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We show geometrical properties of a submanifold of a (LCS)n-manifold. The properties of the
induced structures on such a submanifold are also studied.

1. Introduction

The geometry of manifolds endowed with geometrical structures has been intensively stud-
ied, and several important results have been published. In this paper, we deal with manifolds
having a Lorentzian concircular structure ((LCS)n-manifold) [1–3] (see Section 2 for detail).

The study of the Lorentzian almost paracontact manifold was initiated by Matsumoto
in [4]. Later on, several authors studied the Lorentzian almost paracontact manifolds and
their different classes including [1, 4, 5]. Recently, the notion of the Lorentzian concircular
structure manifolds was introduced in (briefly (LCS)-manifolds) with an example, which
generalizes the notion of the LP-Sasakian manifolds introduced by Matsumoto in [4].

Papers related to this issue are very few in the literature so far. But the geometry
of submanifolds of a (LCS)-manifold is rich and interesting. So, in the present paper we
introduce the concept of submanifolds of a (LCS)-manifold and investigate the fundamental
properties of such submanifolds. We obtain the necessary and sufficient conditions for a
submanifold of (LCS)-manifold to be invariant. In this case, the induced structures on
submanifold by the structure on ambient space are classified. I think that the results will
contribute to geometry.

2. Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff
manifold with a Lorentzian metric g, that is,M admits a smooth symmetric tensor field g of
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type (0, 2) such that, for each point p ∈M, the tensor gp : TpM×TpM → R is a nondegenerate
inner product of signature (−,+, . . . ,+), where TpM denotes the tangent vector space ofM at
p and R is the real number space. A nonzero vector v ∈ TpM is said to be timelike (resp.,
non-spacelike, null, and spacelike) if it satisfies gp(v, v) < 0 (resp., ≤ 0, = 0, and > 0) [6].

Definition 2.1. In a Lorentzian manifold (M,g), a vector field P defined by

g(X, P) = A(X), (2.1)

for any X ∈ Γ(TM), is said to be a concircular vector field if

(
∇XA

)
(Y ) = α

{
g(X,Y ) +ω(X)A(Y )

}
, (2.2)

where α is a nonzero scalar and ω is a closed 1-form and ∇ denotes the operator of covariant
differentiation with respect to the Lorentzian metric g.

LetM be an n-dimensional Lorentzian manifold admitting a unit time-like concircular
vector field ξ, called the characteristic vector field of the manifold. Then, we have

g(ξ, ξ) = −1. (2.3)

Since ξ is a unit concircular vector field, it follows that there exists a nonzero 1-form η such
that, for

g(X, ξ) = η(X), (2.4)

the equation of the following form holds:

(
∇Xη

)
(Y ) = α

{
g(X,Y ) + η(X)η(Y )

}
(α/= 0) (2.5)

for all vector fields X, Y , where ∇ denotes the operator of covariant differentiation with
respect to the Lorentzian metric g and α is a nonzero scalar function satisfying

∇Xα = (Xα) = dα(X) = ρη(X), (2.6)

ρ being a certain scalar function given by ρ = −(ξα). If we put

φX =
1
α
∇Xξ, (2.7)

then from (2.5) and (2.7)we have

φX = X + η(X)ξ, (2.8)
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from which, it follows that φ is a symmetric (1,1) tensor and called the structure tensor of
the manifold. Thus, the Lorentzian manifold M together with the unit time-like concircular
vector field ξ, its associated 1-form η, and an (1,1) tensor field φ is said to be a Lorentzian
concircular structure manifold (briefly, (LCS)n-manifold). Especially, if we take α = 1, then
we can obtain the LP-Sasakian structure of Matsumoto [4]. In a (LCS)n-manifold (n > 2), the
following relations hold:

η(ξ) = −1, φξ = 0, η
(
φX
)
= 0, g

(
φX, φY

)
= g(X,Y ) + η(X)η(Y ), (2.9)

φ2X = X + η(X)ξ, (2.10)

S(X, ξ) = (n − 1)
(
α2 − ρ

)
η(X), (2.11)

R(X,Y )ξ =
(
α2 − ρ

)[
η(Y )X − η(X)Y

]
, (2.12)

R(ξ, Y )Z =
(
α2 − ρ

)[
g(Y,Z)ξ − η(Z)Y], (2.13)

(
∇Xφ

)
Y = α

{
g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X

}
, (2.14)

(
Xρ
)
= dρ(X) = βη(X), (2.15)

R(X,Y )Z = φR(X,Y )Z +
(
α2 − ρ

){
g(Y,Z)η(X) − g(X,Z)η(Y )}ξ, (2.16)

for all X,Y,Z ∈ Γ(TM).

3. Submanifolds of a (LCS)-Manifold

Let M be an isometrically immersed submanifold of a (LCS)n-manifold M with induced
metric g; we define the isometric immersion by i : M → M and denote by B the differential
of i. The induced Riemannian metric g on M by g satisfies g(X,Y ) = g(BX,BY ), for all
X,Y ∈ Γ(TM).

We denote the tangent and normal spaces of M at point p ∈ M by TM(p) and T⊥
M(p),

respectively. Let {N1,N2, , . . . ,Ns} be an orthonormal basis of the normal space T⊥
M(p), where

s = dim(M) − dim(M), that is, s = codim(M).
For any X ∈ Γ(TM), we can write

φBX = BψX +
s∑
i=1

υi(X)Ni, (3.1)

φNi = BUi +
s∑
j=1

λijNj, 1 ≤ i ≤ s, (3.2)
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where ψ, υi,Ui, and λij denote induced (1-1)-tensor, 1-forms, vector fields and functions on
M, respectively. The vector field ξ on (LCS)-manifoldM can be written as follows:

ξ = BV +
s∑
i=1

αiNi, (3.3)

where V and αi are vector field and functions onM andM, respectively. From (3.1) and (3.2),
we can derive

υk(X) = g
(
φBX,Nk

)
= g
(
BX, φNk

)
= g(BX,BUk) = g(Uk,X),

λik = g
(
φNi,Nk

)
= g
(
Ni, φNk

)
= λki,

(3.4)

that is, λik is symmetric and

αk = g(ξ,Nk) = η(Nk), 1 ≤ i, k ≤ s. (3.5)

Here, we note that the induced (1-1)-tensor field ψ is also symmetric because φ is symmetric.
Next, we will the following Lemmas for later use.

Lemma 3.1. Let M be an isometrically immersed submanifold of a (LCS)-manifold M. Then, the
following assertions are true:

ψ2 = I + μ ⊗ V −
s∑
i=1

υi ⊗Ui, (3.6)

αjV = ψUj +
s∑
i=1

λjiUi, 1 ≤ j ≤ s, (3.7)

s∑
j=1

λkjλjp = δkp + αkαp − υp(Uk), 1 ≤ k, p ≤ s, (3.8)

where μ denotes the induced 1-form onM by η onM and given by μ(X) = g(X,V ) = η(BX).

Proof. For any X ∈ Γ(TM), by using (2.10), (3.1), and (3.2), we have

φ2BX = φBψX +
s∑
i=1

υi(X)φNi

= Bψ2X +
s∑
j=1

υj
(
ψX
)
Nj +

s∑
i=1

υi(X)

⎧
⎨
⎩BUi +

s∑
j=1

λijNj

⎫
⎬
⎭,

BX + η(BX)ξ = Bψ2X +
s∑
j=1

υj
(
ψX
)
Nj +

s∑
i=1

υi(X)BUi +
s∑
i=1

υi(X)
s∑
j=1

λijNj.

(3.9)
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Also considering (3.3), we arrive at

BX + μ(X)BV + μ(X)
s∑
i=1

αiNi = Bψ2X +
s∑
j=1

υj
(
ψX
)
Nj +

s∑
i=1

υi(X)BUi

+
s∑
i=1

υi(X)
s∑
j=1

λijNj.

(3.10)

From the tangential components of (3.10), we conclude that

X + μ(X)V = ψ2X +
s∑
i=1

υi(X)Ui, (3.11)

which is equivalent to (3.6). On the other hand, with the normal components of (3.10), we
have

μ(X)
s∑
i=1

αiNi =
s∑
j=1

υj
(
ψX
)
Nj +

s∑
i=1

υi(X)
s∑
j=1

λijNj, (3.12)

which implies that

μ(X)αk = υk
(
ψX
)
+

s∑
i=1

υi(X)λik, (3.13)

that is,

g(X,V )αk = g
(
ψX,Uk

)
+

s∑
i=1

g(X,Ui)λik. (3.14)

This proves (3.7). In order to prove (3.8), taking (2.10) and (3.2), into account we have

φ2Nk = φBUk +
s∑
j=1

λjkφNj,

Nk + η(Nk)ξ = BψUk +
s∑
i=1

υi(Uk)Ni +
s∑
j=1

λjk

{
BUj +

s∑
t=1

λjtNt

}
,

Nk + αkBV + αk
s∑
i=1

αiNi = BψUk +
s∑
i=1

υi(Uk)Ni +
s∑
j=1

λjkBUj

+
s∑
j=1

λjk
s∑
t=1

λjtNt.

(3.15)
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Taking the product of (3.15)withNp, 1 ≤ p ≤ s, we reach

s∑
j=1

λjkλjp = δkp + αkαp − υp(Uk), (3.16)

which gives us (3.8).

Lemma 3.2. Let M be an isometrically immersed submanifold of a (LCS)-manifold M. Then, the
following assertions are true:

ψV +
s∑
i=1

αiUi = 0, υp(V ) +
s∑
i=1

αiλip = 0, 1 ≤ p ≤ s, (3.17)

μ(V ) = −1 −
s∑
i=1

α2i , (3.18)

g
(
ψX, ψY

)
= g(X,Y ) + μ(X)μ(Y ) +

s∑
i=1

υi(X)υi(Y ), (3.19)

for any X,Y ∈ Γ(TM).

Proof. Making use of φξ = 0 and (3.3), we have

φBV +
s∑
i=1

αiφNi = BψV +
s∑
i=1

υi(V )Ni +
s∑
i=1

αi

⎧
⎨
⎩BUi +

s∑
j=1

λijNj

⎫
⎬
⎭,

0 = BψV +
s∑
i=1

υi(V )Ni + B
s∑
i=1

αiUi +
s∑
i=1

αi

⎛
⎝

s∑
j=1

λijNj

⎞
⎠.

(3.20)

From the tangential and normal components of this last equation, respectively, we get

ψV +
s∑
i=1

αiUi = 0, υp(V ) +
s∑
i=1

αiλip = 0. (3.21)

Again, taking into account that ξ is time-like vector and (3.3), we reach

g

⎛
⎝BV +

s∑
i=1

αiNi, BV +
s∑
j=1

αjNj

⎞
⎠ = g(V, V ) −

s∑
i,j=1

αjαig
(
Ni,Nj

)
,

−1 = μ(V ) +
s∑
i=1

α2i .

(3.22)
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Finally, we conclude that

g
(
ψX, ψY

)
= g
(
BψX,BψY

)
= g

⎛
⎝φBX −

s∑
i=1

υi(X)Ni, φBY −
s∑
j=1

υj(Y )Nj

⎞
⎠

= g(BX,BY ) + η(BX)η(BY ) +
s∑
i=1

υi(X)υi(Y )

= g(X,Y ) + μ(X)μ(Y ) +
s∑
i=1

υi(X)υi(Y ).

(3.23)

This proves our assertions.

Now, we suppose that {N1,N2, , . . . ,Ns} and {N1,N2, . . . ,Ns} are two orthonormal
bases of T⊥

M(p) at p ∈M and set

Ni =
s∑
j=1

kjiNi, 1 ≤ i ≤ s, (3.24)

by means of g(Ni,Nj) =
∑s

p=1 kipkpj = δij . So, we mean that the basis with another basis
transition matrix (kij) is an orthogonal matrix. From (3.24)we have

Nj =
s∑
p=1

kjpNp. (3.25)

Taking (3.24) into account, (3.1), (3.2), and (3.3) are, respectively, written in the following
way:

φBX = BψX +
s∑
k=1

υk(X)Nk, (3.26)

φNp = BUp +
s∑
t=1

λptNt, 1 ≤ p ≤ s, (3.27)

ξ = BV +
s∑

=1

α
N
, (3.28)

where

υp(X) =
s∑
i=1

kipυi(X), U
 =
s∑
i=1

ki
Ui, (3.29)

λpt =
s∑
ij

kipλijλit, λpt = λtp, α
 =
s∑
i=1

ki
αi. (3.30)
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Furthermore, because λij is symmetric, from (3.30), we can derive that under the suitable
transformation (3.24) λij reduce to λij = λiδij , where λi are eigenvalues of matrix (λij). So,
again (3.27) and (3.8) can be, respectively, written in the following way:

φN
 = BU
 + λ
N
,

υp
(
Uk

)
= δkp + αkαp − λpλkδkj ,

(3.31)

which implies that υk(Uk) = 1 − α2k − λ
2
k and υk(Uj) = −αkαj for k /= j.

Now, let M be an isometrically immersed submanifold of a (LCS)-manifold M. If
φ(BTM(p)) ⊂ TM(p) for any point p ∈ M, then M is said to be an invariant submanifold
ofM. In this case, (3.1), (3.2), and (3.3) become, respectively,

φBX = BψX, (3.32)

φNi =
s∑
j=1

λijNj, (3.33)

ξ = BV +
s∑
i=1

αiNi (3.34)

for any X ∈ Γ(TM).

Lemma 3.3. Let M be an invariant submanifold of a (LCS)-manifold M. Then, the following
assertions are true:

ψ2 = I + μ ⊗ V, αiV = 0, (3.35)

δkj + αkαj −
s∑
i=1

λkiλij = 0, ψV = 0,
s∑
i=2

αiλij = 0, (3.36)

−υ(V ) = 1 +
s∑
i=1

α2i , g
(
ψX, ψY

)
= g(X,Y ) + μ(X)μ(Y ), (3.37)

for any X,Y ∈ Γ(TM).

Proof. The proof is obvious. Therefore, we omit it.

Theorem 3.4. LetM be an invariant submanifold of a (LCS)-manifoldM. One of the following cases
occurs.

(1) If ξ is normal to M, then the induced structure (ψ, g) on M is an almost product
Riemannian structure whenever ψ is nontrivial.

(2) If ξ is tangent to M, then the induced structure (ψ, V, μ, g) on M is a Lorentzian
concircular structure.
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Proof. (1) If ξ is normal to the submanifold, then the vector field V = 0. From (3.35) and
(3.37), we have ψ2 = I, g(ψX, ψY ) = g(X,Y ), that is, (ψ, g) is an almost product Riemannian
structure whenever ψ is nontrivial.

(2) If ξ is tangent to the submanifold (i.e., V /= 0, αi = 0), then we have μ(X) = g(X,V ),
ψ2 = I +μ⊗V , ψV = 0, μ(V ) = −1, that is, (ψ, V, μ, g) is a Lorentzian concircular structure.

Theorem 3.5. Let M be a submanifold of a (LCS)-manifold M. The submanifold M of a (LCS)-
manifold M is invariant if and only if the induced structure (ψ, g) on M is an almost product
Riemannian structure whenever ψ is nontrivial or the induced structure (ψ, V, μ, g) on M is a
Lorentzian concircular structure.

Proof. From Theorem 3.4 we know that the necessary is obvious.
Conversely, we suppose that the induced structure (ψ, g) is an almost product

Riemannian structure. Then, from (3.19), we have

μ2(X) +
s∑
i=1

υ2
i (X) = 0, (3.38)

that is, μ(X) = υi(X) = 0, 1 ≤ i ≤ s. So from (3.1) and (3.3)we can derive that the submanifold
M is invariant and ξ is normal toM.

Now, we suppose that the induced structure (ψ, V, μ, g) is a Lorentzian concircular
structure. Then, from (3.6), we get

s∑
i=1

υi(X)Ui = 0, (3.39)

which implies that υi(X) = 0, 1 ≤ i ≤ s. From (3.7), by a direct calculation, we derive αi = 0,
1 ≤ i ≤ s. So from (3.1) and (3.3), we conclude that M is invariant submanifold and ξ is
tangent toM.

Theorem 3.6. Let M be an isometrically immersed submanifold of (LCS)-manifold M. Then, M
is invariant submanifold if and only if the normal space T⊥

M(p), at every point p ∈ M, admits an
orthonormal basis consisting of the eigenvectors of the matrix (φ).

Proof. Let us suppose thatM is invariant.
(1) When ξ is normal to M, at p ∈ M we consider an s-dimensional vector space W

and investigate the eigenvalues of the matrix (λij)s×s. From (3.36) and (3.37), it is easy to see
that the vector (α1, α2, . . . , αs) of the vector spaceW is a unit eigenvector of the matrix (λij)s×s
and its eigenvalue is equal to 0.

Now, we suppose that a vector (ω1, ω2, . . . , ωs) satisfying
∑s

i=2 αiωi = 0 is an
eigenvector and its eigenvalue is λ. Then, we have

s∑
j=1

λijωj = λωi, 1 ≤ i ≤ s, (3.40)
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which implies that

s∑
i,j=1

λkiλjiωj = λ
s∑
i=1

λkiωi, 1 ≤ k ≤ s, (3.41)

from which

s∑
j=1

(
s∑
i=1

λkiλji

)
ωj = λ2ωk. (3.42)

On the other hand, from (3.36)we get

s∑
j=1

(
δkj − αkαj

)
ωj =

s∑
i=1

⎛
⎝

s∑
j=1

λkjλij

⎞
⎠ωj = λ2ωk, (3.43)

that is, ωk = λ2ωk, which is equivalent to λ2 = 1.
Consequently, if by a suitable transformation of the orthonormal basis {N1,

N2, . . . ,Ns} of T⊥
M(p), the matrix λij becomes a diagonal matrix, then the diagonal compo-

nents λ1, λ2, . . . , λs satisfy relations

λs1 = λ
2
2 = · · · = λ2s−1, λs = 0. (3.44)

In this case, if we denote by {N1,N2, . . . ,Ns} another orthonormal basis of T⊥
M(p), then, from

(3.31), we have φN
 = λ
N
 , 1 ≤ 
 ≤ s. So,N
 , 1 ≤ 
 ≤ s, are eigenvectors of the matrix-(φ)
andNs = ξ.

(2)When ξ is tangent toM, since αi = 0, 1 ≤ i ≤ s, from (3.36), we have

δkj =
s∑
i=1

λkiλij . (3.45)

If we denote by {ω1, ω2, . . . , ωs} an eigenvector of matrix (λij) and by λ its eigenvalue, then
we have

s∑
j=1

λjiωj = λωi, 1 ≤ i ≤ s. (3.46)

So, we obtain

s∑
i,j=1

λkiλjiωj = λ
s∑
i=1

λkiωi, 1 ≤ k ≤ s, (3.47)
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that is, ωk = λ2ωk, which implies that λ2 = 1. Since the eigenvalues of (λij) are ±1, by
a suitable transformation of the orthonormal basis of T⊥

M(p), {N1,N2, . . . ,Ns} to become
{N1,N2, . . . ,Ns}, thenN1,N2, . . . ,Ns are eigenvectors of matrix-(φ).

Conversely, if the orthonormal basis {N1,N2, . . . ,Ns} of T⊥
M(p) consists of eigenvec-

tors of matrix-(φ) and these eigenvalues λ1, λ2, . . . , λs satisfy λ21 = λ
2
2, . . . , λ

2
s−1 = 1 and λ2s = ±1

or 0, then we have φN
 = λN
 and we conclude that U
 = 0, 1 ≤ 
 ≤ s, and so M is
invariant.
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