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We establish necessary and sufficient conditions for the existence of and the expressions for
the general real and complex Hermitian solutions to the classical system of quaternion matrix
equationsA1X = C1, XB1 = C2, and A3XA∗

3 = C3. Moreover, formulas of the maximal andminimal
ranks of four real matrices X1, X2, X3, and X4 in solution X = X1 + X2i + X3j + X4k to the system
mentioned above are derived. As applications, we give necessary and sufficient conditions for the
quaternion matrix equations A1X = C1, XB1 = C2, A3XA∗

3 = C3, and A4XA∗
4 = C4 to have real and

complex Hermitian solutions.

1. Introduction

Throughout this paper, we denote the real number field by R; the complex field by C; the set
of all m × nmatrices over the quaternion algebra

H =
{
a0 + a1i + a2j + a3k | i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R

}
(1.1)

by H
m×n; the identity matrix with the appropriate size by I; the transpose, the conjugate

transpose, the column right space, the row left space of a matrix A over H by AT,A∗,R(A),
N(A), respectively; the dimension of R(A) by dimR(A). By [1], for a quaternion matrix
A,dimR(A) = dimN(A). dimR(A) is called the rank of a quaternion matrix A and denoted
by r(A). The Moore-Penrose inverse of matrix A over H by A† which satisfies four Penrose
equations AA†A = A,A†AA† = A†, (AA†)∗ = AA†, and (A†A)∗ = A†A. In this case, A† is
unique and (A†)∗ = (A∗)†. Moreover, RA and LA stand for the two projectors LA = I − A†A,
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and RA = I − AA† induced by A. Clearly, RA and LA are idempotent and satisfies (RA)
∗ =

RA, (LA)
∗ = LA,RA = LA∗ , and RA∗ = LA.

Hermitian solutions to some matrix equations were investigated by many authors. In
1976, Khatri and Mitra [2] gave necessary and sufficient conditions for the existence of the
Hermitian solutions to the matrix equations AX = B,AXB = C and

A1X = C1, XB2 = C2, (1.2)

over the complex field C, and presented explicit expressions for the general Hermitian
solutions to them by generalized inverses when the solvability conditions were satisfied.
Matrix equation that has symmetric patterns with Hermitian solutions appears in some
application areas, such as vibration theory, statistics, and optimal control theory ([3–7]). Groß
in [8], and Liu et al. in [9] gave the solvability conditions for Hermitian solution and its
expressions of

AXA∗ = B (1.3)

over C in terms of generalized inverses, respectively. In [10], Tian and Liu established the
solvability conditions for

A3XA∗
3 = C3, A4XA∗

4 = C4 (1.4)

to have a common Hermitian solution over C by the ranks of coefficient matrices. In [11],
Tian derived the general common Hermitian solution of (1.4). Wang and Wu in [12] gave
some necessary and sufficient conditions for the existence of the common Hermitian solution
to equations

A1X = C1, XB2 = C2, A3XA∗
3 = C3, (1.5)

A1X = C1, XB2 = C2, A3XA∗
3 = C3, A4XA∗

4 = C4, (1.6)

for operators between Hilbert C∗-modules by generalized inverses and range inclusion of
matrices.

As is known to us, extremal ranks of some matrix expressions can be used to
characterize nonsingularity, rank invariance, range inclusion of the corresponding matrix
expressions, as well as solvability conditions of matrix equations ([4, 7, 9–24]). Real matrices
and its extremal ranks in solutions to some complex matrix equation have been investigated
by Tian and Liu ([9, 13–15]). Tian [13] gave the maximal and minimal ranks of two real
matrices X0 and X1 in solution X = X0 + iX1 to AXB = C over C with its applications. Liu
et al. [9] derived the maximal and minimal ranks of the two real matrices X0 and X1 in a
Hermitian solution X = X0 + iX1 of (1.3), where B∗ = B. In order to investigate the real and
complex solutions to quaternionmatrix equations,Wang and his partners have been studying
the real matrices in solutions to some quaternion matrix equations such as AXB = C,

A1XB1 = C1, A2XB2 = C2,

AXA∗ + BXB∗ = C,
(1.7)
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recently ([24–27]). To our knowledge, the necessary and sufficient conditions for (1.5) over
H to have the real and complex Hermitian solutions have not been given so far. Motivated
by the work mentioned above, we in this paper investigate the real and complex Hermitian
solutions to system (1.5) over H and its applications.

This paper is organized as follows. In Section 2, we first derive formulas of extremal
ranks of four real matrices X1, X2, X3, and X4 in quaternion solution X = X1 + X2i + X3j +
X4k to (1.5) over H, then give necessary and sufficient conditions for (1.5) over H to have
real and complex solutions as well as the expressions of the real and complex solutions. As
applications, we in Section 3 establish necessary and sufficient conditions for (1.6) over H to
have real and complex solutions.

2. The Real and Complex Hermitian Solutions to System (1.5) Over H

In this section, we first give a solvability condition and an expression of the general Hermitian
solution to (1.5) over H, then consider the maximal and minimal ranks of four real matrices
X1, X2, X3, and X4 in solution X = X1 + X2i + X3j + X4k to (1.5) over H, last, investigate the
real and complex Hermitian solutions to (1.5) over H.

For an arbitrary matrixMt = Mt1 + Mt2i + Mt3j + Mt4k ∈ H
m×n whereMt1,Mt2,Mt3,

and Mt4 are real matrices, we define a map φ(·) from H
m×n to R

4m×4n by

φ(Mt) =

⎡
⎢⎢⎢⎢⎢⎣

Mt1 Mt2 Mt3 Mt4

−Mt2 Mt1 Mt4 −Mt3

−Mt3 −Mt4 Mt1 Mt2

−Mt4 Mt3 −Mt2 Mt1

⎤
⎥⎥⎥⎥⎥⎦
. (2.1)

By (2.1), it is easy to verify that φ(·) satisfies the following properties.

(a) M = N ⇔ φ(M) = φ(N).

(b) φ(kM + lN) = kφ(M) + lφ(N), φ(MN) = φ(M)φ(N), k, l ∈ R.

(c) φ(M∗) = φT (M), φ(M†) = φ†(M).

(d) φ(M) = T−1
m φ(M)Tn = R−1

m φ(M)Rn = S−1
m φ(M)Sn, where t = m,n,

Tt =

⎡
⎢⎢⎢⎢⎢⎣

0 −It 0 0

It 0 0 0

0 0 0 It

0 0 −It 0

⎤
⎥⎥⎥⎥⎥⎦
, Rt =

⎡
⎢⎢⎢⎢⎢⎣

0 0 −It 0

0 0 0 −It
It 0 0 0

0 It 0 0

⎤
⎥⎥⎥⎥⎥⎦
, St =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 −It
0 0 It 0

0 −It 0 0

It 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
. (2.2)

(e) r[φ(M)] = 4r(M).

(f) M∗ = M ⇔ φT (M) = φ(M),M∗ = −M ⇔ φT (M) = −φ(M).

The following lemmas provide us with some useful results over C, which can be generalized
to H.
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Lemma 2.1 (see [2, Lemma 2.1]). Let A ∈ H
m×n, B = B∗ ∈ H

m×m be known, X ∈ H
n×n unknown;

then the system (1.3) has a Hermitian solution if and only if

AA†B = B. (2.3)

In that case, the general Hermitian solution of (1.3) can be expressed as

X = A†B
(
A†

)∗
+ LAV + V ∗LA, (2.4)

where V is arbitrary matrix over H with compatible size.

Lemma 2.2 (see [12, Corollary 3.4]). Let A1, C1 ∈ H
m×n;B1, C2 ∈ H

n×s;A3 ∈ H
r×n; C3 ∈ H

r×r

be known, X ∈ H
n×n unknown, and F = B∗

1LA1 , M = SLF, S = A3LA1 , D = C∗
2 − B∗

1A
†
1C1, J =

A†
1C1+F†D,G = C3−A3(J+LA1L

∗
FJ

∗)A∗
3, C3 = C∗

3; then the system (1.5) have a Hermitian solution
if and only if

A1C2 = C1B1, A1C
∗
1 = C1A

∗
1, B∗

1C2 = C∗
2B1,

RA1C1 = 0, RFD = 0, RMG = 0.
(2.5)

In that case, the general Hermitian solution of (1.5) can be expressed as

X = J + LA1LFJ
∗ + LA1LFM

†G
(
M†

)∗
LFLA1 + LA1LFLMVLFLA1 + LA1LFV

∗LMLFLA1 ,

(2.6)

where V is arbitrary matrix over H with compatible size.

Lemma 2.3 (see [21, Lemma 2.4]). Let A ∈ H
m×n, B ∈ H

m×k, C ∈ H
l×n, D ∈ H

j×k, and E ∈
H

l×i. Then they satisfy the following rank equalities.

(a) r(CLA) = r
[
A
C

] − r(A).

(b) r[ B ALC ] = r
[
B A
0 C

] − r(C).

(c) r
[

C
RBA

]
= r

[
C 0
A B

] − r(B).

(d) r
[

A BLD

REC 0

]
= r

[
A B 0
C 0 E
0 D 0

]
− r(D) − r(E).

Lemma 2.3 plays an important role in simplifying ranks of various block matrices.

Lemma 2.4 (see [11, Theorem 4.1, Corollary 4.2]). Let A = ±A∗ ∈ H
m×m, B ∈ H

m×n, and C ∈
H

p×m be given; then

max
X∈Hn×p

r
[
A − BXC ∓ (BXC)∗

]
= min

{
r
[
A B C∗], r

[
A B

B∗ 0

]
, r

[
A C∗

C 0

]}
,

min
X∈Hn×p

r
[
A − BXC ∓ (BXC)∗

]
= 2r

[
A B C∗] +max {s1, s2},

(2.7)
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where

s1 = r

[
A B

B∗ 0

]
− 2r

[
A B C∗

B∗ 0 0

]
,

s2 = r

[
A C∗

C 0

]
− 2r

[
A B C∗

C 0 0

]
.

(2.8)

If R(B) ⊆ R(C∗),

max
X∈Hn×p

r
[
A − BXC − (BXC)∗

]
= min

{
r
[
A C∗], r

[
A B

B∗ 0

]}
, (2.9)

min
X∈Hn×p

r
[
A − BXC − (BXC)∗

]
= 2r

[
A C∗] + r

[
A B

B∗ 0

]
− 2r

[
A B

C 0

]
. (2.10)

Lemma 2.5 (see [28, Theorem 3.1]). LetA ∈ H
m×n, B1 ∈ H

m×p1 , B3 ∈ H
m×p3 , B4 ∈ H

m×p4 , C2 ∈
H

q2×n, C3 ∈ H
q3×n, and C4 ∈ H

q4×n be given. Then the matrix equation

B1X1 +X2C2 + B3X3C3 + B4X4C4 = A (2.11)

is consistent if and only if

r

⎡
⎢⎢⎢⎢⎢⎣

A B1

C2 0

C3 0

C4 0

⎤
⎥⎥⎥⎥⎥⎦

= r

⎡
⎢⎢⎢⎢⎢⎣

0 B1

C2 0

C3 0

C4 0

⎤
⎥⎥⎥⎥⎥⎦
, r

[
A B1 B3 B4

C2 0 0 0

]
= r

[
0 B1 B3 B4

C2 0 0 0

]
,

r

⎡
⎢⎢⎣
A B1 B3

C2 0 0

C4 0 0

⎤
⎥⎥⎦ = r

⎡
⎢⎢⎣

0 B1 B3

C2 0 0

C4 0 0

⎤
⎥⎥⎦, r

⎡
⎢⎢⎣
A B1 B4

C2 0 0

C3 0 0

⎤
⎥⎥⎦ = r

⎡
⎢⎢⎣

0 B1 B4

C2 0 0

C3 0 0

⎤
⎥⎥⎦.

(2.12)

Theorem 2.6. System (1.5) has a Hermitian solution over H if and only if the system of matrix
equations

φ(A1)
(
Yij

)
4 × 4 = φ(C1),

(
Yij

)
4 × 4φ(B1) = φ(C2), φ(A3)

(
Yij

)
4 × 4φ

T (A3) = φ(C3),

i, j = 1, 2, 3, 4,
(2.13)
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has a symmetric solution over R. In that case, the general Hermitian solution of (1.5) over H can be
written as

X = X1 +X2i +X3j +X4k

=
1
4
(Y11 + Y22 + Y33 + Y44) +

1
4

(
Y12 − YT

12 + Y34 − YT
34

)
i

+
1
4

(
Y13 − YT

13 + YT
24 − Y24

)
j +

1
4

(
Y14 − YT

14 + Y23 − YT
23

)
k,

(2.14)

where Ytt = YT
tt ; t = 1, 2, 3, 4; YT

1j = Yj1; j = 2, 3, 4; YT
2j = Yj2; j = 3, 4; YT

34 = Y43 are the general
solutions of (2.13) over R. Written in an explicit form, X1, X2, X3, and X4 in (2.14) are

X1 =
1
4
P1φ(X0)PT

1 +
1
4
P2φ(X0)PT

2 +
1
4
P3φ(X0)PT

3 +
1
4
P4φ(X0)PT

4

+ [P1, P2, P3, P4]Lφ(A1)Lφ(F)Lφ(M)V

⎡
⎢⎢⎢⎢⎢⎣

Lφ(F)Lφ(A1)P
T
1

Lφ(F)Lφ(A1)P
T
2

Lφ(F)Lφ(A1)P
T
3

Lφ(F)Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦

+ [P1, P2, P3, P4]Lφ(A1)Lφ(F)V
T

⎡
⎢⎢⎢⎢⎢⎣

Lφ(M)Lφ(F)Lφ(A1)P
T
1

Lφ(M)Lφ(F)Lφ(A1)P
T
2

Lφ(M)Lφ(F)Lφ(A1)P
T
3

Lφ(M)Lφ(F)Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦
,

(2.15)

X2 =
1
4
P1φ(X0)PT

2 − 1
4
P2φ(X0)PT

1 +
1
4
P3φ(X0)PT

4 − 1
4
P4φ(X0)PT

3

+ [P1,−P2, P3,−P4]Lφ(A1)Lφ(F)Lφ(M)V

⎡
⎢⎢⎢⎢⎢⎣

Lφ(F)Lφ(A1)P
T
2

Lφ(F)Lφ(A1)P
T
1

Lφ(F)Lφ(A1)P
T
4

Lφ(F)Lφ(A1)P
T
3

⎤
⎥⎥⎥⎥⎥⎦

+ [P2, P1, P4, P3]Lφ(A1)Lφ(F)V
T

⎡
⎢⎢⎢⎢⎢⎣

Lφ(M)Lφ(F)Lφ(A1)P
T
1

−Lφ(M)Lφ(F)Lφ(A1)P
T
2

Lφ(M)Lφ(F)Lφ(A1)P
T
3

−Lφ(M)Lφ(F)Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦
,

(2.16)
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X3 =
1
4
P1φ(X0)PT

3 − 1
4
P3φ(X0)PT

1 +
1
4
P4φ(X0)PT

2 − 1
4
P2φ(X0)PT

4

+ [P1,−P3, P4,−P2]Lφ(A1)Lφ(F)Lφ(M)V

⎡
⎢⎢⎢⎢⎢⎣

Lφ(F)Lφ(A1)P
T
3

Lφ(F)Lφ(A1)P
T
1

Lφ(F)Lφ(A1)P
T
2

Lφ(F)Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦

+ [P3, P1, P2, P4]Lφ(A1)Lφ(F)V
T

⎡
⎢⎢⎢⎢⎢⎣

Lφ(M)Lφ(F)Lφ(A1)P
T
1

−Lφ(M)Lφ(F)Lφ(A1)P
T
3

Lφ(M)Lφ(F)Lφ(A1)P
T
4

−Lφ(M)Lφ(F)Lφ(A1)P
T
2

⎤
⎥⎥⎥⎥⎥⎦
,

(2.17)

X4 =
1
4
P1φ(X0)PT

4 − 1
4
P4φ(X0)PT

1 +
1
4
P2φ(X0)PT

3 − 1
4
P3φ(X0)PT

2

+ [P1,−P4, P2,−P3]Lφ(A1)Lφ(F)Lφ(M)V

⎡
⎢⎢⎢⎢⎢⎣

Lφ(F)Lφ(A1)P
T
4

Lφ(F)Lφ(A1)P
T
1

Lφ(F)Lφ(A1)P
T
3

Lφ(F)Lφ(A1)P
T
2

⎤
⎥⎥⎥⎥⎥⎦

+ [P4, P1, P3, P2]Lφ(A1)Lφ(F)V
T

⎡
⎢⎢⎢⎢⎢⎣

Lφ(M)Lφ(F)Lφ(A1)P
T
1

−Lφ(M)Lφ(F)Lφ(A1)P
T
4

Lφ(M)Lφ(F)Lφ(A1)P
T
2

−Lφ(M)Lφ(F)Lφ(A1)P
T
3

⎤
⎥⎥⎥⎥⎥⎦
,

(2.18)

where

P1 = [In, 0, 0, 0], P2 = [0, In, 0, 0], P3 = [0, 0, In, 0], P4 = [0, 0, 0, In], (2.19)

φ(X0) is a particular symmetric solution to (2.13), and V is arbitrary real matrices with compatible
sizes.

Proof. Suppose that (1.5) has a Hermitian solution X over H. Applying properties (a) and (b)
of φ(·) to (1.5) yields

φ(A1)φ(X) = φ(C1), φ(X)φ(B2) = φ(C2), φ(A3)φ(X)φT (A3) = φ(C3), (2.20)

implying that φ(X) is a real symmetric solution to (2.13).
Conversely, suppose that (2.13) has a real symmetric solution

Ŷ = Ŷ T =
(
Yij

)
4 × 4, i, j = 1, 2, 3, 4. (2.21)
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That is,

φ(A1)Ŷ = φ(C1), Ŷφ(B2) = φ(C2), φ(A3)ŶφT (A3) = φ(C3), (2.22)

then by property (d) of φ(·),

T−1
m φ(A1)TnŶ = T−1

m φ(C1)Tn, ŶT−1
n φ(B2)Ts = T−1

n φ(C2)Ts,

T−1
r φ(A3)TnŶT−1

n φT (A3)Tr = T−1
r φ(C3)Tr,

R−1
m φ(A1)RnŶ = R−1

m φ(C1)Rn, ŶR−1
n φ(B2)Rs = R−1

n φ(C2)Rs,

R−1
r φ(A3)RnŶRnφ

T (A3)Rr = R−1
r φ(C3)Rr,

S−1
m φ(A1)SnŶ = S−1

m φ(C1)Sn, ŶS−1
n φ(B2)Ss = S−1

n φ(C2)Ss,

S−1
r φ(A3)SnŶS

−1
n φT (A3)Sr = S−1

r φ(C3)Sr.

(2.23)

Hence,

φ(A1)TnŶT−1
n = φ(C1), TnŶT

−1
n φ(B2) = φ(C2), φ(A3)TnŶT−1

n φT (A3) = φ(C3),

φ(A1)RnŶR
−1
n = φ(C1), RnŶR

−1
n φ(B2) = φ(C2), φ(A3)RnŶR

−1
n φT (A3) = φ(C3),

φ(A1)SnŶS
−1
n = φ(C1), SnŶS

−1
n φ(B2) = φ(C2), φ(A3)SnŶS

−1
n φT (A3) = φ(C3),

(2.24)

implying that TnŶT−1
n , RnŶR

−1
n , and SnŶS

−1
n are also symmetric solutions of (2.13). Thus,

1
4

(
Ŷ + TnŶT

−1
n + RnŶR

−1
n + SnŶS

−1
n

)
(2.25)

is a symmetric solution of (2.13), where

Ŷ + TnŶT
−1
n + RnŶR

−1
n + SnŶS

−1
n =

(
Ỹij

)
4 × 4

, i = 1, 2, 3, 4,

Ỹ11 = Y11 + Y22 + Y33 + Y44, Ỹ12 = Y12 − YT
12 + Y34 − YT

34,

Ỹ13 = Y13 − YT
13 + YT

24 − Y24, Ỹ14 = Y14 − YT
14 + Y23 − YT

23,

Ỹ21 = YT
12 − Y12 + YT

34 − Y34, Ỹ22 = Y11 + Y22 + Y33 + Y44,
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Ỹ23 = Y14 − YT
14 + Y23 − YT

23, Ỹ24 = Y13 − YT
13 + YT

24 − Y24,

Ỹ31 = YT
13 − Y13 + Y24 − YT

24, Ỹ32 = Y14 − YT
14 + Y23 − YT

23,

Ỹ33 = Y11 + Y22 + Y33 + Y44, Ỹ34 = Y12 − YT
12 + Y34 − YT

34,

Ỹ41 = YT
14 − Y14 + YT

23 − Y23, Ỹ42 = Y13 − YT
13 + YT

24 − Y24,

Ỹ43 = Y12 − YT
12 + Y34 − YT

34, Ỹ44 = Y11 + Y22 + Y33 + Y44.

(2.26)

Let

X̂ =
1
4
(Y11 + Y22 + Y33 + Y44) +

1
4

(
Y12 − YT

12 + Y34 − YT
34

)
i

+
1
4

(
Y13 − YT

13 + YT
24 − Y24

)
j +

1
4

(
Y14 − YT

14 + Y23 − YT
23

)
k.

(2.27)

Then by (2.1),

φ
(
X̂
)
=

1
4

(
Ŷ + TnŶT

−1
n + RnŶR

−1
n + SnŶS

−1
n

)
. (2.28)

Hence, by the property (a), we know that X̂ is a Hermitian solution of (1.5). Observe that
Yij , i, j = 1, 2, 3, 4, in (2.13) can be written as

Yij = PiŶP
T
j . (2.29)

From Lemma 2.2, the general Hermitian solution to (2.13) can be written as

Ŷ = φ(X0) + 4Lφ(A1)Lφ(F)Lφ(M)VLφ(A1)Lφ(F) + 4Lφ(F)Lφ(A1)V
TLφ(M)Lφ(F)Lφ(A1), (2.30)

where V ∈ R is arbitrary. Hence,

Yij = Piφ(X0)PT
j + 4PiLφ(A1)Lφ(F)Lφ(M)VLφ(A1)Lφ(F)P

T
j

+ 4PiLφ(F)Lφ(A1)V
TLφ(M)Lφ(F)Lφ(A1)P

T
j ,

(2.31)

where i, j = 1, 2, 3, 4, substituting them into (2.14), yields the four real matricesX1, X2, X3, and
X4 in (2.15)–(2.18).

Nowwe consider the maximal and minimal ranks of four real matrices X1, X2, X3, and
X4 in solution X = X1 +X2i +X3j +X4k to (1.5) over H.
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Theorem 2.7. Suppose that system (1.5) over H has a Hermitian solution, and A1 = A11 + A12i +
A13j +A14k,C1 = C11 +C12i+C13j +C14k ∈ H

m×nB1 = B11 +B12i+B13j +B14k, C2 = C21 +C22i+
C23j +C24k ∈ H

n×s, A3 = A31 +A32i+A33j +A34k ∈ H
r×n, C3 = C31 +C32i+C33j +C34k ∈ H

r×r

S1 =

{
X1 ∈ R

n×n |
A1X = C1, XB1 = C2, A3XA∗

3 = C3

X = X1 +X2i +X3j +X4k

}
,

S2 =

{
X2 ∈ R

p×q |
A1X = C1, XB1 = C2, A3XA∗

3 = C3

X = X1 +X2i +X3j +X4k

}
,

S3 =

{
X3 ∈ R

p×q |
A1X = C1, XB1 = C2, A3XA∗

3 = C3

X = X1 +X2i +X3j +X4k

}
,

S4 =

{
X4 ∈ R

p×q |
A1X = C1, XB1 = C2, A3XA∗

3 = C3

X = X1 +X2i +X3j +X4k

}
,

L21 =

⎡
⎢⎢⎢⎢⎢⎣

C21

C22

C23

C24

⎤
⎥⎥⎥⎥⎥⎦
, L11 =

⎡
⎢⎢⎢⎢⎢⎣

C11

−C12

−C13

−C14

⎤
⎥⎥⎥⎥⎥⎦
, M31 =

⎡
⎢⎢⎢⎢⎢⎢⎣

A32 A33 A34

A31 A34 −A33

−A34 A31 A32

A33 −A32 A31

⎤
⎥⎥⎥⎥⎥⎥⎦
,

M11 =

⎡
⎢⎢⎢⎢⎢⎣

A12 A13 A14

A11 A14 −A13

−A14 A11 A12

A13 −A12 A11

⎤
⎥⎥⎥⎥⎥⎦
, M12 =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A13 A14

−A12 A14 −A13

−A13 A11 A12

−A14 −A12 A11

⎤
⎥⎥⎥⎥⎥⎥⎦
,

M13 =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A14

−A12 A11 −A13

−A13 −A14 A12

−A14 A13 A11

⎤
⎥⎥⎥⎥⎥⎦
, M14 =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A13

−A12 A11 A14

−A13 −A14 A11

−A14 A13 −A12

⎤
⎥⎥⎥⎥⎥⎦
,

N11 =

⎡
⎢⎢⎣
−B12 B11 B14 −B13

−B13 −B14 B11 B12

−B14 B13 −B12 B11

⎤
⎥⎥⎦, N12 =

⎡
⎢⎢⎣

B11 B12 B13 B14

−B13 −B14 B11 B12

−B14 B13 −B12 B11

⎤
⎥⎥⎦,

N13 =

⎡
⎢⎢⎣

B11 B12 B13 B14

−B12 B11 B14 −B13

−B14 B13 −B12 B11

⎤
⎥⎥⎦, N14 =

⎡
⎢⎢⎣

B11 B12 B13 B14

−B12 B11 B14 −B13

−B13 −B14 B11 B12

⎤
⎥⎥⎦.

(2.32)
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Then the maximal and minimal ranks ofXi, i = 1, 2, 3, 4, in Hermitian solutionX = X1+X2i+X3j +
X4k to (1.5) are given by

max
Xi∈Si

r(Xi) = min{t1i, t}, (2.33)

min
Xi∈Si

r(Xi) = 2t1i + t − 2t2i, (2.34)

where

t1i = r

[
L21 NT

1i

L11 M1i

]
− 4r

[
B∗
1

A1

]
+ n,

t = r

⎡
⎢⎢⎢⎢⎢⎣

0 MT
31 N11 MT

11

M31 φ(C3) φ(A3)φ(C2) φ(A3)φT (C1)

NT
11 φT (C2)φT (A3) φT (C2)φ(B1) φT (C2)φT (A1)

M11 φ(C1)φT (A3) φ(C1)φ(B1) φ(C1)φT (A1)

⎤
⎥⎥⎥⎥⎥⎦
− 8r

⎡
⎢⎢⎣
A3

B∗
1

A1

⎤
⎥⎥⎦ + 2n,

t2i = r

⎡
⎢⎢⎢⎢⎢⎣

0 N1i MT
1i

M31 φ(A3)φ(C2) φ(A3)φT (C1)

NT
11 φT (C2)φ(B1) φT (C2)φT (A1)

M11 φ(C1)φ(B1) φ(C1)φT (A1)

⎤
⎥⎥⎥⎥⎥⎦
− 4r

⎡
⎢⎢⎣
A3

B∗
1

A1

⎤
⎥⎥⎦ − 4r

[
B∗
1

A1

]
+ 2n.

(2.35)

Proof. We only prove the case that i = 1. Similarly, we can get the results that i = 2, 3, 4. Let

1
4
P1φ(X0)PT

1 +
1
4
P2φ(X0)PT

2 +
1
4
P3φ(X0)PT

3 +
1
4
P4φ(X0)PT

4 = A,

[P1, P2, P3, P4]Lφ(A1)Lφ(F)Lφ(M) = B,
⎡
⎢⎢⎢⎢⎢⎣

Lφ(F)Lφ(A1)P
T
1

Lφ(F)Lφ(A1)P
T
2

Lφ(F)Lφ(A1)P
T
3

Lφ(F)Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦

= C;

(2.36)

note that LM is Hermtian; then Lφ(M) is symmetric; hence (2.15) can be written as

X1 = A + BVC + (BVC)∗. (2.37)

Note that A = A∗ and R(B) ⊆ R(C∗); applying (2.9) and (2.10) to (2.37) yields

max
X1∈S1

r(X1) = min

{
r[A,C∗], r

[
A B

B∗ 0

]}
, (2.38)

min
X1∈S1

r(X1) = 2r[A,C∗] + r

[
A B

B∗ 0

]
− 2r

[
A B

C 0

]
. (2.39)
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Let

[P1, P2, P3, P4] = P,

ai =

⎡
⎢⎢⎢⎢⎢⎣

φ(Ai) 0 0 0

0 φ(Ai) 0 0

0 0 φ(Ai) 0

0 0 0 φ(Ai)

⎤
⎥⎥⎥⎥⎥⎦
, i = 1, 3,

b1 =

⎡
⎢⎢⎢⎢⎢⎣

φ(B1) 0 0 0

0 φ(B1) 0 0

0 0 φ(B1) 0

0 0 0 φ(B1)

⎤
⎥⎥⎥⎥⎥⎦
.

(2.40)

Note that φ(X0) is a particular solution to (2.13), it is not difficult to find by Lemma 2.3, block
Gaussian elimination, and property (e) of φ(·) that

r[A,C∗] = r

⎡
⎢⎢⎣
A P

0 bT1

0 a1

⎤
⎥⎥⎦ − 4r

[
φ(A1)

] − 4r
[
φ(F)

]

= r

⎡
⎢⎢⎢⎢⎢⎣

0 P

−1
4
φT (C2)PT

1 bT1

−1
4
φ(C1)PT

1 a1

⎤
⎥⎥⎥⎥⎥⎦
− 4r

[
φ
(
B∗
1

)

φ(A1)

]

= r

⎡
⎢⎢⎣

0 [P1, 0, 0, 0]

φT (C2)PT
1 bT1

φ(C1)PT
1 a1

⎤
⎥⎥⎦ − 4r

[
φ
(
B∗
1

)

φ(A1)

]

= r

[
L21 NT

1i

L11 M1i

]
− 4r

[
φ
(
B∗
1

)

φ(A1)

]
+ 3r

[
φ
(
B∗
1

)

φ(A1)

]
+ n

= r

[
L21 NT

1i

L11 M1i

]
− 4r

[
B∗
1

A1

]
+ n.

(2.41)

Note that LA = RA∗ , then Lφ(A) = Rφ∗(A); hence

r

[
A B

B∗ 0

]
= r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A P 0 0 0

PT 0 aT
3 b1 aT

1

0 a3 0 0 0

0 bT1 0 0 0

0 a1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 8r

[
φ(M)

] − 8r
[
φ(F)

] − 8r
[
φ(A1)

]
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= r

⎡
⎢⎢⎢⎢⎢⎣

0 MT
31 N11 MT

11

M31 φ(C3) φ(A3)φ(C2) φ(A3)φT (C1)

NT
11 φT (C2)φT (A3) φT (C2)φ(B1) φT (C2)φT (A1)

M11 φ(C1)φT (A3) φ(C1)φ(B1) φ(C1)φT (A1)

⎤
⎥⎥⎥⎥⎥⎦

− 8r

⎡
⎢⎢⎣
φ(A3)

φ
(
B∗
1

)

φ(A1)

⎤
⎥⎥⎦ + 6r

⎡
⎢⎢⎣
φ(A3)

φ
(
B∗
1

)

φ(A1)

⎤
⎥⎥⎦ + 2n

= r

⎡
⎢⎢⎢⎢⎢⎣

0 MT
31 N11 MT

11

M31 φ(C3) φ(A3)φ(C2) φ(A3)φT (C1)

NT
11 φT (C2)φT (A3) φT (C2)φ(B1) φT (C2)φT (A1)

M11 φ(C1)φT (A3) φ(C1)φ(B1) φ(C1)φT (A1)

⎤
⎥⎥⎥⎥⎥⎦
− 8r

⎡
⎢⎢⎣
A3

B∗
1

A1

⎤
⎥⎥⎦ + 2n.

(2.42)

Similarly, we can obtain

r

[
A B

C 0

]
= r

⎡
⎢⎢⎢⎢⎢⎣

0 N11 MT
11

M31 φ(A3)φ(C2) φ(A3)φT (C1)

NT
11 φT (C2)φ(B1) φT (C2)φT (A1)

M11 φ(C1)φ(B1) φ(C1)φT (A1)

⎤
⎥⎥⎥⎥⎥⎦
− 4r

⎡
⎢⎢⎣
A3

B∗
1

A1

⎤
⎥⎥⎦ − 4r

[
B∗
1

A1

]
+ 2n, (2.43)

Substituting (2.41) and (2.43) into (2.38) and (2.39) yields (2.33) and (2.34), that is i = 1.

Corollary 2.8. Suppose system (1.5) over H have a Hermitian solution. Then we have the following.
(a) System (1.5) has a real hermtian solution if and only if

2r

[
L21 NT

1i

L11 M1i

]
+ r

⎡
⎢⎢⎢⎢⎢⎣

0 MT
31 N11 MT

11

M31 φ(C3) φ(A3)φ(C2) φ(A3)φT (C1)

NT
11 φT (C2)φT (A3) φT (C2)φ(B1) φT (C2)φT (A1)

M11 φ(C1)φT (A3) φ(C1)φ(B1) φ(C1)φT (A1)

⎤
⎥⎥⎥⎥⎥⎦

= 2r

⎡
⎢⎢⎢⎢⎢⎣

0 N1i MT
1i

M31 φ(A3)φ(C2) φ(A3)φT (C1)

NT
11 φT (C2)φ(B1) φT (C2)φT (A1)

M11 φ(C1)φ(B1) φ(C1)φT (A1)

⎤
⎥⎥⎥⎥⎥⎦

(2.44)

hold when i = 2, 3, 4. In that case, the real solution of (1.5) can be expressed as X = X1 in (2.15).
(b) System (1.5) has a complex solution if and only if (2.44) hold when i = 3, 4 or i = 2, 4 or

i = 2, 3. In that case, the complex solutions of (1.5) can be expressed asX = X1 +X2i orX = X1 +X3j
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or X = X1 + X4k, where X1, X2, X3, and X4 are expressed as (2.15), (2.16), (2.17), and (2.18),
respectively.

Proof. From (2.34) we can get the necessary and sufficient conditions for Xi = 0, i = 1, 2, 3, 4.
Thus we can get the results of this Corollary.

3. Solvability Conditions for Real and Complex Hermitian Solutions to
(1.6) Over H

In this section, using the results of Theorem 2.6, Theorem 2.7, and Corollary 2.8, we give
necessary and sufficient conditions for (1.6) over H to have real and complex Hermitian
solutions.

Theorem 3.1. Let A1, A3, B1, C1, C2, and C3 be defined in Lemma 2.2, A4 ∈ H
l×n, C4 ∈ H

l×l, and
suppose that system (1.5) and the matrix equation A4YA

∗
4 = C4 over H have Hermitian solutions X

and Y ∈ H
n×n, respectively. Then system (1.6) over H has a real Hermitian solution if and only if

(2.44) hold when i = 2, 3, 4, and

r

[
0 MT

31

M31 φ(C3)

]
= 2r(M31), (3.1)

r

⎡
⎢⎢⎣

0 MT
41 0 0

0 MT
411 φ(B1) φT (A1)

M41 φ(C4) φ(A4)φ(C2) φ(A4)φT (C1)

⎤
⎥⎥⎦ = r(M41) + r

⎡
⎣MT

41 0 0

MT
411 φ(B1) φT (A1)

⎤
⎦, (3.2)

r

⎡
⎢⎢⎢⎢⎢⎣

0 0 MT
41

M41 M411 φ(C4)

0 φT (B1) φT (C2)φT (A4)

0 φ(A1) φ(C1)φT (A4)

⎤
⎥⎥⎥⎥⎥⎦

= r(M41) + r

⎡
⎢⎢⎢⎣

M41 M411

0 φT (B1)

0 φ(A1)

⎤
⎥⎥⎥⎦,

r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 MT
41 0 0 0

0 0 MT
411 φT (A3) φ(B1) φT (A1)

M41 M411 φ(C4) 0 0 0

0 φ(A3) 0 φ(C3) φ(A3)φ(C2) φ(A3)φT (C1)

0 φT (B1) 0 φT (C2)φT (A3) φT (C2)φ(B1) φT (C2)φT (A1)

0 φ(A1) 0 φ(C1)φT (A3) φ(C1)φ(B1) φ(C1)φT (A1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2r

⎡
⎢⎢⎢⎢⎢⎣

M41 M411

0 φ(A3)

0 φT (B1)

0 φ(A1)

⎤
⎥⎥⎥⎥⎥⎦
,

r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 MT
41 0 0

0 0 MT
411 φ(B1) φT (A1)

M41 M411 φ(C4) 0 0

0 φT (B1) 0 φT (B1)φ(C2) φT (B1)φT (C1)

0 φ(A1) 0 φ(C1)φ(B1) φ(C1)φT (A1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2r

⎡
⎢⎢⎣
M41 M411

0 φT (B1)

0 φ(A1)

⎤
⎥⎥⎦,

(3.3)
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where

M41 =

⎡
⎢⎢⎢⎢⎢⎣

A42 A43 A44

A41 A44 −A43

−A44 A41 A42

A43 −A42 A41

⎤
⎥⎥⎥⎥⎥⎦
, M411 =

⎡
⎢⎢⎢⎢⎢⎣

A21 0 0 0

−A22 0 0 0

−A23 0 0 0

−A24 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
. (3.4)

Proof. From Corollary 2.8, system (1.5) over H has a real Hermitian solution if and only if
(2.44) hold when i = 2, 3, 4. By (2.15), the real Hermitian solutions of (1.5) over H can be
expressed as

X1 =
1
4
P1φ(X0)PT

1 +
1
4
P2φ(X0)PT

2 +
1
4
P3φ(X0)PT

3 +
1
4
P4φ(X0)PT

4

+ [P1, P2, P3, P4]Lφ(A1)Lφ(F)Lφ(M)V

⎡
⎢⎢⎢⎢⎢⎣

Lφ(F)Lφ(A1)P
T
1

Lφ(F)Lφ(A1)P
T
2

Lφ(F)Lφ(A1)P
T
3

Lφ(F)Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦

+ [P1, P2, P3, P4]Lφ(A1)Lφ(F)V
T

⎡
⎢⎢⎢⎢⎢⎣

Lφ(M)Lφ(F)Lφ(A1)P
T
1

Lφ(M)Lφ(F)Lφ(A1)P
T
2

Lφ(M)Lφ(F)Lφ(A1)P
T
3

Lφ(M)Lφ(F)Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦
,

(3.5)

where V is arbitrary matrices with compatible sizes.
Let A1, C1 = 0;B1, C2 = 0; A3 = A4; C3 = C4 in Corollary 2.8 and (2.15). It is easy to

verify that the matrix equation A4YA
∗
4 = C4 over H has a real Hermitian solution if and only

if (3.1) hold and the real Hermitian solution can be expressed as

Y1 =
1
4
P1φ(Y0)PT

1 +
1
4
P2φ(Y0)PT

2 +
1
4
P3φ(Y0)PT

3 +
1
4
P4φ(Y0)PT

4

+ [P1, P2, P3, P4]Lφ(A4)U +UT

⎡
⎢⎢⎢⎢⎢⎣

Lφ(A1)P
T
1

Lφ(A1)P
T
2

Lφ(A1)P
T
3

Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦
,

(3.6)
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where φ(Y0) is a particular solution to φ(A4)(Yij)4 × 4φ
T (A4) = φ(C4) and U is arbitrary

matrices with compatible sizes. The expression of Y1 can also be obtained from Lemma 2.1.
Let

[P1, P2, P3, P4] = P,

G =
1
4
P1φ(X0)PT

1 +
1
4
P2φ(X0)PT

2 +
1
4
P3φ(X0)PT

3 +
1
4
P4φ(X0)PT

4

−1
4
P1φ(Y0)PT

1 − 1
4
P2φ(Y0)PT

2 − 1
4
P3φ(Y0)PT

3 − 1
4
P4φ(Y0)PT

4 .

(3.7)

Equating X1 and Y1, we obtain the following equation:

X1 − Y1 = G + PLφ(A1)Lφ(F)Lφ(M)V

⎡
⎢⎢⎢⎢⎢⎣

Lφ(F)Lφ(A1)P
T
1

Lφ(F)Lφ(A1)P
T
2

Lφ(F)Lφ(A1)P
T
3

Lφ(F)Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦

+ PLφ(A1)Lφ(F)V
T

⎡
⎢⎢⎢⎢⎢⎣

Lφ(M)Lφ(F)Lφ(A1)P
T
1

Lφ(M)Lφ(F)Lφ(A1)P
T
2

Lφ(M)Lφ(F)Lφ(A1)P
T
3

Lφ(M)Lφ(F)Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦
− PLφ(A4)U −UT

⎡
⎢⎢⎢⎢⎢⎣

Lφ(A4)P
T
1

Lφ(A4)P
T
2

Lφ(A4)P
T
3

Lφ(A4)P
T
4

⎤
⎥⎥⎥⎥⎥⎦
.

(3.8)

It is obvious that system (1.5) and the matrix equationA4YA
∗
4 = C4 over H have common real

Hermitian solution if and only if min r(X1 −Y1) = 0, that is, X1 −Y1 = 0. Hence, we have the
matrix equation

G = PLφ(A4)U +UT

⎡
⎢⎢⎢⎢⎢⎣

Lφ(A4)P
T
1

Lφ(A4)P
T
2

Lφ(A4)P
T
3

Lφ(A4)P
T
4

⎤
⎥⎥⎥⎥⎥⎦
− PLφ(A1)Lφ(F)Lφ(M)V

⎡
⎢⎢⎢⎢⎢⎣

Lφ(F)Lφ(A1)P
T
1

Lφ(F)Lφ(A1)P
T
2

Lφ(F)Lφ(A1)P
T
3

Lφ(F)Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦

− PLφ(A1)Lφ(F)V
T

⎡
⎢⎢⎢⎢⎢⎣

Lφ(M)Lφ(F)Lφ(A1)P
T
1

Lφ(M)Lφ(F)Lφ(A1)P
T
2

Lφ(M)Lφ(F)Lφ(A1)P
T
3

Lφ(M)Lφ(F)Lφ(A1)P
T
4

⎤
⎥⎥⎥⎥⎥⎦
.

(3.9)
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We know by Lemma 2.5 that (3.9) is solvable if and only if the following four rank equalities
hold

r

⎡
⎢⎢⎣

G PLφ(A4)

Rφ(A4)P
T 0

Rφ(F)Rφ(A1)P
T 0

⎤
⎥⎥⎦ = r

⎡
⎢⎢⎣

0 PLφ(A4)

Rφ(A4)P
T 0

Rφ(F)Rφ(A1)P
T 0

⎤
⎥⎥⎦,

r

[
G PLφ(A4) PLφ(A1)Lφ(F)

Rφ(A4)P
T 0 0

]
= r

[
0 PLφ(A4) PLφ(A1)Lφ(F)

Rφ(A4)P
T 0 0

]
,

r

⎡
⎢⎢⎣

G PLφ(A4) PLφ(A1)Lφ(F)Lφ(M)

Rφ(A4)P
T 0 0

Rφ(M)Rφ(F)Rφ(A1)P
T 0 0

⎤
⎥⎥⎦

= r

⎡
⎢⎢⎣

0 PLφ(A4) PLφ(A1)Lφ(F)Lφ(M)

Rφ(A4)P
T 0 0

Rφ(M)Rφ(F)Rφ(A1)P
T 0 0

⎤
⎥⎥⎦,

r

⎡
⎢⎢⎣

G PLφ(A4) PLφ(A1)Lφ(F)

Rφ(A4)P
T 0 0

Rφ(F)Rφ(A1)P
T 0 0

⎤
⎥⎥⎦ = r

⎡
⎢⎢⎣

0 PLφ(A4) PLφ(A1)Lφ(F)

Rφ(A4)P
T 0 0

Rφ(F)Rφ(A1)P
T 0 0

⎤
⎥⎥⎦.

(3.10)

Under the conditions that the system (1.5) and the matrix equation A4YA
∗
4 = C4 over H have

Hermitian solutions, it is not difficult to show by Lemma 2.3 and block Gaussian elimination
that (3.10) are equivalent to the four rank equalities (3.2) and (3.3), respectively. Note that
the processes are too much tedious; we omit them here. Obviously, the system (1.5) and the
matrix equation A4YA

∗
4 = C4 over H have a common real Hermitian solution if and only if

(3.2) and (3.3) hold. Thus, the system (1.6) over H has a real Hermitian solution if and only
if (2.44) hold when i = 2, 3, 4, and (3.1)–(3.3) hold.

Similarly, from Corollary 2.8, we know that the system (1.5) over H has a complex
Hermitian solution if and only if (2.44) hold when i = 3, 4, i = 2, 4, or; i = 2, 3; its complex
Hermitian solutions can be expressed asX = X1+X2i, X = X1+X3j, orX = X1+X4k. It is also
easy to derive the necessary and sufficient condition for thematrix equationA4YA

∗
4 = C4 over

H to have a complex Hermitian solution; its complex Hermitian solution can be expressed as
Y = Y1 +Y2i, Y = Y1 +Y3j, or Y = Y1 +Y4k. By equating X1 and Y1, X2 and Y2, X3, and Y3, X4

and Y4, respectively, we can derive the necessary and sufficient conditions for the system (1.6)
over H to have a complex Hermitian solution.
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