follows by Theorem 2.2, that there exists a PBD(6h + 5), (X0 ∪ Yh,B1), in which
{1, 2, 3, a1, a2} ∈ B1 and 6h2 + 9h triples in B1. Let B′

1 = B1 − {{1, 2, 3, a, b}}. Since Yh is a
(6h + 3)-set, it follows, by Theorem 2.5(c), that BIBD(Yh, 3, 2)/= ∅. Let B2 ∈ BIBD(Yh, 3, 2). It is
easy to see that (X0, Yh;B) forms a GDD(2, 6h + 3; 3, 1), where

B = B0 ∪ B′
1 ∪ B2. (3.5)

Subcase 2 (k = 1). A GDD(8, 6h+3; 3, 1) can be constructed as follows. LetX = A∪B, whereA
and B are sets of size four. It is clear that STS(Yh), STS(A∪Yh), and STS(B∪Yh) are not empty.
It has been shown above that GDD(A,B; 2, 3) is not empty. We now choose B1 ∈ STS(Yh),
B2 ∈ STS(A ∪ Yh), B3 ∈ STS(B ∪ Yh), and B4 ∈ GDD(A,B; 2, 3), and let B = B1 ∪ B2 ∪ B3 ∪ B4.
Then, (X,Yh;B) form a GDD(8, 6h + 3; 3, 1).

Subcase 3 (k = 2). We first consider the existence of GDD(4, 10; 2, 3) with A = {0, 1, 2, . . . , 9}
and B = {a0, a1, a2, a3}. LetK(A) be the complete graph of order 10 withA as its vertex set. It
is well known that K10 is 1-factorable. In other words, K10 can be decomposed as a union of
nine edge-disjoint 1-factors. Consequently, K10 can be decomposed as a union of three edge-
disjoint 3-factors. Also, K10 can be decomposed as a union of 10C3 and a 3-factor: ten triples
{{x, x + 1, x + 3} : x = 0, 1, . . . , 9} and a 3-factor F0 of K10, where

E(F0) =
9⋃

i=0
{{i, i + 4}, {i, i + 5}, {i, i + 6}}, (3.6)

reducing arithmetic operations (mod 10). Therefore, 2K10 can be decomposed as a union of
10C3 and four 3-factors.

Let F1,F2,F3 be a 3-factorization of K10 and 10C3 and F0 as described above. Then
(A,B;B) forms a GDD(10, 4; 2, 3), where the collection

B = {10C3} ∪
3⋃

i=0
(ai + Fi) ∪ B1 (3.7)

with B1 = {{a0, a1, a2}, {a1, a2, a3}, {a2, a3, a0}, {a3, a0, a1}}.
A GDD(14, 6h + 3; 3, 1) can be constructed as follows. Let X = A ∪ B, where A and B

are sets of size ten and four, respectively. It is clear that STS(Yh), STS(A∪Yh), and STS(B∪Yh)
are not empty. It has been shown above that GDD(A,B; 2, 3) is not empty. We now choose
B1 ∈ STS(Yh), B2 ∈ STS(A ∪ Yh), B3 ∈ STS(B ∪ Yh), and B4 ∈ GDD(A,B; 2, 3) and let B =
B1 ∪ B2 ∪ B3 ∪ B4. Then (X,Yh;B) form a GDD(14, 6h + 3; 3, 1).

Subcase 4 (k ≥ 3). Let A = {a1, a2, a3, a4, a5}. Suppose that A ⊆ Xk and X′ = Xk − A. Since
X′ is a (6k − 3)-set, it follows that STS(X′)/= ∅ and KTS(X′)/= ∅. Choose B1 ∈ STS(X′) and let
K ∈ KTS(X′) with P1,P2, . . . ,P3k−2 as its parallel classes. Let B2 =

⋃5
i=1(ai ∗ Pi) ∪

⋃3k−1
i=6 Pi.
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Since Xk ∪ Yh is a set of size 6(k + h) + 5, we choose a PBD(6(k + h) + 5), (Xk ∪ Yh,B3), as in
Theorem 2.2 in which A ∈ B3. Let B′

3 = B3 − {A}. Since A is a 5-set and Yh is a (6h + 3)-set, it
follows, by Theorem 2.5(c) and (d), that there exist B4 ∈ BIBD(5, 3, 3) and B5 ∈ BIBD(Yh, 3, 2).
Thus, we can see that (Xk, Yh;B) forms a GDD(6k + 2, 6h + 3; 3, 1), where

B = B1 ∪ B2 ∪ B′
3 ∪ B4 ∪ B5. (3.8)

Case 2. We now suppose thatX and Y be sets of size 6k+5 and 6h+6, respectively. We suppose
further that a ∈ X and X′ = X − {a}. By Lemma 3.3(b), we have GDD(X′, Y ; 2, 1)/= ∅. Choose
B1 ∈ GDD(X′, Y ; 2, 1) and B2 ∈ STS(Y ∪ {a}). By Theorem 2.6(e) that GDD({a}, X′; 1, 3)/= ∅.
Choose B3 ∈ GDD({a}, X′; 1, 3). Let B = B1 ∪ B2 ∪ B3, and it is easy to see that B ∈
GDD(X,Y ; 3, 1).

Thus, (6k + 5, 6h + 6) ∈ S(3).

Lemma 3.5. Let h and k be nonnegative integers. Then

(a) (6k + 6, 6h + 6) ∈ S(4) and (6k + 6, 6h + 6) ∈ S(6),

(b) (6k + 6, 6h + 4), (6k + 4, 6h + 6) ∈ S(4) and (6k + 6, 6h + 4), (6k + 4, 6h + 6) ∈ S(6),

(c) (6k + 2, 6h + 2) with h, k not both zero, (6k + 2, 6h + 4), (6k + 4, 6h + 2) ∈ S(4), and

(d) (6k + 6, 6h + 2), (6k + 2, 6h + 6) ∈ S(6).

Proof. The proofs of (a) and (b) follow from the results of Lemma 3.3(a), and (b), respectively,
and Theorem 2.5(c).

(c)We have the following cases.

Case 1 (6k + 2, 6h + 2). Let Xk be a (6k + 2)-set and Yh be a (6h + 2)-set. It is clear that
GDD(X0, Y0; 4, 1) = ∅. We now construct a GDD(2, 8; 4, 1), (X0, Y1;B), with X0 = {x, y},
Y1 = {a1, a2, . . . , a8}, A = {a1, a2, a3}, Y ′

1 = Y1 − A, and B = B1 ∪ B2 ∪ B3 ∪ B4, where
B1 ∈ BIBD(A, 3, 4),B2 ∈ STS(X∪Y ′

1),B3 =
⋃3

i=1(ai+E(K(Y ′
1))), andB4 = {{ai, x, y} : i = 1, 2, 3}.

We now construct a GDD(6k+2, 6h+2; 4, 1), (Xk, Yh;B), in general case, where k ≥ 0 and h ≥ 1.
We first let A = {a1, a2, a3} ⊆ Yh, Y ′

h = Yh − A, and we will use a result on the existence of
GDD(1, 6h − 1; 1, 4) which has been shown in Theorem 2.6(f), namely, GDD({a}, Y ′

h; 1, 4)/= ∅.
Therefore, we can choose Bi ∈ GDD({ai}, Y ′

h
; 1, 4), B4 ∈ BIBD(A, 3, 4), B5 ∈ STS(Xk ∪ Y ′

h
),

and B6 =
⋃3

i=1 Fi, where Fi ∈ STS(Xk ∪ {ai}). We can see that B ∈ GDD(Xk, Yh; 4, 1), where
B = B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6.

Case 2 (6k + 2, 6h + 4). Let Xk be a (6k + 2)-set and Yh be a (6h + 4)-set. It is easy to see that
GDD(X0, Y0; 4, 1)/= ∅ by constructing (X0, Y0;B) as follows. Let X0 = {a, b}, Y0 = {1, 2, 3, 4},
and B =

⋃4
i=1{{i, a, b}} ∪ P2 ∪ P2, where P2 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. We now

turn to more general cases. Suppose that a ∈ Yh and Y ′
h = Yh − {a}. Since Y ′

h is a (6h + 3)-set,
it follows that KTS(Y ′

h
)/= ∅. Choose B1 ∈ KTS(Y ′

h
) with parallel classes P1,P2, . . . ,P3h+1. Let

B2 = (a∗P1)∪(a∗P2)∪(
⋃3h+1

i=3 Pi). We have shown in Lemma 3.4(d) that GDD(Xk, Y
′
h; 3, 1)/= ∅.

Choose B3 ∈ GDD(Xk, Y
′
h; 3, 1) and B4 ∈ STS(Xk∪{a}). We can see that B ∈ GDD(Xk, Yh; 4, 1),

where B = B2 ∪ B3 ∪ B4.
(d) Let Xk be a (6k + 6)-set and Yh be a (6h + 2)-set. Let X0 = {a1, a2, . . . , a6} and

Y0 = {a, b}. Let B1 = {{ai, a, b} : i = 1, 2, . . . , 6}, B2 ∈ BIBD(X0, 3, 6). Then B1 ∪ B2 ∈
GDD(X0, Y0; 6, 1).
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Next we will show that GDD(Xk, Y0; 6, 1)/= ∅ by letting Xk = {a1, a2, . . . , a6k+6}, Y0 =
{a, b}, A = {a1, a2, . . . , a5} and X′

k
= Xk − A. Let B1 = {{ai, a, b} : i = 1, 2, . . . , 5},

B2 ∈ STS({a, b} ∪ X′
k
), and B3 ∈ BIBD(A, 3, 6). Theorem 2.6(b) shows an existence of a

GDD(1, 6h + 1; 1, 6). Let B4 =
⋃5

i=1 B′
i, where B′

i ∈ GDD({ai}, X′
k; 1, 6). It is easy to check that

B ∈ GDD(Xk, Y0; 6, 1), where B = B1 ∪ B2 ∪ B3 ∪ B4.

Finally, let h ≥ 1, a ∈ Y and Y ′
h
= Yh − {a}. We now choose B1 ∈ BIBD(Xk, 3, 4),

B2 ∈ BIBD(Y ′
h
, 3, 4), B3 ∈ STS(Xk ∪ Y ′

h
), and B4 ∈ STS(Xk ∪ {a}). By Theorem 2.6(b)

that GDD({a}, Y ′
h; 1, 6)/= ∅. Choose B5 ∈ GDD({a}, Y ′

h; 1, 6). Thus, we can check that B ∈
GDD(Xk, Yh; 6, 1), where B = B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5. Thus (6k + 6, 6h + 2) ∈ S(6) for all
positive integers h, k.

Nowwe have an existence of a GDD(m,n; r, 1) for r = 1, 2, . . . , 6 wheneverm and n are
not equal to 2, so we can readily extend to any 6t + r by the following lemma.

Lemma 3.6. Let m and n be positive integers with m/= 2 and n/= 2. If there exists a GDD(m,n; r, 1)
with r ≥ 1, then a GDD(m,n; 6t + r, 1), t ≥ 0, exists

Proof. Let X be an m-set and Y be an n-set. By assumption we have GDD(X,Y ; r, 1)/= ∅.
Choose B1 ∈ GDD(X,Y ; r, 1). Since m and n are not equal to 2, by Theorem 2.5(a) there
exist B2 ∈ BIBD(X, 3, 6t) and B3 ∈ BIBD(Y, 3, 6t). It is easy to see that (X,Y ;B) forms a
GDD(m,n; 6t + r, 1), where B = B1 ∪ B2 ∪ B3. Thus (m,n) ∈ S(6t + r) with r ≥ 1.

Finally, we have the main result as in the following.

Theorem 3.7. Let m and n be positive integers with m/= 2 and n/= 2. There exists a
GDD(m,n;λ, 1), λ ≥ 1 if and only if

(1) 3 | λ[m(m − 1) + n(n − 1)] + 2mn and

(2) 2 | λ(m − 1) + n and 2 | λ(n − 1) +m.

Proof. The proof follows from Lemmas 3.1–3.6.
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