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We establish necessary and sufficient conditions for the existence of and the expressions for
the general real and complex Hermitian solutions to the classical system of quaternion matrix
equations A1 X = C1, XB; = C3, and A3X A} = C3. Moreover, formulas of the maximal and minimal
ranks of four real matrices X, X, X3, and X} in solution X = X; + Xpi + X3j + X4k to the system
mentioned above are derived. As applications, we give necessary and sufficient conditions for the
quaternion matrix equations A1 X = Cy, XB; = C, A3X A} = C3, and A4 XA} = C4 to have real and
complex Hermitian solutions.

1. Introduction

Throughout this paper, we denote the real number field by R; the complex field by C; the set
of all m x n matrices over the quaternion algebra

H = {ay+ai+aj+ask | = 2 = k* = ijk = -1,a0,@1, 4, a5 € R (1.1)

by H"™"; the identity matrix with the appropriate size by I; the transpose, the conjugate
transpose, the column right space, the row left space of a matrix A over H by AT, A*,R(A),
N(A), respectively; the dimension of R(A) by dimR(A). By [1], for a quaternion matrix
A,dimR(A) = dim _NV(A). dim R(A) is called the rank of a quaternion matrix A and denoted
by r(A). The Moore-Penrose inverse of matrix A over H by A which satisfies four Penrose
equations AATA = A, ATAAT = AT, (AA")* = AAT, and (ATA)* = ATA. In this case, AT is
unique and (AN = (A*)T. Moreover, R4 and L4 stand for the two projectors Ly = I — AtA,
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and R4 = I - AAT induced by A. Clearly, R4 and L, are idempotent and satisfies (Ra)* =
RA, (LA)* = LA, RA = LA*, and RA* = LA.

Hermitian solutions to some matrix equations were investigated by many authors. In
1976, Khatri and Mitra [2] gave necessary and sufficient conditions for the existence of the
Hermitian solutions to the matrix equations AX = B, AXB = C and

AX=C;, XBy=0C,, (1.2)

over the complex field C, and presented explicit expressions for the general Hermitian
solutions to them by generalized inverses when the solvability conditions were satisfied.
Matrix equation that has symmetric patterns with Hermitian solutions appears in some
application areas, such as vibration theory, statistics, and optimal control theory ([3-7]). Gro88
in [8], and Liu et al. in [9] gave the solvability conditions for Hermitian solution and its
expressions of

AXA* =B (1.3)

over C in terms of generalized inverses, respectively. In [10], Tian and Liu established the
solvability conditions for

AsXAL=Cs,  AXAL=Cy (1.4)

to have a common Hermitian solution over C by the ranks of coefficient matrices. In [11],
Tian derived the general common Hermitian solution of (1.4). Wang and Wu in [12] gave
some necessary and sufficient conditions for the existence of the common Hermitian solution
to equations

A1X=C, XBy=Cy,  AsXAL=Cs, (1.5)
A1X=Ci, XBy=Cy,  AsXAL=Cs,  AXA,=Cy, (1.6)

for operators between Hilbert C*-modules by generalized inverses and range inclusion of
matrices.

As is known to us, extremal ranks of some matrix expressions can be used to
characterize nonsingularity, rank invariance, range inclusion of the corresponding matrix
expressions, as well as solvability conditions of matrix equations ([4, 7, 9-24]). Real matrices
and its extremal ranks in solutions to some complex matrix equation have been investigated
by Tian and Liu ([9, 13-15]). Tian [13] gave the maximal and minimal ranks of two real
matrices Xy and X; in solution X = Xy +iX; to AXB = C over C with its applications. Liu
et al. [9] derived the maximal and minimal ranks of the two real matrices X, and X; in a
Hermitian solution X = Xj + iX; of (1.3), where B* = B. In order to investigate the real and
complex solutions to quaternion matrix equations, Wang and his partners have been studying
the real matrices in solutions to some quaternion matrix equations such as AXB = C,

A1XB; = Cl, ArXB, = CZ/
(1.7)
AXA*+BXB*=_,
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recently ([24-27]). To our knowledge, the necessary and sufficient conditions for (1.5) over
H to have the real and complex Hermitian solutions have not been given so far. Motivated
by the work mentioned above, we in this paper investigate the real and complex Hermitian
solutions to system (1.5) over H and its applications.

This paper is organized as follows. In Section 2, we first derive formulas of extremal
ranks of four real matrices Xi, X», X3, and X4 in quaternion solution X = X; + Xyi + X3j +
X4k to (1.5) over H, then give necessary and sufficient conditions for (1.5) over H to have
real and complex solutions as well as the expressions of the real and complex solutions. As
applications, we in Section 3 establish necessary and sufficient conditions for (1.6) over H to
have real and complex solutions.

2. The Real and Complex Hermitian Solutions to System (1.5) Over H

In this section, we first give a solvability condition and an expression of the general Hermitian
solution to (1.5) over H, then consider the maximal and minimal ranks of four real matrices
X1,X5,X3, and Xy in solution X = Xj + Xoi + X37 + Xsk to (1.5) over H, last, investigate the
real and complex Hermitian solutions to (1.5) over H.

For an arbitrary matrix M; = My + Mpi + Mgj + Muk € H™" where My, My, Mys,
and My, are real matrices, we define a map ¢(-) from H"™" to Rémxdn by

My Mp Mg My
-Mp My My -Mg
P(M;) = . (2.1)
-Miz ~-My My Mp

—Mt4 Mtg —Mtz Mtl

By (2.1), it is easy to verify that ¢(-) satisfies the following properties.
(a) M= N & $(M) = $(N).

)

(b) (kM +IN) = k(M) + 1p(N), $(MN) = p(M)P(N), kI € E.

(©) (M*) = ¢T (M), p(MT) = ¢t (M).

(d) (M) =T, '¢(M)T, = R,;}$(M)R,, = S,}¢p(M)S,,, where t = m,n,
0-I; 0 O 00-I; O 0 0 0 -I
I, 0 0 O 00 0 -I 0 0 I O

T; = ’ R; = ’ St = . (22)
00 0 I I, 0 0 O 0 -I; 0 O
0 0 -I; 0 0L 0 O I; 0 0 O

(e) r[p(M)] = 4r(M).
() M* = M & ¢"(M) = p(M), M* = -M & " (M) = -p(M).

The following lemmas provide us with some useful results over C, which can be generalized
to HL
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Lemma 2.1 (see [2, Lemma 2.1]). Let A € H™",B = B* € H™"™ be known, X € H™" unknown;
then the system (1.3) has a Hermitian solution if and only if

AA'B =B. (2.3)
In that case, the general Hermitian solution of (1.3) can be expressed as
X = A'B (AT)* + LAV +V*Ly, (2.4)

where V is arbitrary matrix over H with compatible size.

Lemma 2.2 (see [12, Corollary 3.4]). Let A;,C; € H™"; By, C, € H™; A3 € H™"; C3 € H™"
be known, X € H"™" unknown, and F = B{La,, M = SLr, S = A3La,, D = C} - B;AJ{Cl, J =
AJ{Cl +F'D,G = C3-A3(J+La,LpJ") A5, Cs = C3; then the system (1.5) have a Hermitian solution
if and only if

A1Cy =GBy, AiCT =G A7, BiCy, = C3By,

(2.5)
Ra,C1 =0, RrD =0, RmG =0.
In that case, the general Hermitian solution of (1.5) can be expressed as
X =J+LsLeJ* +La, LFMTG<MT>*LFLA1 +LaLrLyVLgLa, + Lo, LFV*LyLrLa,,
(2.6)

where V' is arbitrary matrix over H with compatible size.

Lemma 2.3 (see [21, Lemma 2.4]). Let A € H™", B € H™*, C € H*", D € H/>**, and E €
H™, Then they satisfy the following rank equalities.

(@) r(CLa) =r[8] - r(A).

(b) r[BaLc] =r[BA] -r(C).
(© r[rgal =[5 3] -7(B).

)

)

)
A BLp| _ ABO _ _

(d) r[REC L ] - r[g o 5] (D) - r(E).

Lemma 2.3 plays an important role in simplifying ranks of various block matrices.

Lemma 2.4 (see [11, Theorem 4.1, Corollary 4.2]). Let A = £A* € H™"™, B € H™", and C €
HP*™ be given; then

A B A C*
max r[A-BXCF(BXC)'] =min{r[A B C*], r LT ,
XeHm B* 0 CcC 0 (2.7)

Xm]HiInpr[A - BXCF (BXC)*] =2r[A B C*] + max {s1,s2},
€eHm™
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where

A B A B C*
s1=r -2r ,
B* 0 B* 0 0

2.8)
A C* A B C*
So=r -2r .
Lro] [co o]
IfR(B) CR(C"),
. ) i A B
)?gﬁlﬂ)fpr[A—BXC—(BXC) ] :mm{r[A cr, r[B* 0]}, (2.9)
i A-BXC- (BXC)"| =2r|A C* A D 2 AD 2.1
X%llﬂpr[ - —( )] =2r] ]+r|:B* 0]— r[c O:I' (2.10)

Lemma 2.5 (see [28, Theorem 3.1]). Let A € H™", B, € H™?1, By € H"™*P3, By € H™P, C, €
H>*, C3 € HP*", and C4 € H¥" be given. Then the matrix equation

B Xy + Xng + B3X3C3 + B4X4C4 =A (211)
is consistent if and only if

A By 0 B

G 0 G 0 A B; B; B, 0 By Bs By
r =r , r =r ,

G 0 G 0 C 0 0 O C 0 0 0

Ci 0 Ci 0 (2.12)

A Bi Bs 0 By Bs A B; By 0 By B,
r|C; 0 0| =r|C O 0], r|C; 0 0=r|C O O

C 0 0 Cy 00 G 0 0 C 0 0

Theorem 2.6. System (1.5) has a Hermitian solution over H if and only if the system of matrix
equations

P(AD) (Yi)y, s =9(C), (Vi) ,9(B) = $(Ca),  §(A3) (Vi) 49" (A3) = $(Cs),

i,j=1,2,34,
(2.13)
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has a symmetric solution over R. In that case, the general Hermitian solution of (1.5) over H can be
written as

X=X1+X2i+X3j+X4k

1 1 .
= Z(Yn + Yzz + Y33 + Y44) + 4_1 <Y12 — Ylg + Y34 - Y3{l>l (214)

1 1
+ Z(Ym-yg+y§;—y24)] + Z<Y14—Y1T4+Y23—Y2T3>k,

where Yy = YL + =1,2,3,4; YlT]. =Yj1; j =234 YZT]. =Yp; j =34 Y], = Yy are the general

tts

solutions of (2.13) over R. Written in an explicit form, X1, X», X3, and X4 in (2.14) are

X; = ZI1>1<;‘!>(X0)P1T + Zqub(Xo)PzT + Z133¢(X0)PST + Z—LP4¢(XO)p4T

Ly(r)Lgpan Pl
Lyr)Lyan Py
+ [P1, Py, Ps, Py] L) Lpr) Loy V 1 2T
Ly LpcanPs

2.15
Lyr)LganPy (2.15)

Ly Loy Lpan Pl

Lo Locr) Lacay PT
+ [P, Py, Ps, P4]L¢(A1)L¢(F)VT P(M) =p(F) Ldp(Ar) ZT
Loy Lor)LycanPs

Ly Loy Lan Py
1 T 1 T 1 T 1 T
X = 7Pip(Xo) Py = 7Pap(Xo) P + 7 Psp(Xo) Py — 2 P1p(Xo) P3

Lyr)Lpcan P ]

Lyr)Lyan Pl

+[P1, =Py, P, —Py] Lya,) Lpry Loy V ' 1T
L)L Py
2.16

Lycr)Lpcan 5 | (2.16)

Lyoan Loy Loay Py ]

—Lgan Lo Loan PT
+ [P2/P11P4/P3]L¢(A1)L¢(F)VT YD =GB =p (A ;
Ly L) Lpan Py

—Lyan Loy Lyan Py |
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1 1 1 1
Xs = 1 Pip(Xo)P5 = 1 Psp(Xo) Pl + 3 Pap(Xo) Py = £ Pap(Xo) Py

Ly(r)Lp(anP; ]
Ly(r)Lgpan Pl

+ [Py, =Ps, Py, ~P2] Ly, Lyr) Loy V T
Ly LycanP,
Ly(r)Lpcan Py | (2.17)

Ly Loy Loy Py ]

~Lyon Loy Locan Ps

T 7
4

+[Ps, P1, Py, Py]Lyay Loy V7T
Ly LgeryLpcan P,

~Lyan Loy Lgan Py |
1 T 1 T 1 T 1 T
Xo = TP P TPp(X0) P + L Pa(Xo) P — L Prp(Xo) P!

Lycr)Lpcan Py ]
Lyr)Locan P!
+ [Py, =Py, P2, =Ps]Ly(a,) Lyr) Lpoany V 1 1T
Ly LycanPs
Ly(r)LgpanP; | (2.18)

Ly Ly Lpcan Py ]

—Lyn Loy Loan Py

T
2

+ [Py, P1, Ps, Py Lycay Loce) V"
LyviyLgr)La) P

~Lyan Lpr)Lyan Ps |
where

b, =1[1,,0,0,0], b, =10,1,,0,0], P;=1[0,0,1,,0], Py =10,0,0,1,], (2.19)

¢ (Xo) is a particular symmetric solution to (2.13), and V is arbitrary real matrices with compatible
sizes.

Proof. Suppose that (1.5) has a Hermitian solution X over H. Applying properties (a) and (b)
of ¢(-) to (1.5) yields

P(A1)P(X) = ¢(C), P(X)$(Ba) = p(C2), P(A3)p(X)" (A3) = P(C3), (2.20)

implying that ¢(X) is a real symmetric solution to (2.13).
Conversely, suppose that (2.13) has a real symmetric solution

Y=Y"=(vy),,, ij=1234 (2.21)
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That is,
P(ANY =§(C1),  Y(B) =p(Ca),  $(A3)Y(As) = $(Ca), (2.22)
then by property (d) of ¢(-),

T 1(ANT,Y = T, ¢(C1)T,, YT, '¢p(Bo)T, = T, ¢(Co)Ts,
T $(A) T, YT, '¢" (A3)T, = T, $(C3)T,,
Rl ¢(A)R,Y = R,)$(C1)Ry,  YR,'$(B2)Rs = R,'$(C2)R,,
(2.23)
R;'$(A3)R,YR.P" (A3)R, = R;'$(C3)R,,
SAP(ANSY =S, p(C1)Sn,  YS,'¢(B2)Ss = S, '¢(Ca)Ss,

S;'$(A3)S,Y S, dT (A3)S, = S, $(C3)S,.
Hence,

PANT YT, = ¢(C1), T YT'$(Br) =d(Ca),  P(A)T.YT,'¢"(As) = $(Cs),
PADRYR =¢(C1), R YR'G(By) =(Ca),  §(A3)R,YR,'PT(As) = $(C3),

P(A)SYS,  =p(C1), S YS,'Pp(B2) =p(Ca),  P(A3)SaYS,'PT (A3) = $(Cs),
(2.24)

implying that T,YT,", R,YR;!,and S,YS,! are also symmetric solutions of (2.13). Thus,
1/5 -1 v -1 v o1
1 (Y+ T YT, + R, YR, +5,YS;!) (2.25)

is a symmetric solution of (2.13), where

Y +T,YT,;' + R,YR;' +S,YS;! = (171-})4 y 21234,
Yii = Yi1 + Yoo + Y3 + Yau, if;;=Y12—Y1T2+Y34—Y3T4,
%=Y13—Y17;’+Y27;1—Y24, E=Y14—Y17:1+Y23—Y22,

Yo =YL Y+ YL -Ya, Yo=Y+ Yo+ Ya+ Y,
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Yos = Yia - YL + Y3 - YE, Yo =Yis - Y5+ YL Yoy,
Yo=Y, -Yis+ Y- Y, Yoo =Yu-Y,+Yn-Y,,
Yoz =Y+ Yo+ Y+ Y,  Ya=Yi-Yh+Ya-Yl,
Yo =YL - Y+ Y5 - Y3, Yoo =Yia - Yi5 + Y, - Yoy,

%=Y12—Y1T2+Y34—Y3T4, Yas = Yii + Yoo + Ya3 + Yau.

(2.26)
Let
~ 1 1 T T\
X = (Vi + Yoo + Yoo + Yaa) + 3 (Yoo - Yy + Yo - Y, )i
(2.27)
1 1
+ Z<Y13 - Y1T3 + Yzﬂ - Y24>] + 1 <Y14 - Y1T4 + Y3 — Y2T3>k'
Then by (2.1),
$(X) = 3 (T+TIT, + RIR, 45,75, ). (228)

Hence, by the property (a), we know that X is a Hermitian solution of (1.5). Observe that
Yij, i,j =1,2,3,4,in (2.13) can be written as

Y;; = PYP/. (2.29)
From Lemma 2.2, the general Hermitian solution to (2.13) can be written as
Y = $(Xo) +4Lgcan Lyr Loy V Lpan Lor) + 4Lgry Lpcan VT Ly Loy Ly, (2.30)
where V € Ris arbitrary. Hence,

Yij = Pip(Xo) P] +4P:Lg(a, Lyr LoV Ly Lo P}
(2.31)
+4PLy(r) Lpay V! Lo Lor) Lpan P,

where i, j = 1,2, 3,4, substituting them into (2.14), yields the four real matrices X1, X5, X3, and
Xy in (2.15)—(2.18). O

Now we consider the maximal and minimal ranks of four real matrices X;, X5, X3, and
X4 in solution X = X; + Xpi + X3j + X4k to (1.5) over H.
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Theorem 2.7. Suppose that system (1.5) over H has a Hermitian solution, and Ay = A + Aqpi +
A13j + A14k, C1=Cy1+Cppi+ C13j + C14k € H"™"B; = By1 + Bpi + Bl3j + Bl4k, Cp=Cy +Cpoi+
C23j + Cosk € H™®, Az = Az + Azpi+ A33j + Agsk € H™", C3 = C31 + Czpi + C33j + Czyk € H™"

A1X =Cy, XB;1 =Cy, A3XAL=C5
51 =1X; eRP"
X = X1 + Xgl + X3] + X4k

Sy =X, e RP |
X=X +X21+X3] +X4
A1 X =Cy, XB; =C,, A3XA Cs

X=X1+Xoi+ X3] + X4k

A1X =Cy, XB1 =Cy, A3XAL=C3 }
Sz =1 X3 € RP¥T | }

Si=1X4 € RP*q I

A1X = Cy, XB; = Cy, AsXA%=Cs
X = Xy + Xpi + X3 + Xyk ’

Co Cn Az Az Ax
Cx —Cp Az Az -Ass
Ly = , L1 = , M3z = ,
Ca3 -Ci3 —Azy Az Az
Cos —Cus Az —Azm Az
[ A Az Aug [ An A Au] (2.32)
An  Au -An -An Au -Asp
My = , Mip = P
-Ais An A A A Anp
| Az —Ap An [ -Au —Ann An |
[ Al A Ay [ A A A ]
-Ap An -An -Apn A Au
Mz = , My = ’
-Aiz —Au Anp -Aiz3 —Au An
| -Aiy Az A | —Ay Az —Ap]
-Bi» Bin By -Bgs [ Bii1 Bi2 Biz Bu
N1 = |-Bizs =By Bu Bp |, Nip = |-Biz =By Bu Bio|,
-Biy Biz -Bip Bn | -Bis Bz —Bix By
Bi1 Bix Biz Bu Bii Bz Biz Bu

N13= —Blz B11 Bl4 —B13 ’ N14: _B12 Bll B14 _B13 .
-Byy Biz -Bp B -Bis -Bis Bi1 Bp
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Then the maximal and minimal ranks of X;, i =1,2,3,4, in Hermitian solution X = Xy + Xoi+ X3j +

X4k to (1.5) are given by

maxr(X;) = min{ty;, t},

X,‘ES{
?612 T(Xi) = 2t1i +t— 2t2i,
where
Ly N1Ti B}
tli =r —4r +n,
L1 My; Aq
0 Mgl N1 MlT1
3
M3, $(Cs3) P(A3)P(C2)  P(A3)PT (Cr)
t=r —-8r| B | +2n,

N ¢T(C2)PT (As) ¢T(C2)p(B1) ¢T(C2)dpT (A1)

M ¢(C1)T(As)  P(Cr)Pp(B1)  ¢(C1)T (A1)

0 Ny M "

Ma $(A3)(C2) $(A3)¢T(C) ’ B;

ty = —4r | By | -4r +2n.
NT ¢T(C)p(B1) ¢T(C2)9" (A1) A

My $(C)(B1)  $(C1)$T (A1)

1

(2.33)
(2.34)

(2.35)

Proof. We only prove the case that i = 1. Similarly, we can get the results thati = 2,3,4. Let

}IP@(XO)P{ + }Lpqu(xo)PzT + }IP3¢(X0)P3T + }LP@(XO)PT = A,
[P1, P2, Ps, P4]Lga,) Lor)Lpm) = B,

Lyr)Lpcan Pl

Ly(r)Lg(an Py

Lyr)LpcanP;

L) Lpcan Py

note that Ly is Hermtian; then Ly () is symmetric; hence (2.15) can be written as
X1 =A+BVC+ (BVC)".

Note that A = A* and R(B) C R(C*); applying (2.9) and (2.10) to (2.37) yields

A B
max r(Xj) :min{r[A,C*], r[ ]},
X1651 B* 0

A B A B
min r(Xy) =2r[A,C*] +r -2r .
X1€85 B* 0 C 0

(2.36)

(2.37)

(2.38)

(2.39)
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Let

[P, Py, P, Py] = P,
p(A) 0 0 0
0 @A) 0 0
0 0 ¢A) O
0 0 0 ¢(A) (2.40)
¢B1) 0 0 0
0 ¢(B1) O 0
0 0 ¢B) o0
0 0 0 ¢@B)

Note that ¢(Xp) is a particular solution to (2.13), it is not difficult to find by Lemma 2.3, block
Gaussian elimination, and property (e) of ¢(-) that

A P
r[A,C]=7|0 b] | —4r[p(A)] - 4r[p(F)]
_0 a
[ 0 P
- —4r[¢<BI)]
1 d(A1)
-—qu(Cl)PlT a
i i (2.41)
0 [P;,0,0,0] . -
¢(B)

=r|¢pT(C)P] bl —4r
| $(C)P] a
R A S o

+3r +n
[ L11 My P(A1) ] | p(A1) ]

=r —4r + 1.
[ L1n My Ay

Note that Ly = Ra-+, then Lya) = Ry+(4); hence

[ §(A1) ]

[A P 0 0 0]

A B PT 0 aj by al
r 5 0 =r| 0 a3 0 0 0| -8r[p(M)]-8r[p(F)] -8r[p(A1)]

06T 0 0 0

(0 @, 0 0 0]
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0 Mll’:l Nn Mfl
M P(Cs) P(A3)P(C2)  P(A3)P"(Ch)
N{y ¢7(C2)9T(A3) ¢T(C)P(B1) ¢7(C2)¢T (A1)
Mn $(C1)PT(A3)  P(C1)P(B1)  P(C1)g" (A1)
P(As) P(As3)
-8r|¢(B})| +6r|p(B})| +2n
P(A1) P(A1)
0 M Nu M, A
Mn  $(C)  $AP(C2) P(A)(C) [ f]
-8r| B | +2n.

N} ¢7(C2)9"(As) ¢T(C2)p(B1) ¢7(Ca)d" (A1)
My $(C1)PT(As)  ¢(C1)P(B1)  ¢(C1)PT (A1)

1

(242)
Similarly, we can obtain

O N11 M{l A
T 3 *
r[A B] _ (M $UA9P(C) et () B} —4r|:B1:|+2n, (2.43)
Co NI ¢T(C)p(B1) ¢T(C2)pT (A1) A

1
M

1 P(CP(B1)  (Cr)p" (A1)

—_

Substituting (2.41) and (2.43) into (2.38) and (2.39) yields (2.33) and (2.34), thatisi=1. O

Corollary 2.8. Suppose system (1.5) over H have a Hermitian solution. Then we have the following.
(a) System (1.5) has a real hermtian solution if and only if

0 M3 Ny My,
2r[L21 NL]H Mz $(C3)  P(A)P(Ca) (AT (C)
Ly My; NI, ¢7(C2)9" (A3) ¢T(C2)p(B1) ¢ (C2)pT (A1)
M ¢(C)PT(A3)  d(C1P(B1)  P(Ci)P" (A1)
0 Ny, M,
. M1 ¢(A3)P(Ca)  P(A3)P" (Cr)
N{y 97(C$(B1) ¢"(C2)P" (A1)
My $(C1)P(B1)  $(C1)P" (A1)

(2.44)

hold when i = 2,3,4. In that case, the real solution of (1.5) can be expressed as X = X in (2.15).

(b) System (1.5) has a complex solution if and only if (2.44) hold when i = 3,4 ori = 2,4 or
i =2,3. In that case, the complex solutions of (1.5) can be expressed as X = X; + Xpi or X = X1 + X3j
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or X = Xy + Xuk, where X1,X5, X3, and X4 are expressed as (2.15), (2.16), (2.17), and (2.18),
respectively.

Proof. From (2.34) we can get the necessary and sufficient conditions for X; =0, i = 1,2,3,4.
Thus we can get the results of this Corollary. O

3. Solvability Conditions for Real and Complex Hermitian Solutions to
(1.6) Over H

In this section, using the results of Theorem 2.6, Theorem 2.7, and Corollary 2.8, we give
necessary and sufficient conditions for (1.6) over H to have real and complex Hermitian
solutions.

Theorem 3.1. Let Ay, A3, By, C1,Ca, and Cs be defined in Lemma 2.2, Ay € H>",Cy € H™, and
suppose that system (1.5) and the matrix equation AyY A} = Cy over H have Hermitian solutions X
and Y € H™", respectively. Then system (1.6) over H has a real Hermitian solution if and only if
(2.44) hold when i =2,3,4, and

r[ 0 My ] =2r(Mz), (3.1)
M3 §(Cs)
0 Ml 0 0 M0 o
rl 0 ML, ¢(B1) T (A1) =r(M41)+r[ . . ], (3.2)
Miy §(C2) PANP(C) PANP (Cr) Man #(B1) ¢4
]\/(I) MO (i)];/ICZl) My M
1 Man 4
0§ $Catian| T MO0 PO
0 G(A) HCP (A 0 ¢4
0 0 M 0 0 07
0 0 My, ¢' (As) ¢(B1) ¢7 (A1) My M
. My Mar §(Cy) 0 0 0 o 0  ¢(A3) ,
0 ¢(A3) 0 $(Cs) P(A3)P(C2)  P(A3)¢" (C1) 0 ¢"(By)
0 ¢"(Bi) 0 ¢ (C2)9p"(As) ¢T(C)Pp(B1) ¢ (C)p" (A1) 0 ¢(A1)
[ 0 (A1) 0 P(C1)PT(A3) P(C1)P(B1) $(Cr)pT (A1) |
ro0 0 M 0 0 ]
0 0 M, $(B1) ¢" (A1) My M
r| My M ¢(Cy) 0 0 =2r| 0 ¢T'(By)|,
0 ¢"(B) 0 ¢"(B)P(Ca) ¢T(B1)9p"(C1) 0 ¢(A)
[ 0 @A) 0 P(C)p(B1) P(Ci)" (A1)

(3.3)
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where

Ap A Ay Ay 000
Ay Ay —-Ag -A» 000
My = , My = . (34)
-Ay An Ap -A» 000
Ay —Ap Ay Ay 000

Proof. From Corollary 2.8, system (1.5) over H has a real Hermitian solution if and only if
(2.44) hold when i = 2,3,4. By (2.15), the real Hermitian solutions of (1.5) over H can be
expressed as

1 1 1 1
Xy = ;LP1¢(X0)P1T + ZP2¢(X0)P2T + ZP3¢(X0)P3T + ZP4¢(X0)P4T

Lyr)Lpan Pl
Lyr)Lpcan Py
+[P1, P2, Ps, P]Ly(a,) Lyr) L)V ' 2T
Lyr)LgcanPs

Lyr)Lgan Py

Ly Loy Lpan Pl
Ly Loy Lpan Py
+ [Py, P, Ps, P4]L¢(A1>L¢<F>VT 1 2T

Loy Lor)LocanPs

Ly Loy Lpan Py
(3.5)

where V is arbitrary matrices with compatible sizes.

Let A1,C1 = 0;B1,Cy = 0; A3 = Ay; C3 = C4 in Corollary 2.8 and (2.15). It is easy to
verify that the matrix equation A4Y A} = C4 over H has a real Hermitian solution if and only
if (3.1) hold and the real Hermitian solution can be expressed as

1 1 1 1
Y1 = 1 Pip(Yo) Py + 2 Pap(Yo) Py + 2 Psp(Yo) Py + 2 Pagp(Yo) Py
Lycay Pl
Lycan Py
Lycay Py
Lycan Py

(3.6)
+ [Py, Py, Py, Py] LyapU + UT
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where ¢(Yp) is a particular solution to ¢(Ag)(Yij) « 1T (As) = ¢(Cy) and U is arbitrary

matrices with compatible sizes. The expression of Y7 can also be obtained from Lemma 2.1.
Let

[P1, P, P3,P,] =P,

1 1 1 1
G = ZP1¢(X0)P1T + ZP2¢(X0)P2T + ZP3¢(X0)P3T + ZP4¢(XO)PI (37)

1 1 1 1
3 PO P] = { Pg(Yo) P = 2 Psp(Y0) PT = 3 P (Yo) Pf.

Equating X; and Y, we obtain the following equation:

Ly(r)Lpcan Pl
Ly LpanPy
T
3

X1 - Y1 =G+ PLyay Lo Ly V
1 Lyr)LycanP

Lyr)Lpcan Py

(3.8)
Ly Lpr) Lpcan Pl Lyay P}
Lot Loy Lo PT Ly PT
+PL¢(A1>L¢(F)VT P(M) =p(F)=p(Ar) 2T —PL¢(A4)U_UT P(Aq) ZT )
Loy Lor)LocanPs LyayPs
Ly Lpr) Lpcan Py Lyan P

It is obvious that system (1.5) and the matrix equation A;Y A} = C4 over H have common real
Hermitian solution if and only if min 7(X; —Y7) =0, thatis, X; —Y; = 0. Hence, we have the
matrix equation

Loy Pl Lycr)Lpcay Py
Lpay Py Lycr)Lpcan Py
G=PLyayu+U’ ' ZT = PLy(ay) Lo(ry Loy V 1 ZT
Ly, P L) Lpan Py
Ly(an P} Ly(r)Lpcan Py 59
Ly Loy Lan Py
Ly Loy Lyan Py

— PLyay Ly V"

Lyomy L) Lan Py

Ly L) Lpcan Py
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We know by Lemma 2.5 that (3.9) is solvable if and only if the following four rank equalities
hold

[ G PL¢(A4) 0 PL¢(A4)
r R¢(A4)PT 0 =r R¢(A4)PT 0 ,
| Ry RpapPT 0 Ry RpanyPt 0
r' G PLyy PLypcayLyr) _, 0 PLgpy PLpanLyr)
[RpanPT 0 0 RyapP”T 0 0 '
[ G PLy(ay) PLgayLy(r) Ly
r R¢(A4)PT 0 0
| Rpomy Rpry RpanPT 0 0
0 PLyay) PLg(a)Lgr) Lo
=r R¢(A4)PT 0 0 ’
Rymy Ry Rpanp PT - 0 0
G PLgay) PLgca)Lyr) 0 PLgay) PLgca)Lyr)
r R¢(A4)PT 0 0 =r R¢(A4)PT 0 0
Ry RpanP" 0 0 Ry RpapPT 0 0

(3.10)

Under the conditions that the system (1.5) and the matrix equation AyY A} = C4 over H have
Hermitian solutions, it is not difficult to show by Lemma 2.3 and block Gaussian elimination
that (3.10) are equivalent to the four rank equalities (3.2) and (3.3), respectively. Note that
the processes are too much tedious; we omit them here. Obviously, the system (1.5) and the
matrix equation A;Y A} = C4 over H have a common real Hermitian solution if and only if
(3.2) and (3.3) hold. Thus, the system (1.6) over H has a real Hermitian solution if and only
if (2.44) hold when i = 2,3,4, and (3.1)-(3.3) hold.

Similarly, from Corollary 2.8, we know that the system (1.5) over H has a complex
Hermitian solution if and only if (2.44) hold when i = 3,4, i = 2,4, or; i = 2,3; its complex
Hermitian solutions can be expressed as X = X;+X5i, X = X;1+X3j, or X = X; + Xyk. Itis also
easy to derive the necessary and sufficient condition for the matrix equation A;Y A} = C4 over
H to have a complex Hermitian solution; its complex Hermitian solution can be expressed as
Y =Y1+Y5i, Y =Y1+Y3j, orY =Y; +Ysk. By equating X; and Y7, Xo and Y5, X3, and Y3, X4
and Y;, respectively, we can derive the necessary and sufficient conditions for the system (1.6)
over H to have a complex Hermitian solution. O
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