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For α ≥ 0, λ > 0, we consider theM(α, λ)b of normalized analytic α−λ convex functions defined in
the open unit disc U. In this paper, we investigate the classM(α, λ)b, that is, Re{(zf ′

b
(z)/fb(z))[1−

α + α(1 − λ)(zf ′
b
(z)/fb(z)) + αλ(1 + (zf ′′

b
(z)/f ′

b
(z)))]} > 0, with fb is Koebe type, that is, fb(z) :=

z/(1−zn)b. The subordination result for the aforementioned class will be given. Further, bymaking
use of Jack’s Lemma as well as several differential and other inequalities, the authors derived
sufficient conditions for starlikeness of the class M(α, λ)b of n-fold symmetric analytic functions
of Koebe type. Relevant connections of the results presented here with those given in the earlier
works are also indicated.

1. Introduction

Let A denote the class of normalized analytic functions of the form

f(z) = z +
∞∑

k=2

akz
k, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. Also, as usual, let

S∗ =
{
f : f ∈ A, Re

(
zf ′(z)
f(z)

)
> 0, (z ∈ U)

}
,

K =
{
f : f ∈ A, Re

(
1 +

zf ′′(z)
f ′(z)

)
> 0, (z ∈ U)

}
,

(1.2)

be the familiar classes of starlike functions in U and convex functions in U, respectively.
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If the functions f and g are analytic in U, then we say that the function f is subordinate
to g, or g is superordinate to f (written as f ≺ g) if there exist a functionw(z) analytic U, such
that |w(z)| < 1 and z ∈ U, and w(0) = 0 with f(z) = g(w(z)) in U. If g is univalent in U, then
f ≺ g is equivalent to f(0) = g(0) and f(U) ⊆ g(U).

Next, we let the M(α), that is,

M(α) =
{
f(z) ∈ A : Re

{
(1 − α)

zf ′(z)
f(z)

+ α

(
1 +

zf ′′(z)
f ′(z)

)}
> 0, (z ∈ U)

}
. (1.3)

The class M(α) was first introduced by Mocanu [1], which was then known as the class of
α convex (or α-starlike) functions. Later, Miller et al. [2] studied this class and showed that
M(α) is a subclass of S∗ for any real number α and also that M(α) is a subclass of K for
α ≥ 1. We note that M(0) = S∗ and M(1) = K. Note also that Mocanu introduced M(α) with
f(z) · f ′(z)/0. But Sakaguchi and Fukui [3] later showed that this condition was not needed.

Motivated essentially by the aforementioned earlier works, we aim here at deriving
sufficient conditions for starlikeness of n-fold symmetric function fb of the Koebe type,
defined by

fb(z) :=
z

(1 − zn)b
(b ≥ 0; n ∈ N := {1, 2, 3, . . .}), (1.4)

which obviously corresponds to the familiar Koebe function when n = 1 and b = 2.

Definition 1.1. A function f(z) given by (1.1) is said to be in the class M(α, λ)b, for α ≥ 0,
λ > 0, if the following conditions are satisfied:

Re

{
zf ′

b(z)
fb(z)

[
1 − α + α(1 − λ)

zf ′
b(z)

fb(z)
+ αλ

(
1 +

zf ′′
b (z)

f ′
b(z)

)]}
> 0, (z ∈ U). (1.5)

In this paper, we consider the class of functions M(α, λ)b.
In addition, in this paper, authors investigate the subordination of the class denoted

byM(α, λ)b.
We have the following inclusion relationships:

(i) M(0, λ)1 ⊂ S∗

(ii) M(α, 1)1 ⊂ H(α) ⊂ S∗, which H(α) has studied by [4].

The work of Siregar et al. [5] and Bansal and Raina [6] have also motivated us to come to
these problems. Look also at [7, 8] for different studies.

The following result (popularly known as Jack’s Lemma) will also be required in the
derivation of our result (Theorem 4.1 below).
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2. Preliminaries

Lemma 2.1 (see [9]). Let q(z) be univalent in U and let the function θ and φ be analytic in a domain
D containing q(U), with φ(w)/= 0 when w ∈ q(U). Set

Q(z) = γzq′(z)φ
(
q(z)

)
, γ > 0,

h(z) = θ
(
q(z)

)
+Q(z),

(2.1)

and suppose that

(i) Q(z) is univalent and starlike in U;

(ii) Re(zh′(z)/Q(z)) = Re(θ′(q(z))/φ(q(z)) + zQ′(z)/Q(z)) > 0, z ∈ U.

If p(z) is analytic in U with p(0) = q(0) = 1, p(U) ⊂ D, and

θ
(
p(z)

)
+ γzp′(z)φ

(
p(z)

) ≺ θ
(
q(z)

)
+ γzq′(z)φ

(
q(z)

)
= h(z), (2.2)

then

p(z) ≺ q(z), (2.3)

and q is the best dominant.

Lemma 2.2 (see [10]). Let the (nonconstant) function w(z) be analytic in U such that w(0) = 0. If
|w(z)| attains its maximum value on circle |z| = r < 1 at a point zo ∈ U, we have

zow
′(zo) = kw(zo), (2.4)

where k ≥ 1 is a real number.

3. The Subordination Result

Theorem 3.1. Let f(z) ∈ A satisfy f(z)/= 0 (z ∈ U). Also, let the function q(z) be univalent in U,
with q(0) = 1 and q(z)/= 0, for λ > 0 and α ≥ 0, such that

Re
(
1 +

zq′′(z)
q′(z)

)
> 0 (z ∈ U),

Re
{
λ + 2q(z) +

zq′′(z)
q′(z)

}
> 0 (z ∈ U).

(3.1)

If

zf ′
b(z)

fb(z)

[
1 − α + α(1 − λ)

zf ′
b(z)

fb(z)
+ αλ

(
1 +

zf ′′
b (z)

f ′
b(z)

)]
≺ h(z) (z ∈ U), (3.2)
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where

h(z) = α
[
q(z)

]2 + (1 − α)
(
q(z)

)
+ αλzq′(z), (3.3)

then

zf ′
b(z)

fb(z)
≺ q(z) (z ∈ U), (3.4)

and q(z) is the best dominant of (3.2).

Proof. We first choose

p(z) =
zf ′

b(z)
fb(z)

, θ(w) = w(1 − α + αw), φ(w) = 1, (3.5)

then θ(w) and φ(w) are analytic inside the domain D
∗, which contains q(U), q(0) = 1, and

φ(w)/= 0 when w ∈ q(U).
Now, if we define the functions Q(z) and h(z) by

Q(z) = αλzq′(z)φ
(
q(z)

)
= αλzq′(z),

h(z) = θ
(
q(z)

)
+Q(z) = α

[
q(z)

]2 + (1 − α)
(
q(z)

)
+ αλzq′(z),

(3.6)

then it follows from (3.1) that Q(z) is starlike in U and

Re
(
zh′(z)
Q(z)

)
> 0 (z ∈ U). (3.7)

We also note that the function p(z) is analytic in U, with p(0) = q(0) = 1. Since 0 /∈ p(U),
therefore, p(U) ⊂ D

∗, γ = αλ > 0 and hence, the hypothesis of Lemma 2.1 are satisfied.
Applying Lemma 2.1, we find that

zf ′
b(z)

fb(z)

[
1 − α + α(1 − λ)

zf ′
b(z)

fb(z)
+ αλ

(
1 +

zf ′′
b (z)

f ′
b(z)

)]

= α
[
p(z)

]2 + (1 − α)
(
p(z)

)
+ αλzp′(z) = θ

(
p(z)

)
+ αλzp′(z) ≺ h(z)

= α
[
q(z)

]2 + (1 − α)
(
q(z)

)
+ αλzq′(z) = θ

(
q(z)

)
+ αλzq′(z), (z ∈ U),

(3.8)

which implies that

zf ′
b(z)

fb(z)
≺ q(z) (z ∈ U), (3.9)

and q(z) is the best dominant of (3.2).
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4. The Properties of the Class M(α, λ)b

We begin by proving a stronger result than what we indicated in the preceding section.

Theorem 4.1. Let the n-fold symmetric function fb(z), defined by (1.4), be analytic in U, with

fb(z)
z

/= 0 (z ∈ U). (4.1)

If fb(z) satisfies the inequality:

Re

{
zf ′

b(z)
fb(z)

[
1 − α + α(1 − λ)

zf ′
b(z)

fb(z)
+ αλ

(
1 +

zf ′′
b (z)

f ′
b(z)

)]}
>

(
1 − nb

2

)(
1 − αnb

2

)
− αλnb

4
,

(4.2)

(z ∈ U), then fb(z) is starlike in U for

α > 0, λ > 0,

(
αλ + 2α + 2 −

√
Δ

2α
≤ nb ≤ αλ + 2α + 2 +

√
Δ

2α

)
,

(
Δ := α2(λ + 2)2 + 4α(λ − 2) + 4

)
.

(4.3)

If fb(z) satisfies the inequality (4.2) with λ = 1, that is, if

Re

(
αz2f ′′

b (z)
fb(z)

+
zf ′(z)
f(z)

)
> −αnb

4
+
(
1 − nb

2

)(
1 − αnb

2

)
, (z ∈ U) (4.4)

then fb(z) is starlike in U for

α > 0,
3α + 2 −

√
Δ∗

2α
≤ nb ≤ 3α + 2

√
Δ∗

2α
,

(
Δ∗ := 9α2 − 4α + 4

)
. (4.5)

Proof. Let α > 0, λ > 0 and fb(z) satisfy the hypothesis of Theorem 4.1. We put

zf ′
b(z)

fb(z)
=

1 + (nb − 1)w(z)
1 −w(z)

, (4.6)

where w(z) is analytic in U, with

w(0) = 0, w(z)/= 1, (z ∈ U), (4.7)

such that, we can write

1 +
zf ′′

b (z)

f ′
b(z)

=
nbzw′(z)

[1 −w(z)][1 + (nb − 1)w(z)]
+
1 + (nb − 1)w(z)

1 −w(z)
, (4.8)
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which, in turn, implies that

zf ′
b(z)

fb(z)

[
1 − α + α(1 − λ)

zf ′
b(z)

fb(z)
+ αλ

(
1 +

zf ′′
b (z)

f ′
b(z)

)]

=
(
1 + (nb − 1)w(z)

1 −w(z)

)

×
[
1 − α + α(1 − λ)

(
1 + (nb − 1)w(z)

1 −w(z)

)

+αλ

(
nbzw′(z)

(1 −w(z))[1 + (nb − 1)w(z)]
+
1 + (nb − 1)w(z)

1 −w(z)

)]

= (1 − α)
(
1 + (nb − 1)w(z)

1 −w(z)

)
+ α

(
[1 + (nb − 1)w(z)]2 + λnbzw′(z)

(1 −w(z))2

)
.

(4.9)

Now, we claim that |w(z)| < 1 (z ∈ U). If there exists a zo in U such that |w(zo)| = 1, then (by
Jack’s Lemma) Lemma 2.2, we have

zow
′(zo) = kw(zo), (4.10)

where k ≥ 1 is a real number.
By setting w(zo) = eiθ (0 ≤ θ ≤ 2π), thus, we find that

Re

{
zof

′
b(zo)

fb(zo)

[
1 − α + α(1 − λ)

zof
′
b(zo)

fb(zo)
+ αλ

(
1 +

zof
′′
b (zo)

f ′
b(zo)

)]}

= Re

{
(1 − α)

(
1 + (nb − 1)w(zo)

1 −w(zo)

)
+ α

(
λnbzow

′(zo) + [1 + (nb − 1)w(zo)]
2

(1 −w(zo))2

)}

= Re

⎧
⎨

⎩(1 − α)

(
1 + (nb − 1)eiθ

1 − eiθ

)
+ α

⎛

⎝λnbkeiθ +
[
1 + (nb − 1)eiθ

]2
(
1 − eiθ

)2

⎞

⎠

⎫
⎬

⎭

= Re

{
1 + (αλnbk + αnb + nb − 2)eiθ + (nb − 1)(α(nb − 1) − (1 − α))ei2θ

(
1 − eiθ

)2

}

=
[2αnb(λk + 2−nb)+4nb−8] cos θ +[(nb−1)(αnb−1)+1] cos 2θ−αnb(λk+3−2nb)−3nb+6

2(3 − 4 cos θ) + 2 cos 2θ

≤
(
1 − nb

2

)(
1 − αnb

2

)
− αλnb

4
, (z ∈ U),

(4.11)

since k ≥ 1.
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If we let

Re

{
zof

′
b(zo)

fb(zo)

[
1 − α + α(1 − λ)

zof
′
b(zo)

fb(zo)
+ αλ

(
1 +

zof
′′
b (zo)

f ′
b(zo)

)]}

≤
(
1 − nb

2

)(
1 − αnb

2

)
− αλnb

4

= τ(nb),

(4.12)

then

τ(nb) ≤ 0,

(
αλ + 2α + 2

√
Δ

2α
≤ nb ≤ αλ + 2α + 2

√
Δ;Δ

2α
:= α2(λ + 2)2 + 4α(λ − 2) + 4

)
.

(4.13)

Thus, we have

Re

{
zf ′

b(z)
fb(z)

[
1 − α + α(1 − λ)

zf ′
b(z)

fb(z)
+ αλ

(
1 +

zf ′′
b (z)

f ′
b(z)

)]}
≤ 0 (z ∈ U), (4.14)

(
αλ + 2α + 2

√
Δ

2α
≤ nb ≤ αλ + 2α + 2

√
Δ

2α
; Δ := α2(λ + 2)2 + 4α(λ − 2) + 4

)
, (4.15)

which is a contradiction to the hypotheses of (4.2).
Therefore, |w(z)| < 1 for all z in U. Hence fb is starlike in U, then by proving the

assertion (i) of Theorem 4.1, this completes the proof of our theorem.

Next, we arrive to the following remark which was given by Fukui et al. [11], and so
we omit the detail here.

Remark 4.2. Let the n-fold symmetric function fb(z), defined by (1.4), be analytic inU, with

fb(z)
z

/= 0 (z ∈ U). (4.16)

If fb(z) satisfies the inequality (4.2) with α = 0, that is, if

Re

(
zf ′

b(z)
fb(z)

)
> 1 − nb

2
(z ∈ U), (4.17)

then fb(z) is starlike in U for 0 ≤ nb < 2.

The following remark was obtained by Kamali and Srivastava [12].
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Remark 4.3. Let the n-fold symmetric function fb(z), defined by (1.4), be analytic inU, with

fb(z)
z

/= 0 (z ∈ U). (4.18)

If fb(z) satisfies the inequality (4.2) with λ = 1, that is, if

Re

(
αz2f ′′

b (z)
fb(z)

+
zf ′(z)
f(z)

)
> −αnb

4
+
(
1 − nb

2

)(
1 − αnb

2

)
(z ∈ U), (4.19)

then fb(z) is starlike in U for

α > 0,
3α + 2 −

√
Δ∗

2α
≤ nb ≤ 3α + 2

√
Δ∗

2α
,

(
Δ∗ := 9α2 − 4α + 4

)
. (4.20)

5. Applications of Differential Inequalities

We apply the following result involving differential inequalities with a view to deriving
several further sufficient conditions for starlikeness of the n-fold symmetric function fb
defined by (1.4).

Lemma 5.1 (Miller and Mocanu [13]). Let Θ(u, v) be a complex-valued function such that

Θ : D −→ C, (D ⊂ C × C), (5.1)

C being (as usual) the complex plane, and let

u = u1 + iu2, v = v1 + iv2. (5.2)

Suppose that the functions Θ(u, v) satisfies each of the following conditions.

(i) Θ(u, v) is continuous in D.

(ii) (1, 0) ∈ D and Re(Θ(1, 0)) > 0.

(iii) Re(Θ(iu2, v1)) ≤ 0 for all (iu2, v1) ∈ D such that

v1 ≤ −1
2

(
1 + u2

2

)
. (5.3)

Let

p(z) = 1 + p1z + p2z
2 + · · · (5.4)

be analytic (regular) in U such that

(
p(z), zp′(z)

) ∈ D (z ∈ U). (5.5)
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If

Re
(
Θ
(
p(z), zp′(z)

)) ∈ D (z ∈ U), (5.6)

then

Re
(
p(z)

)
> 0 (z ∈ U). (5.7)

Let us now consider the following implication.

Theorem 5.2. Let n-fold symmetric function fb, defined by (1.4) and analytic in U with
(fb(z))/z, /= 0, (z ∈ U), satisfy the following inequality:

Re

{
zf ′

b(z)
fb(z)

[
1 − α + α(1 − λ)

zf ′
b(z)

fb(z)
+ αλ

(
1 +

zf ′′
b (z)

f ′
b(z)

)]}
>

(
1 − nb

2

)(
1 − αnb

2

)
− αλnb

4
,

(5.8)

then

Re

{(
zf ′

b(z)
fb(z)

)μ}
> 0,

(
z ∈ U;

(
1 − nb

2

)(
1 − αnb

2

)
− αλnb

4
< 1; α ≥ 0, λ > 0; μ ≥ 1

)
.

(5.9)

Proof. If we put

p(z) =

{
zf ′

b(z)
fb(z)

}μ

, (5.10)

then (5.8) is equivalent to

Re
{
αλ

μ

{
p(z)

}(1−μ)/μ
zp′(z) + α

{
p(z)

}2/μ + (1 − α)p(z)1/μ

−
(
1 − nb

2

)(
1 − αnb

2

)
+
λαnb

4

}
> 0

=⇒ Re
(
p(z)

)
> 0 (z ∈ U).

(5.11)

By setting p(z) = u and zp′(z) = v and letting

Θ(z) =
αλ

μ
u(1−μ)/μv + αu2/μ + (1 − α)u1/μ −

(
1 − nb

2

)(
1 − αnb

2

)
+
λαnb

4
, (5.12)
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for α ≥ 0 and μ ≥ 1, we have the following.

(i) Θ(u, v) is continuous in D = (C \ {0} × C).

(ii) (1, 0) ∈ D and

Re(Θ(1, 0)) =
αλnb

4
+
αnb

2
+
nb

2
− αn2b2

4
> 0, (5.13)

since

(
1 − nb

2

)(
1 − αnb

2

)
− λαnb

4
< 1. (5.14)

Thus, the conditions (i) and (ii) of Lemma 5.1 are satisfied. Moreover, for (iu2, v1) ∈ D and
v1 ≤ (−1/2)(1 + u2

2), we obtain

Re(Θ(iu2, v1)) =
αλ

μ
|u2|(1−μ)/μv1 cos

((
1 − μ

)
π

2μ

)
+ α|u2|2/μ cos

(
π

μ

)

+ (1 − α)|u2|1/μ cos
(

π

2μ

)
−
(
1 − nb

2

)(
1 − αnb

2

)
+
λαnb

4

≤ −αλ
2μ

(
1 + u2

2

)
|u2|(1−μ)/μ sin

(
π

2μ

)
+ α|u2|2/μ cos

(
π

μ

)

+ (1 − α)|u2|1/μ cos
(

π

2μ

)
−
(
1 − nb

2

)(
1 − αnb

2

)
+
λαnb

4
,

(5.15)

which, upon putting |u2| = ζ (ζ > 0), yields

Re(Θ(iu2, v1)) ≤ Φ(ζ), (5.16)

where

Φ(ζ) := −αλ
2μ

(
1 + ζ2

)
ζ(1−μ)/μ sin

(
π

2μ

)
+ αζ2/μ cos

(
π

μ

)
+ (1 − α)ζ1/μ cos

(
π

2μ

)

−
(
1 − nb

2

)(
1 − αnb

2

)
+
λαnb

4
.

(5.17)

Remark 5.3. If, for some choices of the parameters α, λ, μ, and nb, we find that

Φ(ζ) ≤ 0 (ζ > 0), (5.18)
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then we can conclude from (5.16) and Lemma 5.1 that the corresponding implication (5.8)
holds true.

First of all, for the choice: μ = 1 and nb = 2, we have the following.

Theorem 5.4. If n-fold symmetric function fb, defined by (1.4) and analytic in U with

fb(z)
z

/= 0, (z ∈ U), (5.19)

satisfies the following inequality:

Re

{
zf ′

b(z)
fb(z)

[
1 − α + α(1 − λ)

zf ′
b(z)

fb(z)
+ αλ

(
1 +

zf ′′
b (z)

f ′
b(z)

)]}
> −αλ

2
, (5.20)

then fb ∈ S∗ for any real α ≥ 0 and λ > 0.

Proof. For μ = 1, nb = 2, we find from (5.17) that

Φ(ζ) := −αλ
(
1
2
+ s2

)
− αs2 ≤ 0, (ζ ∈ R), (5.21)

which implies Theorem 5.4 in view of the remark.

Remark 5.5. For λ = 1, we will obtain the results by Kamali and Srivastava [12].
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