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We extend a collocation method for solving a nonlinear ordinary differential equation (ODE) via
Jacobi polynomials. To date, researchers usually use Chebyshev or Legendre collocation method
for solving problems in chemistry, physics, and so forth, see the works of (Doha and Bhrawy
2006, Guo 2000, and Guo et al. 2002). Choosing the optimal polynomial for solving every ODEs
problem depends on many factors, for example, smoothing continuously and other properties of
the solutions. In this paper, we show intuitionally that in some problems choosing other members
of Jacobi polynomials gives better result compared to Chebyshev or Legendre polynomials.

1. Introduction
The Jacobi polynomials with respect to parameters a > -1, p > -1 (see, e.g., [1, 2]) are

sequences of polynomials P,Su’ﬂ )(x) ;(n=0,1,2,...) satisfying the following relation

1 0, m#n,
f (1 - x)*(1 + x) PP () PP (x)dx = (1.1)
-1 hn/ m= nl

where

2P (a+n+ I (B+n+1)
" Qnia+pr)nT(nta+ 1)

(1.2)
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Table 1: The roots of P,(lu’ﬂ) (x) for different values of & and f.

a=0, a=-04, a=-0.5, a=-04, a=0.6, a=2,
p=0 p=-04 p=-05 p=0.6 a=0.6 p=2
-0.8611 -0.9103 —-0.6947 0.9284 -0.7996 —-0.6947
0.8611 0.9103 0.6947 —-0.7562 0.7996 0.6947
—-0.3400 -0.3729 —-0.2505 0.4879 —-0.3038 —-0.2506
0.3400 0.3729 0.2505 —-0.4879 0.3038 0.2506

These polynomials are eigenfunctions of the following singular Sturm-Liouville equa-
tion:

<1 - x2><1)"(x) +[f-a- (B+a+2)x]D' (x) +n(n+p+a+1)d(x) =0. (1.3)

A consequence of this is that spectral accuracy can be achieved for expansions in Jacobi
polynomials so that

I'n+a+1)
nT(a+1)

-1)"T(n+p+1)

nT(f+1)

P () =

(1.4)
PP (1) =

The Jacobi polynomials can be obtained from Rodrigue’s formula as

(-0 + 2P PPy = S [0 ayena ] (15)

Furthermore, we have that

d a ]. a
Ix <P,(l 'ﬂ)(x)> =3 (n+a+p+ l)P;E_;l’[m) (x). (1.6)

The Jacobi polynomials are normalized such that

P,S“’ﬂ)(l) _ <"+(X> _T(n+a+1) (1.7)

n nT(a+1)

An important consequence of the symmetry of weight function w(x) and the
orthogonality of Jacobi polynomial is the symmetric relation

Pr(lulﬂ)(l) — (_1)711)7([;6/“) (_1), (18)
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Figure 1: Continued.
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Figure 1: Numerical solution of our example for different values of a and f. (a;)a = 0, g = 0; (ay) is error.
(b1)a = 0.4, p = -0.4; (b) is error. (c1)a = 0.5, p = =0.5; (c2) is error. (d1)a = 0.4, p = 0.6; (d,) is error.
(e1)a =0.6, p =0.6; (e2) is error. (f1)a =2, f = 2; (f>) is error.
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Table 2: The solution of our example for different values of a and .

~

= R
I

y =—-0.00000000000000001119663700028745952445299264438P."" (x)
+0.91522505937265707954150015923236 P (x)
—~0.000000000000000022393274000574919048905985288767 P, (x)
~0.059677652961529090927417051547721 P (x).

a=-04,
p=-04

y =-0.000000000000000009996746174510901192865699495P. "+~ (x)
+0.89426538703542076709570198303656 P **~ ¥ (x)
~0.000000000000000011996095223297443607007612548232P, ¥ (x)
~0.04198983897503790669842860235471 P, %% (x).

-0.5,

y =+0.0000000000000000311183604968765645740547197244 P 509 (x)
+0.88795403952304732584548430952028 P>~ (x)
+0.000000000000000031118360496876564574054719724411P, "> (x)
~0.036586425139067737724980961913629 P %% (x).

a=-04,
p=0.6

y = +0.40613910584685335757685249174382P, % (x)
+0.48556046784167101822183413097838 P % (x)
~0.018735918702094560665272214650799 P, "+ (x)
~0.021911869735090742971371812015998 P 4 (x).

a=0.6,
p=06

y = +0.00000000000000000185396073409571348071696317294P." " (x)
+0.93795482243803032015459053856673 P, (x)
+0.0000000000000000059326745972604669042025846148469 P (x)
~0.078409581597779066879404197800853P"*"® (x).

= R
N

y =-+0.000000000000000002334262949979475861874127912143 P (x)
+0.97023755744312467875938569010755 P> (x)
+0.00000000000000001400557769987685517124476747286 P (x)
—~0.10421967857002249036265594452531 P> (x).
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Table 3: Representation of the error by increasing the number of terms in our polynomial solution.

(a)

N =10 N =12 N =14
(a,B) = (0,0) 1.02 x 107 2.13 x 10710 2.65 x 10712
(a,B) = (-0.4,-0.4) 2.26 x 10710 323 x 1071 212x 1078
(a,B) = (-0.5,-0.5) 2.33x10710 1.18 x 10710 1.05x 10713
(a,B) = (-0.4,0.6) 7.16 x 10710 1.01 x 10710 3.55 x 10712
(a,B) = (0.6,0.6) 6.37 x 1078 224 x107° 3.70 x 1011
(a,B) = (2,2) 425 x 107 1.66 x 107 2.39 x 1077

(b)

N =16 N =18 N =20
(a,B) = (0,0 1.31x10°1 121 %1078 2.09 x 1072
(a,B) = (-0. 4 -0.4) 423 x 1071 745 x 10710 9.76 x 102
(a,B) = (-0.5,-0.5) 1.62 x 10715 328 x 10720 112x1072
(a,B) = (-0.4,0.6) 5.60 x 10714 4.08 x 1071 5.35 x 1072
(a,B) = (0. 6 0 6) 236x 1071 1.85 x 107V 3.19 x 1072
(a,p) = (2, 417 x 101 3.06 x 10713 711x 10716

that is, the Jacobi polynomials are even or odd depending on the order of the polynomial. In
this form the polynomials may be generated using the starting form

(a,p) _
B0 =1 (1.9)
o ].
PP (x) = 5(@=p+(+1)),

such that

A=a+p+1, (1.10)

which is obtained from Rodrigue’s formula as follows:

pr(la,ﬂ)(x) _ 2]._ni<n + a> <:ii> (1 _ x)(nfk)(l + .X')k- (111)

1

Following the two seminal papers of Doha [3, 4] let f(x) be an infinitely differentiable
function defined on [-1, 1]; then we can write

f(x)= ianPﬁ’ﬂ (x), (1.12)
n=0

and, for the gth derivative of f(x),

o)
D)= Y a? P (x), a = a,. (1.13)
n=0
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Then,

a;q) = 27’72(1’1 +i+g+A- 1)an+i,n (a +q,p+q,a, ﬁ) Antivg, VM 20, g2>1, (1.14)
i=0

where

(n+i+2g+A-1) (n+a+q+1)T(n+1)
Cn+i,n(“ + q/ﬂ +4q, D(,ﬂ) - ilT2n+\)

—i 2n+i+2q+\ n+a+1
x 3F> ;1) (1.15)

n+g+a+l 2n+i+1

—1)!

(m)y = o+ 1)+ m = 1) = S

For the proof of the above, see [3]. The formula for the expansion coefficients of a general-
order derivative of an infinitely differentiable function in terms of those of the function
is available for expansions in ultraspherical and Jacobi polynomials in Doha [5]. Another
interesting formula is

mej‘“’ﬁ) (x) = jZ:amn (j)p}?ff{n(x), Vm,j>0, (1.16)
with
P“P(x)=0, r>1, (1.17)
where
() = (-2l (2 + 2m-2n+ D)I(j+m-n+ VD)I(j+a+ DTG+ p+1)
mn(J) =

F(j+m-n+a+1)I(j+m-n+p+1)I(j+1)

mi“(fg‘"ff) j+m-n T(j+k+1)
k 2k(n+k+j)IT(Bj+2m-2n—k+A+1)

X

max(O,j—n)

g(—l)lf(2j+m—n—k—l+a+1)F(j+m+l—n+ﬁ+l)
X
. NGj-k-DIT(j-l+a+1)I(k+1+p+1)

i=

xoFi(j-k-n,j+m+l-n+p+1,3j+2m-2n-k+1+1;2).
(1.18)

For the proof see [4]. Chebyshev, Legendre, and ultraspherical polynomials are particular
cases of the Jacobi polynomials. These polynomials have been used both in the solution
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of boundary value problems [6] and in computational fluid dynamics [7, 8]. For the
ultraspherical coefficients of the moments of a general-order derivative of an infinitely
differentiable function, see [5]. Collocation method is a kind of spectral method that uses the
delta function as a test function. Test functions have an important role because these functions
are applied to obtain the minimum value for residual by using inner product. Attention to this
point is very important since Tau and collocation methods do not give the best approximation
solution of ODEs. Due to adding the boundary conditions, we are forced to eliminate several
conditions of orthogonality properties, and this decreases the accuracy of the ODEs solution.
Previous explanations do not mean that the accuracy of the collocation method is less than
that of the Galerkin method. Many studies on the collocation method have recently appeared
in the literature on the numerical solution of boundary value problems [9-12]. The collocation
solution is a piecewise continuous polynomial function. The error has been analyzed for
different conditions by different authors. Frank and Ueberhuber [13] showed equivalence
between solutions of collocation method and fixed points of Iterated Defect Correction (IDeC)
method. They proved that IDeC method can be regarded as an efficient scheme for solving
collocation equations. Celik [14, 15] investigated the corrected collocation method for the
approximate computation of eigenvalues of Sturm-Liouville and periodic Sturm-Liouville
problems by a Truncated Chebyshev Series (TCS). On the other hand, some results on Jacobi
approximation were used for analyzing the p-version of finite element method, boundary
element method, spectral method for axisymmetrical domain, and various rational spectral
methods [16-21].

The rest of this paper is organized as follows. In Section 2, the method of solution
is developed. In Section 3, we report our numerical findings and demonstrate the accuracy
of the proposed scheme by considering a numerical example. Finally, a brief conclusion is
presented in Section 4.

2. Jacobi Collocation Method

We consider the class of ODEs with the following form
s ; l ; m ;
2P ) + 200 1) + 2R (y)' = Fx), 21)
i=0 i=0 i=0

where s,I,m > 0, Pi(x), Q;(x), Ri(x), and F(x) are defined on the interval a < x < b. The most
general boundary conditions are

Yoy(a) +n1y'(a) = 6,
(2.2)

aoy(b) + a1y (b) = 4,

where the real coefficients y;, a;, 6, and p are appropriate constants and the solution is
expressed in the form

n
y =P (x), (2.3)
r=0

under the certain conditions (r =0,1,2,...).
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Any finite range a < w < b can be transformed to the basic range ~1 < x < 1 with the
change of variable

w:(b—a)x+(b+a). (2.4)
2
Hence, there is no loss of generality in taking a = -1 and b = 1. To obtain such a

solution, the Jacobi collocation method can be used. Collocation points can be taken as the

roots of P,(la’ﬂ ) (x) [22]. Until now we have not the explicit formulas that determine these roots.
Therefore, we use the numerical method to determine these roots, for example, the Newton
method. Substituting the Jacobi collocation points in (2.1), the following expression can be
obtained:

IZ;:Pi(x,-) <§Cr (PP (xj>>”>i + IZ:IOJQi(xj) <§nocr (PP (xj)>,>i

(2.5)

m n i
(@h) :
+3 ORi(x]-)<§0ch,uﬂ (x]-)> = F(x;), j=0,1,23,...,n
i= r=

The above system of equations constructs #n + 1 nonlinear equations. We impose the
boundary conditions to these equations as follows:

Yo <Zch,(“'ﬂ)(a)> e <Zchr(a’ﬂ)(a)> =5,
r=0 r=0
n n !

a0 <Zchr“"”(b>> +a <Zch§“'ﬂ>(b>> = p
r=0 r=0

(2.6)

Equations (2.5) and (2.6) construct the n + 3 nonlinear equations and so we eliminate two
equations from (2.1). Thus we have n + 1 equations and solve this system with Newton
iteration method.

3. Illustrative Numerical Example

Consider the following nonlinear boundary value problem:
cos(x) (y")2 —sin®(x)y' =0, (3.1)

subject to boundary conditions

(3.2)
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The exact solution is y = sin(x). We solve it with the above-mentioned method (for
different values of a and f3), and we show the results. We compute the numerical solution for
4 terms in Figure 1.

At first we obtain the roots of P,(l
parameters, and Table 1 shows the roots.

To apply the method we assume that the solution is in the following form:

P (x). For this goal we must determine the « and j

3
Y= ZciPi(a'ﬂ) (x). (3.3)
i=0

By substituting y in (3.1), we obtain a system of equations, and, with attention to Gaussian
nodes, we must solve the set of nonlinear equations. The boundary conditions are imposed
on the system of equations with elimination of two equations, and we add these boundary
conditions to the system as follows:

3 2\ 2 3 !
COS(Xj><ZCi<1)i(ﬂ,ﬂ)(xj>> > —Sinz(xj><ZciPi(ll,ﬂ)(xj)> = O, ] = O, 1,2,3. (34)
i=0 i=0

The above system can be solved with Newton iteration method. We show our results for
every parameter as in Table 2. Representation of the error by increasing the number of terms
in our polynomial solution is shown in Table 3. It is observable that as the number of terms
increases, the absolute error decreases.

4. Conclusion

In this paper, we show that this method is very accurate, even for small value of n (i.e., n = 4).
We see that Chebyshev polynomial (the cases c; and ¢;) and Legendre polynomial (the cases
a; and a,) have not obtained the best approximation (see the case a = -0.4, f = 0.6). We
observe that the error is symmetric when a = f§ (see the cases a, by, ¢2, 2, and f,). When we
increase the number of terms in our computation, we monitor that the error decreases and
our computed results are the best.
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