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The estimation of a biased density for exponentially strongly mixing sequences is investigated. We
construct a new adaptive wavelet estimator based on a hard thresholding rule. We determine a
sharp upper bound of the associated mean integrated square error for a wide class of functions.

1. Introduction

In the standard density estimation problem, we observe n random variables X1, . . . , Xn with
common density function f . The goal is to estimate f from X1, . . . , Xn. However, in some
applications, X1, . . . , Xn are not accessible; we only have n random variables Z1, . . . , Zn with
the common density

g(x) = μ−1w(x)f(x), (1.1)

wherew denotes a known positive function and μ is the unknown normalization parameter:
μ =

∫
w(y)f(y)dy. Our goal is to estimate the “biased density” f from Z1, . . . , Zn. Practical

examples can be found in, for example, [1–3] and the survey by the author of [4].
The standard i.i.d. case has been investigated in several papers. See, for example, [5–

9]. To the best of our knowledge, the dependent case has only been examined in [10] for
associated (positively or negatively) Z1, . . . , Zn. In this paper, we study another dependent
(and realistic) structure which has not been addressed earlier: we suppose that Z1, . . . , Zn

is a sample of a strictly stationary and exponentially strongly mixing process (Zi)i∈� (to
be defined in Section 2). Such a dependence condition arises for a wide class of GARCH-
type time series models classically encountered in finance. See, for example, [11, 12] for an
overview.
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We focus our attention on the wavelet methods because they provide a coherent set of
procedures that are spatially adaptive and near optimal over a wide range of function spaces.
See, for example, [13, 14] for a detailed coverage of wavelet theory in statistics. We develop
two new wavelet estimators: a linear nonadaptive based on projections and a nonlinear
adaptive using the hard thresholding rule introduced by [15]. Wemeasure their performances
by determining upper bounds of the mean integrated squared error (MISE) over Besov balls
(to be defined in Section 3). We prove that our adaptive estimator attains a sharp rate of
convergence, close to the one attained by the linear wavelet estimator (constructed in a
nonadaptive fashion to minimize the MISE).

The rest of the paper is organized as follows. Section 2 is devoted to the assumptions
on the model. In Section 3, we present wavelets and Besov balls. The considered wavelet
estimators are defined in Section 4. Section 5 is devoted to the results. The proofs are
postponed in Section 6.

2. Assumptions on the Model

We assume that Z1, . . . , Zn coming from a strictly stationary process (Zi)i∈�. For any m ∈ �,
we define themth strongly mixing coefficient of (Zi)i∈�by

am = sup
(A,B)∈FZ

−∞,0×FZ
m,∞

|�(A ∩ B) − �(A)�(B)|, (2.1)

where, for any u ∈ �,FZ
−∞,u is the σ-algebra generated by the random variables . . . , Zu−1, Zu

and FZ
u,∞ is the σ-algebra generated by the random variables Zu, Zu+1, . . ..
We consider the exponentially strongly mixing case, that is, there exist three known

constants, γ > 0, c > 0, and θ > 0, such that, for anym ∈ �,

am ≤ γ exp
(
−c|m|θ

)
. (2.2)

This assumption is satisfied by a large class of GARCH processes. See, for example, [11, 12,
16, 17].

Note that, when θ → ∞, we are in the standard i.i.d. case.
W.o.l.g., the support of the functions f , andw are [0, 1].
There exist two constants, c > 0 and C > 0, such that

c ≤ inf
x∈[0,1]

w(x), sup
x∈[0,1]

w(x) ≤ C. (2.3)

There exists a (known) constant C > 0 such that

sup
x∈[0,1]

f(x) ≤ C. (2.4)
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For any m ∈ {1, . . . , n}, let g(Z0,Zm) be the density of (Z0, Zm). There exists a constant C > 0
such that

sup
m∈{1,...,n}

sup
(x,y)∈[0,1]2

∣
∣g(Z0,Zm)

(
x, y
) − g(x)g(y)

∣
∣ ≤ C. (2.5)

The two first boundedness assumptions are standard in the estimation of biased
densities. See, for example, [6–8].

3. Wavelets and Besov Balls

Let N be an integer φ and ψ be the initial wavelets of dbN (so supp(φ) = supp(ψ) = [1 −
N,N]). Set

φj,k(x) = 2j/2φ
(
2jx − k

)
, ψj,k(x) = 2j/2ψ

(
2jx − k

)
. (3.1)

With an appropriate treatments at the boundaries, there exists an integer τ satisfying 2τ ≥ 2N
such that the collection B = {φτ,k(·), k ∈ {0, . . . , 2τ − 1}; ψj,k(·); j ∈ � − {0, . . . , τ − 1}, k ∈
{0, . . . , 2j − 1}}, is an orthonormal basis of �2([0, 1]) (the space of square-integrable functions
on [0, 1]). See [18].

For any integer � ≥ τ , any h ∈ �2([0, 1]) can be expanded on B as

h(x) =
2�−1∑

k=0

α�,kφ�,k(x) +
∞∑

j=�

2j−1∑

k=0

βj,kψj,k(x), x ∈ [0, 1], (3.2)

where αj,k and βj,k are the wavelet coefficients of h defined by

αj,k =
∫1

0
h(x)φj,k(x)dx, βj,k =

∫1

0
h(x)ψj,k(x)dx. (3.3)

LetM > 0, s > 0, p ≥ 1, and r ≥ 1. A function h belongs to Bsp,r(M) if and only if there
exists a constantM∗ > 0 (depending onM) such that the associated wavelet coefficients (3.3)
satisfy

2τ(1/2−1/p)
(

2τ−1∑

k=0

|ατ,k|p
)1/p

+

⎛

⎝
∞∑

j=τ

⎛

⎝2j(s+1/2−1/p)
(

2j−1∑

k=0

∣∣βj,k
∣∣p
)1/p⎞

⎠

r⎞

⎠

1/r

≤ M∗. (3.4)

In this expression, s is a smoothness parameter and p and r are norm parameters. For a
particular choice of s, p, and r, Bsp,r(M) contains some classical sets of functions as the Hölder
and Sobolev balls. See [19].
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4. Estimators

Firstly, we consider the following estimator for μ:

μ̂ =

(
1
n

n∑

i=1

1
w(Zi)

)−1
. (4.1)

It is obtained by the method of moments (see Proposition 6.2 below).
Then, for any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, we estimate the unknown

wavelet coefficient

(i) αj,k =
∫1
0 f(x)φj,k(x)dx by

α̂j,k =
μ̂

n

n∑

i=1

φj,k(Zi)
w(Zi)

, (4.2)

(ii) βj,k =
∫1
0 f(x)ψj,k(x)dx by

β̂j,k =
μ̂

n

n∑

i=1

ψj,k(Zi)
w(Zi)

. (4.3)

Note that they are those considered in the i.i.d. case (see, e.g., [8, 9]). Their statistical
properties, with our dependent structure, are investigated in Propositions 6.2, 6.3, and 6.4
below.

Assuming that f ∈ Bsp,r(M) with p ≥ 2, we define the linear estimator f̂L by

f̂L(x) =
2j0−1∑

k=0

α̂j0,kφj0,k(x), x ∈ [0, 1], (4.4)

where α̂j,k is defined by (4.2) and j0 is the integer satisfying

1
2
n1/(2s+1) < 2j0 ≤ n1/(2s+1). (4.5)

For a survey on wavelet linear estimators for various density models, we refer the
reader to [20]. For the consideration of strongly mixing sequences, see, for example, [21, 22].

We define the hard thresholding estimator f̂H by

f̂H(x) =
2τ−1∑

k=0

α̂τ,kφτ,k(x) +
j1∑

j=τ

2j−1∑

k=0

β̂j,k�{|β̂j,k| ≥κλn}ψj,k(x), (4.6)
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x ∈ [0, 1], where α̂τ,k is defined by (4.2) and β̂j,k by (4.3), for any random event A, �A is the
indicator function on A, j1 is the integer satisfying

1
2

n

(lnn)1+1/θ
< 2j1 ≤ n

(lnn)1+1/θ
, (4.7)

θ is the one in (2.2), κ is a large enough constant (the one in Proposition 6.4 below) and λn is
the threshold

λn =

√
(lnn)1+1/θ

n
. (4.8)

The feature of the hard thresholding estimator is to only estimate the “large” unknown
wavelet coefficients of f which contain his main characteristics.

For the construction of hard thresholding wavelet estimators in the standard density
model, see, for example, [15, 23].

5. Results

Theorem 5.1 (upper bound for f̂L). Consider (1.1) under the assumptions of Section 2. Suppose
that f ∈ Bsp,r(M) with s > 0, p ≥ 2, and r ≥ 1. Let f̂L be (4.4). Then there exists a constant C > 0
such that

�

(∫1

0

(
f̂L(x) − f(x)

)2
dx

)

≤ Cn−2s/(2s+1). (5.1)

The proof of Theorem 5.1 uses a suitable decomposition of the MISE and a moment
inequality on (4.2) (see Proposition 6.3 below).

Note that n−2s/(2s+1) is the optimal rate of convergence (in the minimax sense) for the
standard density model in the independent case (see, e.g., [14, 23]).

Theorem 5.2 (upper bound for f̂H). Consider (1.1) under the assumptions of Section 2. Let f̂H be
(4.6). Suppose that f ∈ Bsp,r(M) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}. Then
there exists a constant C > 0 such that

�

(∫1

0

(
f̂H(x) − f(x)

)2
dx

)

≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

. (5.2)

The proof of Theorem 5.2 uses a suitable decomposition of the MISE, some moment
inequalities on (4.2) and (4.3) (see Proposition 6.3 below), and a concentration inequality on
(4.3) (see Proposition 6.4 below).

Theorem 5.2 shows that, besides being adaptive, f̂H attains a rate of convergence close
to the one of f̂L. The only difference is the logarithmic term (lnn)(1+1/θ)(2s/(2s+1)).
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Note that, if we restrict our study to the independent case, that is, θ → ∞, the rate of
convergence attained by f̂H becomes the standard one: (log n/n)2s/(2s+1). See, for example,
[14, 15, 23].

6. Proofs

In this section, we consider (1.1) under the assumptions of Section 2. Moreover, C denotes
any constant that does not depend on j, k and n. Its value may change from one term to
another and may depends on φ or ψ.

6.1. Auxiliary Results

Lemma 6.1. For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let α̂j,k be (4.2) and αj,k =
∫1
0 f(x)φj,k(x)dx. Then, under the assumptions of Section 2, there exists a constant C > 0 such that

∣∣α̂j,k − αj,k
∣∣ ≤ C

(∣∣∣
∣∣
μ

n

n∑

i=1

φj,k(Zi)
w(Zi)

− αj,k
∣∣∣
∣∣
+
∣
∣∣∣
1
μ̂
− 1
μ

∣
∣∣∣

)

. (6.1)

This inequality holds for ψ instead of φ (and, a fortiori, β̂j,k defined by (4.3) instead of α̂j,k and βj,k =
∫1
0 f(x)ψj,k(x)dx instead of αj,k).

Proof of Lemma 6.1. We have

α̂j,k − αj,k =
μ̂

μ

(
μ

n

n∑

i=1

φj,k(Zi)
w(Zi)

− αj,k
)

+ αj,kμ̂
(
1
μ
− 1
μ̂

)
. (6.2)

Due to (2.3), we have |μ̂| ≤ C and |μ̂/μ| ≤ C. Therefore

∣∣α̂j,k − αj,k
∣∣ ≤ C

(∣∣∣
∣∣
μ

n

n∑

i=1

φj,k(Zi)
w(Zi)

− αj,k
∣∣∣
∣∣
+
∣∣αj,k

∣∣
∣
∣∣∣
1
μ̂
− 1
μ

∣
∣∣∣

)

. (6.3)

Using (2.4) and the Cauchy-Schwarz inequality, we obtain

∣∣αj,k
∣∣ ≤
∫1

0
f(x)

∣∣φj,k(x)
∣∣dx ≤ C

∫1

0

∣∣φj,k(x)
∣∣dx

≤ C
(∫1

0

(
φj,k(x)

)2
dx

)1/2

= C.

(6.4)

Hence

∣∣α̂j,k − αj,k
∣∣ ≤ C

(∣∣
∣∣∣
μ

n

n∑

i=1

φj,k(Zi)
w(Zi)

− αj,k
∣∣
∣∣∣
+
∣∣∣
∣
1
μ̂
− 1
μ

∣∣∣
∣

)

. (6.5)

Lemma 6.1 is proved.
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Proposition 6.2. For any integer j ≥ τ such that 2j ≤ n and any k ∈ {0, . . . , 2j − 1}, let αj,k =
∫1
0 f(x)φj,k(x)dx and μ̂ be (4.1). Then,

(1) one has

�

(
μ

n

n∑

i=1

φj,k(Zi)
w(Zi)

)

= αj,k, �

(
1
μ̂

)
=

1
μ
, (6.6)

(2) there exists a constant C > 0 such that

�

(
μ

n

n∑

i=1

φj,k(Zi)
w(Zi)

)

≤ C 1
n
, (6.7)

(3) there exists a constant C > 0 such that

�

(
1
μ̂

)
≤ C 1

n
. (6.8)

These results hold for ψ instead of φ (and, a fortiori, βj,k =
∫1
0 f(x)ψj,k(x)dx instead of αj,k).

Proof of Proposition 6.2. (1)We have

�

(
μ

n

n∑

i=1

φj,k(Zi)
w(Zi)

)

= μ�

(
φj,k(Z1)
w(Z1)

)

= μ
∫1

0

φj,k(x)
w(x)

g(x)dx

= μ
∫1

0

φj,k(x)
w(x)

μ−1w(x)f(x)dx =
∫1

0
f(x)φj,k(x)dx = αj,k.

(6.9)

Since f is a density, we obtain

�

(
1
μ̂

)
= �

(
1
n

n∑

i=1

1
w(Zi)

)

= �

(
1

w(Z1)

)
=
∫1

0

1
w(x)

g(x)dx

=
∫1

0

1
w(x)

μ−1w(x)f(x)dx =
1
μ

∫1

0
f(x)dx =

1
μ
.

(6.10)
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(2)We have

�

(
μ

n

n∑

i=1

φj,k(Zi)
w(Zi)

)

=
μ2

n2

n∑

v=1

n∑

�=1

�

(
φj,k(Zv)
w(Zv)

,
φj,k(Z�)
w(Z�)

)

=
μ2

n
�

(
φj,k(Z1)
w(Z1)

)

+ 2
μ2

n2

n∑

v=2

v−1∑

�=1

�

(
φj,k(Zv)
w(Zv)

,
φj,k(Z�)
w(Z�)

)

≤ μ2

n
�

(
φj,k(Z1)
w(Z1)

)

+ 2
μ2

n2

∣∣∣
∣∣

n∑

v=2

v−1∑

�=1

�

(
φj,k(Zv)
w(Zv)

,
φj,k(Z�)
w(Z�)

)∣∣∣
∣∣
.

(6.11)

Using (2.3) and (2.4), we have supx∈[0,1]g(x) ≤ C. Hence,

�

(
φj,k(Z1)
w(Z1)

)

≤ �

⎛

⎝
(
φj,k(Z1)
w(Z1)

)2
⎞

⎠ ≤ C�
((
φj,k(Z1)

)2)

= C
∫1

0

(
φj,k(x)

)2
g(x)dx ≤ C

∫1

0

(
φj,k(x)

)2
dx = C.

(6.12)

It follows from the stationarity of (Zi)i∈�and 2j ≤ n that

∣∣∣∣
∣

n∑

v=2

v−1∑

�=1

�

(
φj,k(Zv)
w(Zv)

,
φj,k(Z�)
w(Z�)

)∣∣∣∣
∣
=

∣∣∣∣
∣

n∑

m=1

(n −m)�

(
φj,k(Z0)
w(Z0)

,
φj,k(Zm)
w(Zm)

)∣∣∣∣
∣

≤ n
n∑

m=1

∣∣
∣∣∣
�

(
φj,k(Z0)
w(Z0)

,
φj,k(Zm)
w(Zm)

)∣∣
∣∣∣
= T1 + T2,

(6.13)

where

T1 = n
2j−1∑

m=1

∣
∣∣∣
∣
�

(
φj,k(Z0)
w(Z0)

,
φj,k(Zm)
w(Zm)

)∣∣∣∣
∣
,

T2 = n
n∑

m=2j

∣
∣∣∣
∣
�

(
φj,k(Z0)
w(Z0)

,
φj,k(Zm)
w(Zm)

)∣∣∣∣
∣
.

(6.14)

Let us now bound T1 and T2.
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Upper Bound for T1

Using (2.5), (2.3), and doing the change a variables y = 2jx − k, we obtain

∣∣∣
∣∣
�

(
φj,k(Z0)
w(Z0)

,
φj,k(Zm)
w(Zm)

)∣∣∣
∣∣
=

∣∣∣
∣∣

∫∫1

0

(
g(Z0,Zm)

(
x, y
) − g(x)g(y))φj,k(x)

w(x)
φj,k
(
y
)

w
(
y
) dx dy

∣∣∣
∣∣

≤
∫∫1

0

∣∣g(Z0,Zm)
(
x, y
) − g(x)g(y)∣∣

∣∣
∣∣∣
φj,k(x)
w(x)

∣∣
∣∣∣

∣∣
∣∣∣
φj,k
(
y
)

w
(
y
)

∣∣
∣∣∣
dx dy

≤ C
(∫1

0

∣∣φj,k(x)
∣∣dx

)2

= C

(

2−j/2
∫1

0

∣∣φ(x)
∣∣dx

)2

= C2−j .

(6.15)

Therefore,

T1 ≤ Cn2−j2j = Cn. (6.16)

Upper Bound for T2

By the Davydov inequality for strongly mixing processes (see [24]), for any q ∈ (0, 1), it holds
that

∣∣∣
∣∣
�

(
φj,k(Z0)
w(Z0)

,
φj,k(Zm)
w(Zm)

)∣∣∣
∣∣
≤ 10aqm

⎛

⎝�

⎛

⎝

∣∣∣
∣∣
φj,k(Z0)
w(Z0)

∣∣∣
∣∣

2/(1−q)⎞

⎠

⎞

⎠

1−q

≤ 10aqm

(

sup
x∈[0,1]

∣
∣∣∣
∣
φj,k(x)
w(x)

∣
∣∣∣
∣

)2q
⎛

⎝�

⎛

⎝
(
φj,k(Z0)
w(Z0)

)2
⎞

⎠

⎞

⎠

1−q

.

(6.17)

By (2.3), we have

sup
x∈[0,1]

∣∣
∣∣∣
φj,k(x)
w(x)

∣∣
∣∣∣
≤ C sup

x∈[0,1]

∣∣φj,k(x)
∣∣ ≤ C2j/2 (6.18)

and, by (6.12),

�

⎛

⎝
(
φj,k(Z0)
w(Z0)

)2
⎞

⎠ ≤ C. (6.19)

Therefore,

∣∣
∣∣∣
�

(
φj,k(Z0)
w(Z0)

,
φj,k(Zm)
w(Zm)

)∣∣
∣∣∣
≤ C2qjaqm. (6.20)
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Since
∑n

m=2j m
qa

q
m ≤∑∞

m=1m
qa

q
m = γq

∑∞
m=1m

q exp(−cqmθ) < ∞, we have

T2 ≤ Cn2qj
n∑

m=2j
a
q
m ≤ Cn

n∑

m=2j
mqa

q
m ≤ Cn. (6.21)

It follows from (6.13), (6.16), and (6.21) that

∣
∣∣∣
∣

n∑

v=2

v−1∑

�=1

�

(
φj,k(Zv)
w(Zv)

,
φj,k(Z�)
w(Z�)

)∣∣∣∣
∣
≤ Cn. (6.22)

Combining (6.11), (6.12), and (6.22), we obtain

�

(
μ

n

n∑

i=1

φj,k(Zi)
w(Zi)

)

≤ C 1
n
. (6.23)

(3) Proceeding in a similar fashion to 2-, we obtain

�

(
1
μ̂

)
= �

(
1
n

n∑

i=1

1
w(Zi)

)

=
1
n
�

(
1

w(Z1)

)
+ 2

1
n2

n∑

v=2

v−1∑

�=1

�

(
1

w(Zv)
,

1
w(Z�)

)

≤ 1
n
�

(
1

w(Z1)

)
+ 2

1
n

n∑

m=1

∣
∣∣∣�
(

1
w(Z0)

,
1

w(Zm)

)∣∣∣∣.

(6.24)

Using (2.3) (which implies supx∈[0,1](1/w(x)) ≤ C) and applying the Davydov inequality, we
obtain

�

(
1
μ̂

)
≤ C 1

n

(

1 +
n∑

m=1

a
q
m

)

≤ C 1
n
. (6.25)

The proof of Proposition 6.2 is complete.

Proposition 6.3. For any integer j ≥ τ such that 2j ≤ n and any k ∈ {0, . . . , 2j − 1}, let αj,k =
∫1
0 f(x)φj,k(x)dx and α̂j,k be (4.2). Then,

(1) there exists a constant C > 0 such that

�

((
α̂j,k − αj,k

)2) ≤ C 1
n
; (6.26)

(2) there exists a constant C > 0 such that

�

((
α̂j,k − αj,k

)4) ≤ C2j 1
n
. (6.27)
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These inequalities hold for β̂j,k defined by (4.3) instead of α̂j,k, and βj,k =
∫1
0 f(x)ψj,k(x)dx instead of

αj,k.

Proof of Proposition 6.3. (1) Applying Lemma 6.1 and Proposition 6.2, we have

�

((
α̂j,k − αj,k

)2) ≤ C
⎛

⎝�

⎛

⎝
(
μ

n

n∑

i=1

φj,k(Zi)
w(Zi)

− αj,k
)2
⎞

⎠ + �

((
1
μ̂
− 1
μ

)2
)⎞

⎠

= C

(

�

(
μ

n

n∑

i=1

φj,k(Zi)
w(Zi)

)

+ �
(
1
μ̂

))

≤ C 1
n
.

(6.28)

(2)We have

∣∣α̂j,k − αj,k
∣∣ ≤ ∣∣α̂j,k

∣∣ +
∣∣αj,k

∣∣. (6.29)

By (2.3), we have |μ̂| ≤ C and supx∈[0,1](1/w(x)) ≤ C. So,
∣∣
∣∣∣
μ̂

n

n∑

i=1

φj,k(Zi)
w(Zi)

∣∣
∣∣∣
≤ C 1

n

n∑

i=1

∣∣
∣∣∣
φj,k(Zi)
w(Zi)

∣∣
∣∣∣
≤ C sup

x∈[0,1]

∣∣
∣∣∣
φj,k(x)
w(x)

∣∣
∣∣∣

≤ C sup
x∈[0,1]

∣∣φj,k(x)
∣∣ ≤ C2j/2.

(6.30)

By (6.4), we have |αj,k| ≤ C. Therefore

∣
∣α̂j,k − αj,k

∣
∣ ≤ C

(
2j/2 + 1

)
≤ C2j/2. (6.31)

It follows from (6.31) and (6.28) that

�

((
α̂j,k − αj,k

)4) ≤ C2j�
((
α̂j,k − αj,k

)2) ≤ C2j 1
n
. (6.32)

The proof of Proposition 6.3 is complete.

Proposition 6.4. For any j ∈ {τ, . . . , j1} and any k ∈ {0, . . . , 2j − 1}, let βj,k =
∫1
0 f(x)ψj,k(x)dx,

β̂j,k be (4.3) and λn be (4.8). Then there exist two constants, κ > 0 and C > 0, such that

�

(∣
∣∣β̂j,k − βj,k

∣
∣∣ ≥ κλn

2

)
≤ C 1

n4
. (6.33)

Proof of Proposition 6.4. It follows from Lemma 6.1 that

�

(∣∣∣β̂j,k − βj,k
∣∣∣ ≥ κλn

2

)
≤ P1 + P2, (6.34)
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where

P1 = �

(∣∣
∣∣∣
μ

n

n∑

i=1

ψj,k(Zi)
w(Zi)

− βj,k
∣∣
∣∣∣
≥ κCλn

)

,

P2 = �

(∣∣
∣∣
1
μ̂
− 1
μ

∣∣
∣∣ ≥ κCλn

)
.

(6.35)

In order to bound P1 and P2, let us present a Bernstein inequality for exponentially strongly
mixing process. We refer to [25, 26].

Lemma 6.5 (see [25, 26]). Let γ > 0, c > 0, θ > 1 and (Zi)i∈� be a stationary process such that,
for any m ∈ �, the associatedmth strongly mixing coefficient (2.2) satisfies am ≤ γ exp(−c|m|θ). Let
n ∈ �∗ , h : 	 → 	 be a measurable function and, for any i ∈ �, Ui = h(Zi). One assumes that
�(U1) = 0 and there exists a constantM > 0 satisfying |U1| ≤ M <∞. Then, for anym ∈ {1, . . . , n}
and any λ > 4mM/n, one has

�

(∣∣∣∣
∣
1
n

n∑

i=1

Ui

∣∣∣∣
∣
≥ λ
)

≤ 4 exp

(

− λ2n

m
(
64�
(
U2

1

)
+ 8λM/3

)

)

+ 4γ
n

m
exp
(
−cmθ

)
. (6.36)

Upper Bound for P1

For any i ∈ {1, . . . , n}, set

Ui = μ
ψj,k(Zi)
w(Zi)

− βj,k. (6.37)

ThenU1, . . . , Un are identically distributed, depend on the stationary strongly mixing process
(Zi)i∈�which satisfies (2.2), Proposition 6.2 gives

�(U1) = 0, �

(
U2

1

)
≤ �

⎛

⎝
(

μ
ψj,k(Z1)
w(Z1)

)2
⎞

⎠ ≤ C (6.38)

and, by (2.3) and (6.4),

|U1| ≤ μ sup
x∈[0,1]

∣∣∣
∣∣
ψj,k(x)
w(x)

∣∣∣
∣∣
+
∣∣βj,k
∣∣ ≤ C

(

sup
x∈[0,1]

∣∣ψj,k(x)
∣∣ + 1

)

≤ C
(
2j/2 + 1

)
≤ C2j/2.

(6.39)
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It follows from Lemma 6.5 applied with U1, . . . , Un, λ = κCλn, λn = ((lnn)1+1/θ/n)1/2,
m = (u lnn)1/θ with u > 0 (chosen later),M = C2j/2 and 2j ≤ 2j1 ≤ n/(lnn)1+1/θ , that

P1 = �

(∣∣
∣∣∣
1
n

n∑

i=1

Ui

∣∣
∣∣∣
≥ κCλn

)

≤ 4 exp

(

−C κ2λ2nn

m(1 + κλnM)

)

+ 4γ
n

m
exp
(
−cmθ

)

≤ 4 exp

⎛

⎜⎜
⎝−C κ2(lnn)1+1/θ

(u lnn)1/θ
(
1 + κ2j/2

(
(lnn)1+1/θ/n

)1/2)

⎞

⎟⎟
⎠

+ 4γ
n

(u lnn)1/θ
exp(−cu lnn)

≤ C
(
n−Cκ

2/(u1/θ(1+κ)) + n1−cu
)
.

(6.40)

Therefore, for large enough κ and u, we have

P1 ≤ C 1
n4
. (6.41)

Upper Bound for P2

For any i ∈ {1, . . . , n}, set

Ui =
1

w(Zi)
− 1
μ
. (6.42)

ThenU1, . . . , Un are identically distributed, depend on the stationary strongly mixing process
(Zi)i∈�which satisfies (2.2), Proposition 6.2 gives

�(U1) = 0, �

(
U2

1

)
≤ �

(
1

(w(Z1))2

)

≤ C. (6.43)

By (2.3), we have

|U1| ≤ sup
x∈[0,1]

1
w(x)

+
∣∣∣
∣
1
μ

∣∣∣
∣ ≤ C. (6.44)



14 International Journal of Mathematics and Mathematical Sciences

It follows from Lemma 6.5 applied with U1, . . . , Un, λ = κCλn, λn = ((lnn)1+1/θ/n)1/2,
m = (u lnn)1/θ with u > 0 (chosen later) andM = C that

P2 = �

(∣∣∣
∣∣
1
n

n∑

i=1

Ui

∣∣∣
∣∣
≥ κCλn

)

≤ 4 exp

(

−C κ2λ2nn

m(1 + κλnM)

)

+ 4γ
n

m
exp
(
−cmθ

)

≤ 4 exp

⎛

⎜
⎜
⎝−C κ2(lnn)1+1/θ

(u lnn)1/θ
(
1 + κ

(
(lnn)1+1/θ/n

)1/2)

⎞

⎟
⎟
⎠

+ 4γ
n

(u lnn)1/θ
exp(−cu lnn)

≤ C
(
n−Cκ

2/u1/θ + n1−cu
)
.

(6.45)

Therefore, for large enough κ and u, we have

P2 ≤ C 1
n4
. (6.46)

Putting (6.34), (6.41), and (6.46) together, this ends the proof of Proposition 6.4.

6.2. Proofs of the Main Results

Proof of Theorem 5.1. We expand the function f on B as

f(x) =
2j0−1∑

k=0

αj0,kφj0,k(x) +
∞∑

j=j0

2j−1∑

k=0

βj,kψj,k(x), x ∈ [0, 1], (6.47)

where αj0,k =
∫1
0 f(x)φj0 ,k(x)dx and βj,k =

∫1
0 f(x)ψj,k(x)dx.

We have, for any x ∈ [0, 1],

f̂L(x) − f(x) =
2j0−1∑

k=0

(
α̂j0,k − αj0,k

)
φj0,k(x) −

∞∑

j=j0

2j−1∑

k=0

βj,kψj,k(x). (6.48)

Since B is an orthonormal basis of �2([0, 1]), we have,

�

(∫1

0

(
f̂L(x) − f(x)

)2
dx

)

=
2j0−1∑

k=0

�

((
α̂j0,k − αj0 ,k

)2) +
∞∑

j=j0

2j−1∑

k=0

β2j,k. (6.49)
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Using Proposition 6.3, we obtain

2j0−1∑

k=0

�

((
α̂j0,k − αj0,k

)2) ≤ C2j0 1
n
≤ Cn−2s/(2s+1). (6.50)

Since p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Hence

∞∑

j=j0

2j−1∑

k=0

β2j,k ≤ C2−2j0s ≤ Cn−2s/(2s+1). (6.51)

Therefore,

�

(∫1

0

(
f̂L(x) − f(x)

)2
dx

)

≤ Cn−2s/(2s+1). (6.52)

The proof of Theorem 5.1 is complete.

Proof of Theorem 5.2. We expand the function f on B as

f(x) =
2τ−1∑

k=0

ατ,kφτ,k(x) +
∞∑

j=τ

2j−1∑

k=0

βj,kψj,k(x), x ∈ [0, 1], (6.53)

where ατ,k =
∫1
0 f(x)φτ,k(x)dx and βj,k =

∫1
0 f(x)ψj,k(x)dx.

We have, for any x ∈ [0, 1],

f̂H(x) − f(x) =
2τ−1∑

k=0

(α̂τ,k − ατ,k)φτ,k(x) +
j1∑

j=τ

2j−1∑

k=0

(
β̂j,k�{|β̂j,k|≥κλn} − βj,k

)
ψj,k(x)

−
∞∑

j=j1+1

2j−1∑

k=0

βj,kψj,k(x).

(6.54)

Since B is an orthonormal basis of �2([0, 1]), we have

�

(∫1

0

(
f̂H(x) − f(x)

)2
dx

)

= R + S + T, (6.55)
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where

R =
2τ−1∑

k=0

�

(
(α̂τ,k − ατ,k)2

)
, S =

j1∑

j=τ

2j−1∑

k=0

�

((
β̂j,k�{|β̂j,k|≥κλn} − βj,k

)2)
,

T =
∞∑

j=j1+1

2j−1∑

k=0

β2j,k.

(6.56)

Let us bound R, T , and S, in turn.

Upper Bound for R

Using Proposition 6.3 and 2s/(2s + 1) < 1, we obtain

R ≤ C2τ 1
n
≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

. (6.57)

Upper Bound for T

For r ≥ 1 and p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Since 2s/(2s + 1) < 2s, we have

T ≤ C
∞∑

j=j1+1

2−2js ≤ C2−2j1s ≤ C
(

(lnn)1+1/θ

n

)2s

≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

. (6.58)

For r ≥ 1 and p ∈ [1, 2), we have Bsp,r(M) ⊆ B
s+1/2−1/p
2,∞ (M). Since s > 1/p, we have s + 1/2 −

1/p > s/(2s + 1). So

T ≤ C
∞∑

j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ C
(

(lnn)1+1/θ

n

)2(s+1/2−1/p)
≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

.

(6.59)

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

T ≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

. (6.60)

Upper Bound for S

Note that we can write the term S as

S = S1 + S2 + S3 + S4, (6.61)
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where

S1 =
j1∑

j=τ

2j−1∑

k=0

�

((
β̂j,k − βj,k

)2
�{|β̂j,k|≥κλn}�{|βj,k|<κλn/2}

)
,

S2 =
j1∑

j=τ

2j−1∑

k=0

�

((
β̂j,k − βj,k

)2
�{|β̂j,k|≥κλn}�{|βj,k|≥κλn/2}

)
,

S3 =
j1∑

j=τ

2j−1∑

k=0

�

(
β2j,k�{|β̂j,k|<κλn}�{|βj,k|≥2κλn}

)
,

S4 =
j1∑

j=τ

2j−1∑

k=0

�

(
β2j,k�{|β̂j,k|<κλn}�{|βj,k|<2κλn}

)
.

(6.62)

Let us investigate the bounds of S1, S2, S3, and S4 in turn.

Upper Bounds for S1 and S3

We have

{∣∣
∣β̂j,k
∣∣
∣ < κλn,

∣∣βj,k
∣∣ ≥ 2κλn

}
⊆
{∣∣
∣β̂j,k − βj,k

∣∣
∣ >

κλn
2

}
,

{∣∣
∣β̂j,k
∣∣
∣ ≥ κλn,

∣∣βj,k
∣∣ <

κλn
2

}
⊆
{∣∣
∣β̂j,k − βj,k

∣∣
∣ >

κλn
2

}
,

{∣∣
∣β̂j,k
∣∣
∣ < κλn,

∣∣βj,k
∣∣ ≥ 2κλn

}
⊆
{∣∣βj,k

∣∣ ≤ 2
∣∣
∣β̂j,k − βj,k

∣∣
∣
}
.

(6.63)

So,

max(S1, S3) ≤ C
j1∑

j=τ

2j−1∑

k=0

�

((
β̂j,k − βj,k

)2
�{|β̂j,k−βj,k |>κλn/2}

)
. (6.64)

It follows from the Cauchy-Schwarz inequality, Propositions 6.3 and 6.4, and 2j ≤ 2j1 ≤ n that

�

((
β̂j,k − βj,k

)2
�{|β̂j,k−βj,k |>κλn/2}

)
≤
(
�

((
β̂j,k − βj,k

)4))1/2(
�

(∣∣∣β̂j,k − βj,k
∣∣∣ >

κλn
2

))1/2

≤ C
(
2j
1
n

)1/2( 1
n4

)1/2

≤ C 1
n2
.

(6.65)
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Since 2s/(2s + 1) < 1, we have

max(S1, S3) ≤ C 1
n2

j1∑

j=τ

2j ≤ C 1
n2

2j1 ≤ C 1
n
≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

. (6.66)

Upper Bound for S2

Using again Proposition 6.3, we obtain

�

((
β̂j,k − βj,k

)2)
≤ C 1

n
≤ C (lnn)1+1/θ

n
. (6.67)

Hence,

S2 ≤ C (lnn)1+1/θ

n

j1∑

j=τ

2j−1∑

k=0

�{|βj,k|>κλn/2}. (6.68)

Let j2 be the integer defined by

1
2

(
n

(lnn)1+1/θ

)1/(2s+1)

< 2j2 ≤
(

n

(lnn)1+1/θ

)1/(2s+1)

. (6.69)

We have

S2 ≤ S2,1 + S2,2, (6.70)

where

S2,1 = C
(lnn)1+1/θ

n

j2∑

j=τ

2j−1∑

k=0

�{|βj,k|>κλn/2},

S2,2 = C
(lnn)1+1/θ

n

j1∑

j=j2+1

2j−1∑

k=0

�{|βj,k|>κλn/2}.

(6.71)

We have

S2,1 ≤ C (lnn)1+1/θ

n

j2∑

j=τ

2j ≤ C (lnn)1+1/θ

n
2j2 ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

. (6.72)
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For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M),

S2,2 ≤ C (lnn)1+1/θ

nλ2n

j1∑

j=j2+1

2j−1∑

k=0

β2j,k ≤ C
∞∑

j=j2+1

2j−1∑

k=0

β2j,k ≤ C2−2j2s

≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

.

(6.73)

For r ≥ 1, p ∈ [1, 2) and s > 1/p, using �{|βj,k|>κλn/2} ≤ C|βj,k|p/λpn, Bsp,r(M) ⊆ Bs+1/2−1/p2,∞ (M) and
(2s + 1)(2 − p)/2 + (s + 1/2 − 1/p)p = 2s, we have

S2,2 ≤ C (lnn)1+1/θ

nλ
p
n

j1∑

j=j2+1

2j−1∑

k=0

∣
∣βj,k
∣
∣p ≤ C

(
(lnn)1+1/θ

n

)(2−p)/2 ∞∑

j=j2+1

2−j(s+1/2−1/p)p

≤ C
(

(lnn)1+1/θ

n

)(2−p)/2
2−j2(s+1/2−1/p)p ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

.

(6.74)

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

S2 ≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

. (6.75)

Upper Bound for S4

We have

S4 ≤
j1∑

j=τ

2j−1∑

k=0

β2j,k�{|βj,k|<2κλn}. (6.76)

Let j2 be the integer (6.69). Then

S4 ≤ S4,1 + S4,2, (6.77)

where

S4,1 =
j2∑

j=τ

2j−1∑

k=0

β2j,k�{|βj,k|<2κλn}, S4,2 =
j1∑

j=j2+1

2j−1∑

k=0

β2j,k�{|βj,k|<2κλn}. (6.78)

We have

S4,1 ≤ C
j2∑

j=τ

2jλ2n = C
(lnn)1+1/θ

n

j2∑

j=τ

2j ≤ C (lnn)1+1/θ

n
2j2 ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

. (6.79)
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For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M), we have

S4,2 ≤
∞∑

j=j2+1

2j−1∑

k=0

β2j,k ≤ C2−2j2s ≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

. (6.80)

For r ≥ 1, p ∈ [1, 2) and s > 1/p, using β2j,k�{|βj,k|<2κλn} ≤ Cλ
2−p
n |βj,k|p, Bsp,r(M) ⊆ B

s+1/2−1/p
2,∞ (M)

and (2s + 1)(2 − p)/2 + (s + 1/2 − 1/p)p = 2s, we have

S4,2 ≤ Cλ2−pn

j1∑

j=j2+1

2j−1∑

k=0

∣∣βj,k
∣∣p = C

(
(lnn)1+1/θ

n

)(2−p)/2 j1∑

j=j2+1

2j−1∑

k=0

∣∣βj,k
∣∣p

≤ C
(

(lnn)1+1/θ

n

)(2−p)/2 ∞∑

j=j2+1

2−j(s+1/2−1/p)p

≤ C
(

(lnn)1+1/θ

n

)(2−p)/2
2−j2(s+1/2−1/p)p ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

.

(6.81)

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

S4 ≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

. (6.82)

It follows from (6.61), (6.66), (6.75), and (6.82) that

S ≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

. (6.83)

Combining (6.55), (6.57), (6.60), and (6.83), we have, for r ≥ 1, {p ≥ 2 and s > 0} or
{p ∈ [1, 2) and s > 1/p},

�

(∫1

0

(
f̂H(x) − f(x)

)2
dx

)

≤ C
(

(lnn)1+1/θ

n

)2s/(2s+1)

. (6.84)

The proof of Theorem 5.2 is complete.
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