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A real Banach algebra of Newton interpolating series, used to approximate the solutions of
multipoint boundary value problems for ODE’s, is studied.

1. Introduction

Let (A, ‖ ‖) be a real Banach algebra. In this paper we study the so-called Newton
interpolating series having the coefficients in (A, ‖ ‖), defined in Section 2, by means of
Newton interpolating polynomials at m distinct nodes, x0, x1, . . . , xm−1, where m ≥ 2, of
multiplicity ni, i = 0, 1, . . . , m−1. These series are useful generalizations of power series which,
in particular forms, were used in number theory to prove the transcendence of some values
of exponential series [1, Chapter 2]. Knowing the importance of power series in the theory
of initial value problems for differential equations, it seems to be useful to study Newton
interpolating series in order to find the solution of the multipoint boundary value problems
for differential equations. In [2] there are some numerical results in the particular caseA = �.
Other methods used to solve similar interpolation problems can be found in [3].

In Section 2 we obtain results concerning Newton interpolating series and their
derivatives (Theorems 2.1 and 2.2). Section 3 deals with functions which are representable
into Newton interpolating series. Theorem 3.4 gives a criterion for a function to be
representable into a Newton interpolating series (see Remark 3.7). The coefficients of this
series are computed in Theorem 3.1. We prove that, with respect to a suitable norm, the
algebra of these functions becomes a real Banach algebra (Theorem 3.6). This adds a new
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completion of the ring of polynomials A[x], where x commutes with the elements of A, to
the usual real Banach spaces, where A[x] is a dense subset. Other examples can be found in
[4].

2. Newton Interpolating Series at m Distinct Points

Let x0, x1, . . . , xm−1 be a set of real numbers which satisfy x0 < x1 < · · · < xm−1, wherem ≥ 2. If
i is a nonnegative integer, then we consider the quotient q(i) and the remainder r(i) obtained
when i is divided by m. We construct the polynomials

ui(x) =
m−1∏

k=0

(x − xk)q(i)
r(i)−1∏

k=0

(x − xk), i = 0, 1, 2, . . . , (2.1)

where x is a real variable. Hence

ui(x) = u
q(i)
m (x)ur(i)(x). (2.2)

If (A, ‖ ‖) is a real Banach algebra, we call an infinite series of the form

∞∑

i=0

Aiui(x), (2.3)

where Ai ∈ A and x commutes with the elements of A, a Newton interpolating series with
coefficients in A at x0, x1, . . . , xm−1. We choose a real number x and consider the partial sum
Sn,x =

∑n
i=0 Aiui(x). The series (2.3) is called convergent at x if there exists Sx ∈ A such that

the sequence {Sn,x}n∈� converges to Sx inA that is limn→∞‖Sx −Sn,x‖ = 0. If I is a set and the
series is convergent at x, for every x ∈ I, then we say that the series converges on I. In this
case the function S : I → A, given by S(x) = Sx, is called the sum of the series (2.3) on I.

Theorem 2.1. Let (A, ‖ ‖) be a real Banach algebra. If a Newton interpolating series of the form
(2.3) converges at a real number x and |um(x)|/= 0, then there exists an interval Ix which contains x
and at least one of xi such that the series converges absolutely on Ix \ {x} and converges uniformly on
every closed interval [a, b] ⊂ Ix.

Proof. Since um(x) is a polynomial of degree m having m distinct real roots, it follows that
there exists an interval Ix which contains x and at least one of xi such that

|um(x)| < |um(x)|, (2.4)

for every x ∈ Ix \ {x}. Because the series converges at x, there exists M > 0 such that, for
every i,

‖Aiui(x)‖ < M. (2.5)
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If x ∈ Ix, then according to (2.2) and (2.5)

‖Aiui(x)‖ < Mvi−r(i)(x)
∣∣∣∣
ur(i)(x)
ur(i)(x)

∣∣∣∣, (2.6)

where

v(x) =
∣∣∣∣
um(x)
um(x)

∣∣∣∣
1/m

. (2.7)

Let

M′ = max
0≤r≤m−1

∣∣∣∣
ur(x)
ur(x)

∣∣∣∣. (2.8)

Now, from (2.4), (2.6), and (2.8), we obtain ‖Aiui(x)‖ < MM′vi−m(x), i = 0, 1, . . ., where
v(x) < 1. Hence, the series converges absolutely at x.

If [a, b] ⊂ Ix, then we consider x ∈ [a, b]. Let

M′′ = max
0≤r≤m−1

max
x∈[a,b]

∣∣∣∣
ur(x)
ur(x)

∣∣∣∣. (2.9)

Then there exists c ∈ [a, b] such that, for every x ∈ [a, b],

v(x) ≤ v(c) < 1 (2.10)

and ‖Aiui(x)‖ ≤ MM′′vi−m(c). Thus, from (2.9), (2.10), and Weierstrass test, the series is
uniformly convergent on [a, b].

Given a Newton interpolating series of the form (2.3), we consider the polynomials

P1,m(x) = 1,

Pi,m(x) =

⎧
⎨

⎩
u′
i(x), if i ≤ m,

(
q(i) + 1

)
u′
r(i)(x)vr(i)(x) + q(i)ur(i)(x)v′

r(i)(x), if i > m,

(2.11)

where

vr(i)(x) =
m−1∏

k=r(i)

(x − xk). (2.12)
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If t ≤ m, then we denote by Pi,m;t(z1; z2; . . . ; zt) the divided difference of Pi,m(x) with respect
to t distinct points z1, z2, . . . , zt. Thus, Pi,m;1(z1) = Pi,m(z1) and for j ≥ 2

Pi,m;j
(
z1; z2; . . . ; zj

)
=

Pi,m;j−1
(
z2; . . . ; zj

) − Pi,m;j−1
(
z1; . . . ; zj−1

)

zj − z1
. (2.13)

Since, for i ≥ m + 1, u′
i(x) = ui−m(x)Pi,m(x), then by (2.1), (2.2), (2.11) and by Newton’s

interpolation formula, it follows that

u′
i(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i∑

k=1

Pi,m;k(x0;x1; . . . ;xk−1)uk−1(x), if i ≤ m,

m∑

k=1

Pi,m;m−k+1
(
xr(i); . . . ;xr(i)+m−k

)
ui−k(x), if i ≥ m + 1,

(2.14)

where, for s ≥ m, xs = xr(s).
The series

∞∑

i=0

A
(1)
i ui(x), (2.15)

where, if i ≤ m − 1,

A
(1)
i =

m−i∑

j=1

Pi+j,m;i+1(x0;x1; . . . ;xi)Ai+j

+
m∑

j=m−i+1
Pi+j,m;m−j+1

(
xr(i+j); . . . ;xr(i+j)+m−j

)
Ai+j

(2.16)

and, if i ≥ m,

A
(1)
i =

m∑

j=1

Pi+j,m;m−j+1
(
xr(i+j);xr(i+j)+1; . . . ;xr(i+j)+m−j

)
Ai+j , (2.17)

is called the derived series of (2.3).
Now, let us denote by Ln(�,A) the complete real algebra of bounded multilinear

forms f : �n → A. Then we can consider A = L(�,A), and hence A = Ln(�,A). Thus,
if I ⊂ � is an interval and F : I → A, then the Fréchet derivatives of this function at a point
of I can be considered an element of A.

Theorem 2.2. Let (A, ‖ ‖) be a real Banach algebra. If the series (2.3) converges, on an open interval
I which does not contain a local extremum of um(x), to S, then the derived series of (2.3) converges
absolutely on I, there exists the Fréchet derivative S′(x) of S(x) at x ∈ I, and

S′(x) =
∞∑

i=0

A
(1)
i ui(x), (2.18)
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where A
(1)
i are given in (2.16), (2.17). Moreover, the series (2.15) can be obtained by termwise

differentiation from the series (2.3).

Proof. If x ∈ I, since um(x) is a polynomial and I does not contain a local extremum of um(x),
then we can choose x̃ ∈ I such that

|um(x)| < |um(x̃)|. (2.19)

Since the series (2.3) is convergent at x̃, there exists M > 0 such that

‖Aiui(x̃)‖ < M, i = 0, 1, . . . . (2.20)

Hence, for k ∈ {0, 1, . . .m − 1},

‖Ai+kui(x)‖ = ‖Ai+kui+k(x̃)‖
∣∣∣∣
ui(x̃)
ui+k(x̃)

∣∣∣∣

∣∣∣∣
ui(x)
ui(x̃)

∣∣∣∣ ≤ M′
∣∣∣∣
ui(x)
ui(x̃)

∣∣∣∣, (2.21)

where

M′ = M max
0≤n≤m−1

∣∣∣∣
ui(x̃)
ui+n(x̃)

∣∣∣∣. (2.22)

Here we remark that, from (2.2), for a fixed x̃, ui(x̃)/ui+n(x̃) takes only a finite number of
values, for i ∈ �.

Since (see, e.g., [5], page 121)

Pi,m;t(z0; z1; . . . ; zt−1) =
t−1∑

k=0

Pi,m(zk)
u′
t(zk)

, t ≤ m, (2.23)

where we consider z0 < z1 < · · · < zm−1 and

ui(z) =
m−1∏

k=0

(z − zk)q(i)
r(i)−1∏

k=0

(z − zk), (2.24)

by (2.11) and (2.23), for j = 1, 2, . . . , m, we obtain

Pi+j,m;m−j+1
(
xr(i+j);xr(i+j)+1; . . . ;xr(i+j)+m−j

)
= αi+jq(i) + βi+j , (2.25)

where αi+j = αi+j(x0, x1, . . . xm−1), βi+j = βi+j(x0, x1, . . . xm−1) take only a finite number of
values. Then there exists C1 > 0 such that, for all i and j,

∣∣Pi+j,m;m−j+1
(
xr(i+j);xr(i+j)+1; . . . ;xr(i+j)+m−j

)∣∣ < C1q(i). (2.26)
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By (2.2) there exists C2 = C2(x, x̃) > 0, independent of i, such that

∣∣∣∣
ui(x)
ui(x̃)

∣∣∣∣ < C2

∣∣∣∣
um(x)
um(x̃)

∣∣∣∣
q(i)

. (2.27)

Hence, by using (2.16), (2.17), (2.21), (2.26), and (2.27), it follows that there exists C3 > 0,
independent of i, such that

∣∣∣A(1)
i ui(x)

∣∣∣ ≤ C3q(i)
∣∣∣∣
um(x)
um(x̃)

∣∣∣∣
q(i)

. (2.28)

Then, by (2.19), the series (2.15) converges absolutely at x and also on I. By (2.14) it follows
that, for x ∈ I, the series (2.15) can be obtained by termwise differentiation from the series
(2.3).

Now, if x ∈ I, because for x = xi, S(x) is a polynomial function and Theorem 2.2
follows easily, then we may suppose that um(x)/= 0. Then, by Theorem 2.1, we can choose
a compact interval Ix ⊂ I such that x belongs to its interior, xi /∈ Ix, for every i, and the
series (2.3) converges absolutely on Ix. We consider δ > 0 small enough such that for every
h ∈ �, |h| ≤ δ, x + h ∈ Ix. Then

S(x + h) − S(x)
h

=
∞∑

i=1

αi(h), (2.29)

where

αi(h) = Ai
ui(x + h) − ui(x)

h
= Aiu

′
i(ξi), (2.30)

where ξi is a point lying between x and x + h.
If y ∈ Ix, then it is different from xi, for every i, and, by (2.2),

u′
i

(
y
)
= q(i)uq(i)−1

m

(
y
)
u′
m

(
y
)
ur(i)

(
y
)
+ u

q(i)
m

(
y
)
u′
r(i)

(
y
)

=
u′
m

(
y
)

um

(
y
)q(i)ui

(
y
)
+
u′
r(i)

(
y
)

ur(i)
(
y
)ui

(
y
)
.

(2.31)

We put

M1 = max
0≤j≤m

max
y∈Ix

∣∣∣∣∣
u′
j

(
y
)

uj

(
y
)

∣∣∣∣∣, M2 = max
0≤j≤m

max
y∈Ix

∣∣uj

(
y
)∣∣, (2.32)

m1 = min
0≤j≤m

min
y∈Ix

∣∣∣∣∣
u′
j

(
y
)

uj

(
y
)

∣∣∣∣∣, m2 = min
0≤j≤m

min
y∈Ix

∣∣uj

(
y
)∣∣. (2.33)
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Since, for y ∈ Ix, the series
∑∞

i=0 Aiui(y) converges absolutely, it follows that
the series

∑∞
i=0 ‖Ai‖|ui(y)| converges. Hence, because m2 > 0, we obtain that

the series
∑∞

i=0 Aiu
q(i)
m (y) converges absolutely. Similarly, since the series

∑∞
i=0 Aiu

′
i(y)

and
∑∞

i=0 Ai(u′
r(i)(y)/ur(i)(y))ui(y) converge absolutely, from (2.31), it follows that the

series
∑∞

i=0 Ai(u′
m(y)/um(y))q(i)ui(y) converges absolutely. Then, by (2.2), the series

∑∞
i=0 ‖Ai‖q(i)|uq(i)

m (y)||ur(i)(y)| converges, and thus
∑∞

i=0 Aiq(i)u
q(i)
m (y) converges absolutely.

We consider x0 ∈ Ix such that

|um(x0)| = max
y∈Ix

∣∣um

(
y
)∣∣, (2.34)

and we put

M3 = max
0≤j≤m

max
y∈Ix

∣∣∣u′
j

(
y
)∣∣∣. (2.35)

Then, from (2.31)–(2.35), for every i,

∣∣u′(ξi)
∣∣ ≤ q(i)M2M3

∣∣∣uq(i)−1
m (x0)

∣∣∣ +M3

∣∣∣uq(i)
m (x0)

∣∣∣

≤ M2M3

m2
q(i)

∣∣∣uq(i)
m (x0)

∣∣∣ +M3

∣∣∣uq(i)
m (x0)

∣∣∣.

(2.36)

Hence, the series
∑∞

i=0 Aiu′(ξi) =
∑∞

i=1 αi(h) converges absolutely and uniformly on [−δ, δ].
If we put αi(0) = Aiu

′
i(x), then it follows that the functions αi(h) are continuous on [−δ, δ].

Thus, the sum of the series (2.29) is continuous and

lim
h→ 0

S(x + h) − S(x)
h

=
∞∑

i=1

αi(0) =
∞∑

i=0

Aiu
′
i(x). (2.37)

Hence,

S(x + h) − S(x) =
∞∑

i=0

Aiu
′
i(x)h + o(h), (2.38)

and this completes the proof of the theorem.

3. Representable Functions into Newton Interpolating Series
at m Distinct Points

If I ⊂ � is an interval which contains x0, x1, . . . , xm−1 such that x0 < x1 < · · · < xm−1, m ≥ 2,
then we consider a function F : I → A. We say that the function F is representable into a
Newton interpolating series at x0, x1, . . . , xm−1 if there exists a series of the form (2.3), which
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converges absolutely on I and converges uniformly to F on I. Hence, it follows that F is a
continuous function.

When xj = j + 1, I = A = �, and F(x) = eαx, it is known that the coefficients Ai and F
are related through the complex integral formula (see [1], Chapter 2, Section 3)

Ai =
1

2π
√−1

∫

|z|=i

F(z)
ui+1(z)

dz. (3.1)

If F is representable into a Newton interpolating series at x0, x1, . . . , xm−1, by using
Theorems 2.1 and 2.2, similarly as in [2, Theorem 3], then it follows the following result
which gives a formula forAi.

Theorem 3.1. Suppose that F : I → A is a function which is representable into a Newton
interpolating series Σ of the form (2.3) at x0, x1, . . . , xm−1 ∈ I. Then, for every n, there exists
Jn =

⋃m−1
i=0 Vi,n ⊂ I, where, for every i, Vi,n is an open interval which contains xi, F has Fréchet

derivative of order n on Vi,n, the series Σ is uniquely defined, and for each i

Ai =
1

q(i)!

r(i)∑

j=0

⎛

⎝ F(x)
∏r(i)

k=0,k /= j(x − xk)
∏m−1

k=0,k /= j(x − xk)q(i)

⎞

⎠
(q(i))

x=xj

+
1

(
q(i) − 1

)
!

m−1∑

j=r(i)+1

⎛
⎝ F(x)

∏r(i)
k=0(x − xk)

∏m−1
k=0,k /= j(x − xk)q(i)

⎞
⎠

(q(i)−1)

x=xj

,

(3.2)

where (F(x))(−1) and 1/(−1)! mean 0.

If F : I → A is representable into a Newton interpolating series at x0, x1, . . . , xm−1 ∈ I,
then the series of the form (2.3), where Ai are given in (3.2), is called the Newton interpolating
series at x0, x1, . . . , xm−1 of the function F.

Given a Newton interpolating series of the form (2.3), we put

Nn(x) =
n∑

i=0

Aiui(x). (3.3)

Now, in order to prove a corollary of the theorem, we need the following form of
Lagrange’s theorem.

Lemma 3.2. One considers a real Banach algebraA andA∗ the dual ofA. If F : [a, b] → A∗, where
a < b is Fréchet differentiable on [a, b], then there exists c ∈ (a, b) such that

F(b) − F(a) = F ′(c)(b − a). (3.4)

Proof. If x ∈ [a, b] and h1 ∈ A, then we consider the real function ϕ given by ϕ(x, h1) =
F(x)(h1). Then, for every h1 ∈ A, h2 ∈ � such that x + h2 ∈ [a, b], ϕ(x + h2, h1) − ϕ(x, h1) =
F(x+h2)(h1)−F(x)(h1) = F ′(x)(h2)(h1)+o(h2) and ϕ has Fréchet derivative with respect to x.



International Journal of Mathematics and Mathematical Sciences 9

Now, for h1 ∈ A, we consider the real function gh1 : [a, b] → �, defined by gh1(x) = ϕ(x, h1).
Then, by Lagrange’s theorem, there exists c ∈ (a, b) such that gh1(b) − gh1(a) = g ′

h1
(c)(b − a).

Hence, the lemma is proved.

Corollary 3.3. Suppose that F : [x0, xm−1] → A has Fréchet derivatives of all orders on
[x0, xm−1] and it is representable into a Newton interpolating series at x0, x1,. . . , xm−1. If its Newton
interpolating series (2.3) has the partial sums given in (3.3), then, for a fixed n, the polynomialNn(x)
satisfies

N
(αj)
n

(
xj

)
= F(αj)

(
xj

)
, (3.5)

where 0 ≤ j ≤ m − 1 and

αj ∈
⎧
⎨

⎩

{
0, 1, . . . , q(n)

}
, if j ≤ r(n),

{
0, 1, . . . , q(n) − 1

}
, if j ≥ r(n) + 1.

(3.6)

Furthermore, ifA is the dual algebra of a real Banach algebraA1, then, for every x ∈ [x0, xm−1], there
exists ξ = ξ(x, n) ∈ (x0, xm−1) such that

F(x) = Nn(x) +
F(n+1)(ξ)
(n + 1)!

un+1(x). (3.7)

Proof. It follows immediately that every polynomial function is representable into a finite
Newton interpolating series at x0, x1, . . . , xm−1. Then the coefficients Ai, i ≤ n, are given in
(3.2), whereF is replaced byNn. SinceNn(x) are the partial sums of theNewton interpolating
series at x0, x1, . . . , xm−1 of the function F, it follows that

Ai =
1

q(i)!

r(i)∑

j=0

⎛

⎝ F(x)
∏r(i)

k=0,k /= j(x − xk)
∏m−1

k=0,k /= j(x − xk)q(i)

⎞

⎠
(q(i))

x=xj

+
1

(
q(i) − 1

)
!

m−1∑

j=r(i)+1

⎛
⎝ F(x)

∏r(i)
k=0(x − xk)

∏m−1
k=0,k /= j(x − xk)q(i)

⎞
⎠

(q(i)−1)

x=xj

=
1

q(i)!

r(i)∑

j=0

⎛

⎝ Nn(x)
∏r(i)

k=0,k /= j(x − xk)
∏m−1

k=0,k /= j(x − xk)q(i)

⎞

⎠
(q(i))

x=xj

+
1

(
q(i) − 1

)
!

m−1∑

j=r(i)+1

⎛
⎝ Nn(x)

∏r(i)
k=0(x − xk)

∏m−1
k=0,k /= j(x − xk)q(i)

⎞
⎠

(q(i)−1)

x=xj

.

(3.8)

Then (3.5) follows, by mathematical induction on n, by using (3.8), with i = 0, 1, . . . . We
observe, finally, that (3.7) gives the error of the interpolating formula and it is obtained by
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applying the generalization of Rolle’s theorem, which is a consequence of Lemma 3.2, for the
function H(x) = F(x) −Nn(x) +Kun+1(x), whereK is a constant fromA.

Theorem 3.4. One considers A and A1 two Banach real algebras such that A = A1
∗. One

supposes that F : [x0, xm−1] → A has Fréchet derivatives of all orders on [x0, xm−1]. If Ms =
supx∈[x0,xm−1]

‖F(s)(x)‖ and the sequence {zs} given by

zs =
(xm−1 − x0)sMs

s!
, s = 0, 1, . . . , (3.9)

converges to zero, then F is the sum of its Newton interpolating series at x0, x1, . . . , xm−1 on
[x0, xm−1].

Proof. From (3.7) it follows that

‖F(x) −Nn(x)‖ ≤ Mn+1

(n + 1)!
|un+1(x)|, (3.10)

and by (2.2) we obtain that

max
x∈[x0,xm−1]

|un+1(x)| ≤ (xm−1 − x0)n+1. (3.11)

Now (3.10) and (3.11) imply

‖F(x) −Nn(x)‖ ≤ (xm−1 − x0)n+1Mn+1

(n + 1)!
. (3.12)

Hence, Nn(x) converges uniformly to F on [x0, xm−1].

In the last theorem of this section we study the algebra of functions which are the sums
of their Newton interpolating series at x0, x1, . . . , xm−1.

If A is a Banach real algebra, then we denote by N(x0, x1, . . . , xm−1) the set of all
functions F : [x0, xm−1] → A which are representable into a Newton interpolating series at
x0, x1, . . . , xm−1. Thus, by Theorem 3.1, every F ∈ N(x0, x1, . . . , xm−1) is the sum of its Newton
interpolating series at x0, x1, . . . , xm−1. We take

F(x) =
∞∑

i=0

Aiui(x), G(x) =
∞∑

i=0

Biui(x) (3.13)

two elements of N(x0, x1, . . . , xm−1). Our objective is to define the addition and the multipli-
cation of F and G. We begin with a lemma.
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Lemma 3.5. If ui are given in (2.1), then, for every i, j ∈ {1, 2, . . . , m}, there exist nonnegative real
numbers Ck(i, j), k ∈ {max{i, j},max{i, j} + 1, . . . , i + j}, uniquely defined, such that

uiuj =
i+j∑

k=max{i,j}
Ck

(
i, j

)
uk. (3.14)

Proof. If j ≤ i < m, then it follows that

uiuj = uiuj−1
(
x − xj−1

)
= ui+1uj−1 +

(
xi − xj−1

)
uiuj−1, (3.15)

and if i = m, then uiuj = ui+j . Now, for every i, the induction on j completes the proof of the
lemma.

We define addition and multiplication of F and G as follows:

(F +G)(x) =
∞∑

i=0
(Ai + Bi)ui(x),

(FG)(x) =
∞∑

i=0

Piui(x),

(3.16)

where

Pi =
∑

(α,β)∈D(i)

Ci−(q(α)+q(β))m
(
r(α), r

(
β
))
aαbβ (3.17)

D(i) = {(α, β) ∈ �2 : max{α + q(β)m, β + q(α)m} ≤ i ≤ α + β} and Ck(s, t) are given in (3.14).
Let x ∈ [x0, xm−1] be such that

|um(x)| = sup
x∈[x0,xm−1]

|um(x)|. (3.18)

Since ui(x) > 0, for every x > xm−1, and the roots of u′
i(x) belong to [x0, xm−1], there exists

z > xm−1, uniquely determined such that

um(z) = |um(x)|. (3.19)

We put

K1 = min
0≤i≤m−1

|ui(x)|,

K2 = max
0≤i≤m−1

|ui(z)|.
(3.20)
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Then, by (2.2),

ui(z) = u
q(i)
m (z)ur(i)(z) =

∣∣∣uq(i)
m (x)

∣∣∣
∣∣ur(i)(x)

∣∣
∣∣∣∣
ur(i)(z)
ur(i)(x)

∣∣∣∣ ≤
K2

K1
|ui(x)|. (3.21)

If F(x) =
∑∞

i=0 Aiui(x) ∈ N(x0, . . . , xm−1), then the series
∑∞

i=0 Aiui(x) converges absolutely
and, by (3.21), the series

∑∞
i=0 ‖Ai‖ui(z) converges. We define

‖F‖N =
∞∑

i=0

‖Ai‖ui(z). (3.22)

Theorem 3.6. If the addition and the multiplication are defined by (3.16), then N(x0, . . . , xm−1)
becomes a real algebra. Furthermore, ‖ ‖N defined by (3.22) is a norm, andN(x0, . . . , xm−1) becomes
a real Banach algebra with respect to ‖ ‖N.

Proof. If F,G ∈ N(x0, . . . , xm−1), then their Newton interpolating series at x0, x1, . . . , xm−1
converge absolutely on [x0, xm−1] and converge uniformly to F and G, respectively. By (3.16)
it follows easily that the Newton interpolating series at x0, x1, . . . , xm−1 of F +G and FG have
the same properties. Thus, N(x0, . . . , xm−1) is a real algebra.Since

∥∥uiuj

∥∥
N=

∥∥∥∥∥

i+j∑

k=i

Ck

(
i, j

)
uk

∥∥∥∥∥
N

=
i+j∑

k=i

Ck

(
i, j

)
uk(z) = ‖ui‖N

∥∥uj

∥∥
N, (3.23)

for every i, j ∈ {1, 2, . . . , m}, i ≥ j, it follows that ‖FG‖N ≤ ‖F‖N‖G‖N and N(x0, . . . , xm−1) is
a normed algebra.

Now, we will prove that N(x0, . . . , xm−1) is a real Banach algebra. Consider {Fn =∑∞
j=0 Aj,nuj}n∈� a Cauchy sequence ofN(x0, . . . , xm−1). Let ε > 0 be arbitrary. Then there exists

N(ε) ∈ � such that, for all n ≥ N(ε) and p = 1, 2, . . ., ‖Fn+p −Fn‖N < ε. From (3.22), we obtain

∞∑

j=0

∥∥Aj,n+p −Aj,n

∥∥uj(z) < ε. (3.24)

Thus, for each fixed j, n ≥ N(ε) and p = 1, 2, . . ., ‖Aj,n+p − Aj,n‖uj(z) < ε. Hence, {Aj,n}n∈� is
a Cauchy sequence in A and, since A is a complete algebra, this sequence converges. We set
Aj = limn→∞Aj,n, and we consider the formal series

F =
∞∑

j=0

Ajuj. (3.25)

We have to show that F ∈ N(x0, x1, . . . , xm−1) and limn→∞Fn = F. From (3.24),

s∑

j=0

∥∥Aj,n+p −Aj,n

∥∥uj(z) < ε. (3.26)
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Fix now some n ≥ N(ε) and let p → ∞ and then s → ∞. Hence, for all n ≥ N(ε), we obtain

∞∑

j=0

∥∥Aj −Aj,n

∥∥uj(z) ≤ ε. (3.27)

Since, for x ∈ [x0, xm−1], n0 ≥ N(ε), p′ = 0, 1, . . ., ‖∑i+p′

j=i Ajuj(x)‖ ≤ ∑∞
j=i ‖Aj − Aj,n0‖uj(z) +∑∞

j=i ‖Aj,n0‖uj(z) and Fn0 ∈ N(x0, . . . , xm−1), from (3.27), it follows that F is a function defined
on [x0, xm−1] and it is representable into the Newton interpolation series (3.25). Thus, F ∈
N(x0, . . ., xm−1). Finally, from (3.27), ‖F − Fn‖N ≤ ε and limn→∞Fn = F.

Remark 3.7. Let A[x] be the ring of polynomials with coefficients in A, where x commutes
with the elements of A. With respect to the topology defined by the norm given in (3.22),
A[x] is a dense subset of N(x0, . . . , xm−1). If F satisfies the hypotheses of Theorem 3.4
and its Newton interpolating series converges absolutely at x defined in (3.18), then F ∈
N(x0, . . . , xm−1). Hence, it follows that if F : I → �, where I is an open interval which
contains xi, for every i, and its Taylor series at x0 converges on I, then the restriction of F
to [x0, xm−1] belongs to N(x0, . . . , xm−1). However, N(x0, . . . , xm−1) contains also functions
which are not Fréchet differentiable on [x0, xm−1]. For example, we takeA = �, m = 2, x0 = −1,
x1 = 1 and F(x) = |x|. Then,

F(x) =
√
1 − (1 − x2) = 1 +

∞∑

k=1

(−1)k+1∏k−2
i=1 (k + i)

(k − 1)!22k−1
(
x2 − 1

)k
, (3.28)

for x ∈ [−1, 1], which implies that F ∈ N(−1, 1).
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