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In this paper, for the difference of famous means discussed by Taneja in 2005, we study the Schur-
geometric convexity in (0,∞) × (0,∞) of the difference between them. Moreover some inequalities
related to the difference of those means are obtained.

1. Introduction

In 2005, Taneja [1] proved the following chain of inequalities for the binary means for (a, b) ∈
R2

+ = (0,∞) × (0,∞):

H(a, b) ≤ G(a, b) ≤ N1(a, b) ≤ N3(a, b) ≤ N2(a, b) ≤ A(a, b) ≤ S(a, b), (1.1)

where

A(a, b) =
a + b

2
,

G(a, b) =
√
ab,

H(a, b) =
2ab
a + b

,

N1(a, b) =

(√
a +

√
b

2

)2

=
A(a, b) +G(a, b)

2
,

(1.2)
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N3(a, b) =
a +

√
ab + b

3
=

2A(a, b) +G(a, b)
3

,

N2(a, b) =

(√
a +

√
b

2

)⎛

⎝

√
a + b

2

⎞

⎠,

S(a, b) =

√
a2 + b2

2
.

(1.3)

The meansA,G,H, S, N1 andN3 are called, respectively, the arithmetic mean, the geometric
mean, the harmonic mean, the root-square mean, the square-root mean, and Heron’s mean.
TheN2 one can be found in Taneja [2, 3].

Furthermore Taneja considered the following difference of means:

MSA(a, b) = S(a, b) −A(a, b),

MSN2(a, b) = S(a, b) −N2(a, b),

MSN3(a, b) = S(a, b) −N3(a, b),

MSN1(a, b) = S(a, b) −N1(a, b),

MSG(a, b) = S(a, b) −G(a, b),

MSH(a, b) = S(a, b) −H(a, b),

MAN2(a, b) = A(a, b) −N2(a, b),

MAG(a, b) = A(a, b) −G(a, b),

MAH(a, b) = A(a, b) −H(a, b),

MN2N1(a, b) = N2(a, b) −N1(a, b),

MN2G(a, b) = N2(a, b) −G(a, b)

(1.4)

and established the following.

Theorem A. The difference of means given by (1.4) is nonnegative and convex in R2
+ = (0,∞) ×

(0,∞).

Further, using Theorem A, Taneja proved several chains of inequalities; they are
refinements of inequalities in (1.1).
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Theorem B. The following inequalities among the mean differences hold:

MSA(a, b) ≤ 1
3
MSH(a, b) ≤ 1

2
MAH(a, b) ≤ 1

2
MSG(a, b) ≤ MAG(a, b), (1.5)

1
8
MAH(a, b) ≤ MN2N1(a, b) ≤

1
3
MN2G(a, b) ≤

1
4
MAG(a, b) ≤ MAN2(a, b), (1.6)

MSA(a, b) ≤ 4
5
MSN2(a, b) ≤ 4MAN2(a, b), (1.7)

MSH(a, b) ≤ 2MSN1(a, b) ≤
3
2
MSG(a, b), (1.8)

MSA(a, b) ≤ 3
4
MSN3(a, b) ≤

2
3
MSN1(a, b). (1.9)

For the difference of means given by (1.4), we study the Schur-geometric convexity of
difference between these differences in order to further improve the inequalities in (1.1). The
main result of this paper reads as follows.

Theorem I. The following differences are Schur-geometrically convex in R2
+ = (0,∞) × (0,∞):

DSH−SA(a, b) =
1
3
MSH(a, b) −MSA(a, b),

DAH−SH(a, b) =
1
2
MAH(a, b) − 1

3
MSH(a, b),

DSG−AH(a, b) = MSG(a, b) −MAH(a, b),

DAG−SG(a, b) = MAG(a, b) − 1
2
MSG(a, b),

DN2N1−AH(a, b) = MN2N1(a, b) −
1
8
MAH(a, b),

DN2G−N2N1(a, b) =
1
3
MN2G(a, b) −MN2N1(a, b),

DAG−N2G(a, b) =
1
4
MAG(a, b) − 1

3
MN2G(a, b),

DAN2−AG(a, b) = MAN2(a, b) −
1
4
MAG(a, b),

DSN2−SA(a, b) =
4
5
MSN2(a, b) −MSA(a, b),

DAN2−SN2(a, b) = 4MAN2(a, b) −
4
5
MSN2(a, b),

DSN1−SH(a, b) = 2MSN1(a, b) −MSH(a, b),

DSG−SN1(a, b) =
3
2
MSG(a, b) − 2MSN1(a, b),

(1.10)
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DSN3−SA(a, b) =
3
4
MSN3(a, b) −MSA(a, b),

DSN1−SN3(a, b) =
2
3
MSN1(a, b) −

3
4
MSN3(a, b).

(1.11)

The proof of this theorem will be given in Section 3. Applying this result, in Section 4,
we prove some inequalities related to the considered differences of means. Obtained
inequalities are refinements of inequalities (1.5)–(1.9).

2. Definitions and Auxiliary Lemmas

The Schur-convex function was introduced by Schur in 1923, and it has many important
applications in analytic inequalities, linear regression, graphs and matrices, combinatorial
optimization, information-theoretic topics, Gamma functions, stochastic orderings, reliability,
and other related fields (cf. [4–14]).

In 2003, Zhang first proposed concepts of “Schur-geometrically convex function”
which is extension of “Schur-convex function” and established corresponding decision
theorem [15]. Since then, Schur-geometric convexity has evoked the interest of many
researchers and numerous applications and extensions have appeared in the literature (cf.
[16–19]).

In order to prove the main result of this paper we need the following definitions and
auxiliary lemmas.

Definition 2.1 (see [4, 20]). Let x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , yn) ∈ R

n.

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤ ∑k
i=1 y[i] for k =

1, 2, . . . , n − 1 and
∑n

i=1 xi =
∑n

i=1 yi, where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are
rearrangements of x and y in a descending order.

(ii) Ω ⊆ R
n is called a convex set if (αx1 + βy1, . . . , αxn + βyn) ∈ Ω for every x and y ∈ Ω,

where α and β ∈ [0, 1] with α + β = 1.

(iii) Let Ω ⊆ R
n. The function ϕ: Ω → R is said to be a Schur-convex function on Ω if

x ≺ y onΩ implies ϕ(x) ≤ ϕ(y). ϕ is said to be a Schur-concave function onΩ if and
only if −ϕ is Schur-convex.

Definition 2.2 (see [15]). Let x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , yn) ∈ R

n
+.

(i) Ω ⊆ R
n
+ is called a geometrically convex set if (xα

1y
β

1 , . . . , x
α
ny

β
n) ∈ Ω for all x,y ∈ Ω

and α,β ∈ [0, 1] such that α + β = 1.

(ii) Let Ω ⊆ R
n
+. The function ϕ: Ω → R+ is said to be Schur-geometrically convex

function on Ω if (lnx1, . . . , lnxn) ≺ (lny1, . . . , lnyn) on Ω implies ϕ(x) ≤ ϕ(y). The
function ϕ is said to be a Schur-geometrically concave on Ω if and only if −ϕ is
Schur-geometrically convex.

Definition 2.3 (see [4, 20]). (i) The set Ω ⊆ R
n is called symmetric set, if x ∈ Ω implies Px ∈ Ω

for every n × n permutation matrix P .
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(ii) The function ϕ : Ω → R is called symmetric if, for every permutation matrix P ,
ϕ(Px) = ϕ(x) for all x ∈ Ω.

Lemma 2.4 (see [15]). Let Ω ⊆ R
n
+ be a symmetric and geometrically convex set with a nonempty

interiorΩ0. Let ϕ : Ω → R+ be continuous onΩ and differentiable inΩ0. If ϕ is symmetric onΩ and

(lnx1 − lnx2)
(
x1

∂ϕ

∂x1
− x2

∂ϕ

∂x2

)
≥ 0 (≤ 0) (2.1)

holds for any x = (x1, . . . , xn) ∈ Ω0, then ϕ is a Schur-geometrically convex (Schur-geometrically
concave) function.

Lemma 2.5. For (a, b) ∈ R2
+ = (0,∞) × (0,∞) one has

1 ≥ a + b
√
2(a2 + b2)

≥ 1
2
+

2ab

(a + b)2
, (2.2)

a + b
√
2(a2 + b2)

− ab

(a + b)2
≤ 3

4
, (2.3)

3
2
≥

√
a + b

√
2
(√

a +
√
b
) +

√
a +

√
b√

2
√
a + b

≥ 5
4
+

ab

(a + b)2
. (2.4)

Proof. It is easy to see that the left-hand inequality in (2.2) is equivalent to (a − b)2 ≥ 0, and
the right-hand inequality in (2.2) is equivalent to

√
2(a2 + b2) − (a + b)
√
2(a2 + b2)

≤ (a + b)2 − 4ab

2(a + b)2
, (2.5)

that is,

(a − b)2

2(a2 + b2) +
√
2(a2 + b2)(a + b)

≤ (a − b)2

2(a + b)2
. (2.6)

Indeed, from the left-hand inequality in (2.2) we have

2
(
a2 + b2

)
+
√
2(a2 + b2)(a + b) ≥ 2

(
a2 + b2

)
+ (a + b)2 ≥ 2(a + b)2, (2.7)

so the right-hand inequality in (2.2) holds.
The inequality in (2.3) is equivalent to

√
2(a2 + b2) − (a + b)
√
2(a2 + b2)

≥ (a − b)2

4(a + b)2
. (2.8)
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Since

√
2(a2 + b2) − (a + b)
√
2(a2 + b2)

=
2
(
a2 + b2

) − (a + b)2
√
2(a2 + b2)

(√
2(a2 + b2) + (a + b)

)

=
(a − b)2

2(a2 + b2) + (a + b)
√
2(a2 + b2)

,

(2.9)

so it is sufficient prove that

2
(
a2 + b2

)
+ (a + b)

√
2(a2 + b2) ≤ 4(a + b)2, (2.10)

that is,

(a + b)
√
2(a2 + b2) ≤ 2

(
a2 + b2 + 4ab

)
, (2.11)

and, from the left-hand inequalities in (2.2), we have

(a + b)
√
2(a2 + b2) ≤ 2

(
a2 + b2

)
≤ 2
(
a2 + b2 + 4ab

)
, (2.12)

so the inequality in (2.3) holds.
Notice that the functions in the inequalities (2.4) are homogeneous. So, without loss of

generality, we may assume
√
a +

√
b = 1, and set t =

√
ab. Then 0 < t ≤ 1/4 and (2.4) reduces

to

3
2
≥

√
1 − 2t√
2

+
1√

2
√
1 − 2t

≥ 5
4
+

t2

(1 − 2t)2
. (2.13)

Squaring every side in the above inequalities yields

9
4
≥ 1 − 2t

2
+

1
2 − 4t

+ 1 ≥ 25
16

+
t4

(1 − 2t)4
+

5t2

2(1 − 2t)2
. (2.14)

Reducing to common denominator and rearranging, the right-hand inequality in (2.14)
reduces to

(1 − 2t)
(
16t2(2t − 1)2 + (1/8)(16t − 7)2 + (7/8)

)

16(2t − 1)4
≥ 0, (2.15)

and the left-hand inequality in (2.14) reduces to
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2(1 − 2t)2 + 2 − 5(1 − 2t)
2(1 − 2t)

= −1 + 2t
2

≤ 0, (2.16)

so two inequalities in (2.4) hold.

Lemma 2.6 (see [16]). Let a ≤ b, u(t) = ta + (1 − t)b, v(t) = tb + (1 − t)a. If 1/2 ≤ t2 ≤ t1 ≤ 1 or
0 ≤ t1 ≤ t2 ≤ 1/2, then

(
a + b

2
,
a + b

2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (a, b). (2.17)

3. Proof of Main Result

Proof of Theorem I. Let (a, b) ∈ R2
+.

(1) For

DSH−SA(a, b) =
1
3
MSH(a, b) −MSA(a, b) =

a + b

2
− 2ab
3(a + b)

− 2
3

√
a2 + b2

2
, (3.1)

we have

∂DSH−SA(a, b)
∂a

=
1
2
− 2b2

3(a + b)2
− 2
3

a
√
2(a2 + b2)

,

∂DSH−SA(a, b)
∂b

=
1
2
− 2a2

3(a + b)2
− 2
3

b
√
2(a2 + b2)

,

(3.2)

whence

Λ := (lna − ln b)
(
a
∂DSH−SA(a, b)

∂a
− b

∂DSH−SA(a, b)
∂b

)

= (a − b)(lna − ln b)

(
1
2
+

2ab

3(a + b)2
− 2
3

a + b
√
2(a2 + b2)

)

.

(3.3)

From (2.3)we have

1
2
+

2ab

3(a + b)2
− 2
3

a + b
√
2(a2 + b2)

≥ 0, (3.4)

which impliesΛ ≥ 0 and, by Lemma 2.4, it follows thatDSH−SA is Schur-geometrically convex
in R2

+.
(2) For

DAH−SH(a, b) =
1
2
MAH(a, b) − 1

3
MSH(a, b) =

a + b

4
− ab

3(a + b)
− 1
3

√
a2 + b2

2
. (3.5)
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To prove that the functionDAH−SH is Schur-geometrically convex in R2
+ it is enough to

notice that DAH−SH(a, b) = (1/2)DSH−SA(a, b).
(3) For

DSG−AH(a, b) = MSG(a, b) −MAH(a, b) =

√
a2 + b2

2
−
√
ab − a + b

2
+

2ab
a + b

, (3.6)

we have

∂DSG−AH(a, b)
∂a

=
a

√
2(a2 + b2)

− b

2
√
ab

− 1
2
+

2b2

(a + b)2
,

∂DSG−AH(a, b)
∂b

=
b

√
2(a2 + b2)

− a

2
√
ab

− 1
2
+

2a2

(a + b)2
,

(3.7)

and then

Λ := (lna − ln b)
(
a
∂DSH−SA(a, b)

∂a
− b

∂DSH−SA(a, b)
∂b

)

= (a − b)(lna − ln b)

(
a + b

√
2(a2 + b2)

− 1
2
− 2ab

(a + b)2

)

.

(3.8)

From (2.2) we have Λ ≥ 0, so by Lemma 2.4, it follows that DSH−SA is Schur-
geometrically convex in R2

+.
(4) For

DAG−SG(a, b) = MAG(a, b) − 1
2
MSG(a, b) =

1
2

⎛

⎝a + b −
√
ab −

√
a2 + b2

2

⎞

⎠, (3.9)

we have

∂DAG−SG(a, b)
∂a

=
1
2

(

1 − b

2
√
ab

− a
√
2(a2 + b2)

)

,

∂DAG−SG(a, b)
∂b

=
1
2

(

1 − a

2
√
ab

− b
√
2(a2 + b2)

)

,

(3.10)

and then

Λ := (lna − ln b)
(
a
∂DSH−SA(a, b)

∂a
− b

∂DSH−SA(a, b)
∂b

)

= (a − b)(lna − ln b)

(

1 − a + b
√
2(a2 + b2)

)

.

(3.11)
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By (2.2)we infer that

1 − a + b
√
2(a2 + b2)

≥ 0, (3.12)

so Λ ≥ 0. By Lemma 2.4, we get that DAG−SG is Schur-geometrically convex in R2
+.

(5) For

DN2N1−AH(a, b) = MN2N1(a, b) −
1
8
MAH(a, b)

=

(√
a +

√
b

2

)⎛

⎝

√
a + b

2

⎞

⎠ − 1
4
(a + b) − 1

2

√
ab − 1

8

(
a + b

2
− 2ab
a + b

)
,

(3.13)

we have

∂DN2N1−AH(a, b)
∂a

=
1

4
√
a

√
a + b

2
+
1
4

(√
a +

√
b

2

)(
a + b

2

)−1/2

− 1
4
− b

4
√
ab

− 1
8

(
1
2
− 2b2

(a + b)2

)

,

∂DN2N1−AH(a, b)
∂b

=
1

4
√
b

√
a + b

2
+
1
4

(√
a +

√
b

2

)(
a + b

2

)−1/2

− 1
4
− a

4
√
ab

− 1
8

(
1
2
− 2a2

(a + b)2

)

,

(3.14)

and then

Λ = (lna − ln b)
(
a
∂DN2N1−AH(a, b)

∂a
− b

∂DN2N1−AH(a, b)
∂b

)

=
1
4
(a − b)(lna − ln b)

⎛

⎜
⎝

√
a + b

√
2
(√

a +
√
b
) +

√
a +

√
b√

2
√
a + b

− 5
4
− ab

(a + b)2

⎞

⎟
⎠.

(3.15)

From (2.4)we have

√
a + b

√
2
(√

a +
√
b
) +

√
a +

√
b√

2
√
a + b

− 5
4
− ab

(a + b)2
≥ 0, (3.16)

so Λ ≥ 0; it follows that DN2N1−AH is Schur-geometrically convex in R2
+.
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(6) For

DN2G−N2N1(a, b) =
1
3
MN2G(a, b) −MN2N1(a, b)

=
a + b

4
+

√
ab

6
− 2
3

(√
a +

√
b

2

)⎛

⎝

√
a + b

2

⎞

⎠,

(3.17)

we have

∂DN2G−N2N1(a, b)
∂a

=
1
4
+

b

12
√
ab

− 1
6
√
a

√
a + b

2
− 1
6

(√
a +

√
b

2

)(
a + b

2

)−1/2
,

∂DN2G−N2N1(a, b)
∂b

=
1
4
+

a

12
√
ab

− 1

6
√
b

√
a + b

2
− 1
6

(√
a +

√
b

2

)(
a + b

2

)−1/2
,

(3.18)

and then

Λ = (lna − ln b)
(
a
∂DN2G−N2N1(a, b)

∂a
− b

∂DN2G−N2N1(a, b)
∂b

)

= (lna − ln b)

⎛

⎜
⎝

1
4
(a − b) −

√
a −

√
b

6

√
a + b

2
−
(a − b)

(√
a +

√
b
)

12

(
a + b

2

)−1/2
⎞

⎟
⎠

=
1
6
(a − b)(lna − ln b)

⎛

⎜
⎝

3
2
−

√
a + b

√
2
(√

a +
√
b
) −

√
a +

√
b√

2
√
a + b

⎞

⎟
⎠.

(3.19)

By (2.4) we infer that Λ ≥ 0, which proves that DN2G−N2N1 is Schur-geometrically convex in
R2

+.
(7) For

DAG−N2G(a, b) =
1
4
MAG(a, b) − 1

3
MN2G(a, b)

=
a + b

8
+

1
12

√
ab − 1

3

(√
a +

√
b

2

)⎛

⎝

√
a + b

2

⎞

⎠,

(3.20)

we have

∂DAG−N2G(a, b)
∂a

=
1
8
+

b

24
√
ab

−
√
a + b

12
√
2a

−
√
a +

√
b

12
√
2(a + b)

,

∂DAG−N2G(a, b)
∂b

=
1
8
+

a

24
√
ab

−
√
a + b

12
√
2b

−
√
a +

√
b

12
√
2(a + b)

,

(3.21)



International Journal of Mathematics and Mathematical Sciences 11

and then

Λ = (lna − ln b)
(
a
∂DAG−N2G(a, b)

∂a
− b

∂DAG−N2G(a, b)
∂b

)

= (lna − ln b)

⎛

⎜
⎝

a − b

8
−
√
a + b

(√
a −

√
b
)

12
√
2

−
(a − b)

(√
a +

√
b
)

12
√
2(a + b)

⎞

⎟
⎠

=
(a − b)(lna − ln b)

8

⎛

⎜
⎝1 − 2

3

⎛

⎜
⎝

√
a + b

√
2
(√

a +
√
b
) +

√
a +

√
b√

2
√
a + b

⎞

⎟
⎠

⎞

⎟
⎠.

(3.22)

From (2.4) we have Λ ≥ 0, and, consequently, by Lemma 2.4, we obtain that DAG−N2G is
Schur-geometrically convex in R2

+.
(8) In order to prove that the function DAN2−AG(a, b) is Schur-geometrically convex in

R2
+ it is enough to notice that

DAN2−AG(a, b) = MAN2(a, b) −
1
4
MAG(a, b) = 3DAG−N2G(a, b). (3.23)

(9) For

DSN2−SA(a, b) =
4
5
MSN2(a, b) −MSA(a, b)

=
a + b

2
− 1
5

√
a2 + b2

2
− 1
5

(√
a +
√
b
)√

2(a + b),

(3.24)

we have

∂DSN2−SA(a, b)
∂a

=
1
2
− a

5
√
2(a2 + b2)

− 1
5

√
a + b

2a
−

√
a +

√
b

5
√
2(a + b)

,

∂DSN2−SA(a, b)
∂b

=
1
2
− b

5
√
2(a2 + b2)

− 1
5

√
a + b

2b
−

√
a +

√
b

5
√
2(a + b)

,

(3.25)
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and then

Λ = (lna − ln b)
(
∂DSN2−SA(a, b)

∂a
− ∂DSN2−SA(a, b)

∂b

)

=(lna − ln b)

⎛

⎜
⎝
a − b

2
− a2 − b2

5
√
2(a2 + b2)

− 1
5

⎛

⎝

√
a(a + b)

2
−
√

b(a + b)
2

⎞

⎠−

(√
a +

√
b
)
(a − b)

5
√
2(a + b)

⎞

⎟
⎠

=
(a − b)(lna − ln b)

5
√
2

(
5√
2
− a + b√

a2 + b2
−

√
a + b√
a +

√
b
−
√
a +

√
b√

a + b

)

.

(3.26)

From (2.2) and (2.4) we obtain that

5√
2
− a + b√

a2 + b2
−

√
a + b√
a +

√
b
−
√
a +

√
b√

a + b
≥ 5√

2
−
√
2 − 3√

2
= 0, (3.27)

so Λ ≥ 0, which proves that the function DSN2−SA(a, b) is Schur-geometrically convex in R2
+.

(10) One can easily check that

DANAN2−SN2(a, b) = 4DSN2−SA(a, b), (3.28)

and, consequently, the function DAN2−SN2 is Schur-geometrically convex in R2
+.

(11) To prove that the function

DSN1−SH(a, b) = 2MSN1(a, b) −MSH(a, b) =

√
a2 + b2

2
− a + b

2
−
√
ab +

2ab
a + b

(3.29)

is Schur-geometrically convex in R2
+ it is enough to notice that

DSN1−SH(a, b) = DSG−AH(a, b). (3.30)

(12) For

DSG−SN1(a, b) =
3
2
MSG(a, b) − 2MSN1(a, b)

=
1
2

⎛

⎝a + b −
√
ab −

√
a2 + b2

2

⎞

⎠,

(3.31)
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we have

∂DSG−SN1(a, b)
∂a

=
1
2

(

1 − b

2
√
ab

− a
√
2(a2 + b2)

)

,

∂DSG−SN1(a, b)
∂b

=
1
2

(

1 − a

2
√
ab

− b
√
2(a2 + b2)

)

,

(3.32)

and then

Λ = (lna − ln b)
(
a
∂DSG−SN1(a, b)

∂a
− b

∂DSG−SN1(a, b)
∂b

)

=
(a − b)(lna − ln b)

2

(

1 − a + b
√
2(a2 + b2)

)

.

(3.33)

By the inequality (2.2) we get that Λ ≥ 0, which proves that DSG−SN1 is Schur-
geometrically convex in R2

+.
(13) It is easy to check that

DSN3−SA(a, b) =
1
2
DAG−SG(a, b), (3.34)

which means that the function DSN3−SA is Schur-geometrically convex in R2
+.

(14) To prove that the function DSN1−SN3 is Schur-geometrically convex in R2
+ it is

enough to notice that

DSN1−SN3(a, b) =
1
6
DAG−SG(a, b). (3.35)

The proof of Theorem I is complete.

4. Applications

Applying Theorem I, Lemma 2.6, and Definition 2.2 one can easily prove the following.
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Theorem II. Let 0 < a ≤ b. 1/2 ≤ t ≤ 1 or 0 ≤ t ≤ 1/2, u = atb1−t and v = bta1−t. Then

MSA(a, b) ≤ 1
3
MSH(a, b) −

(
1
3
MSH(u, v) −MSA(u, v)

)
≤ 1

3
MSH(a, b)

≤ 1
2
MAH(a, b) −

(
1
2
MAH(u, v) − 1

3
MSH(u, v)

)
≤ 1

2
MAH(a, b)

≤ 1
2
MSG(a, b) −

(
1
2
MSG(u, v) − 1

2
MAH(u, v)

)
≤ 1

2
MSG(a, b)

≤ MAG(a, b) −
(
MAG(u, v) − 1

2
MSG(u, v)

)
≤ MAG(a, b),

(4.1)

1
8
MAH(a, b) ≤ MN2N1(a, b) −

(
MN2N1(u, v) −

1
8
MAH(u, v)

)
≤ MN2N1(a, b)

≤ 1
3
MN2G(a, b) −

(
1
3
MN2G(u, v) −MN2N1(u, v)

)
≤ 1

3
MN2G(a, b)

≤ 1
4
MAG(a, b) −

(
1
4
MAG(u, v) − 1

3
MN2G(u, v)

)
≤ 1

4
MAG(a, b)

≤ MAN2(a, b) −
(
MAN2(u, v) −

1
4
MAG(u, v)

)
≤ MAN2(a, b),

(4.2)

MSA(a, b) ≤ 4
5
MSN2(a, b) −

(
4
5
MSN2(u, v) −

4
5
MSN2(u, v)

)
≤ 4

5
MSN2(a, b)

≤ 4MAN2(a, b) −
(
4MAN2(u, v) −

4
5
MSN2(u, v)

)
≤ 4MAN2(a, b),

(4.3)

MSH(a, b) ≤ 2MSN1(a, b) − (2MSN1(u, v) −MSH(u, v)) ≤ 2MSN1(a, b)

≤ 3
2
MSG(a, b) −

(
3
2
MSG(u, v) − 3

2
MSG(u, v)

)
≤ 3

2
MSG(a, b),

(4.4)

MSA(a, b) ≤ 3
4
MSN3(a, b) −

(
3
4
MSN3(u, v) −MSA(u, v)

)
≤ 3

4
MSN3(a, b)

≤ 2
3
MSN1(a, b) −

(
2
3
MSN1(u, v) −

3
4
MSN3(u, v)

)
≤ 2

3
MSN1(a, b).

(4.5)

Remark 4.1. Equation (4.1), (4.2), (4.3), (4.4), and (4.5) are a refinement of (1.5), (1.6), (1.7),
(1.8), and (1.9), respectively.
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