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We give another characterization of the annihilator of the space of (dual) harmonic tensors in the
group algebra of symmetric group.

1. Introduction and Preliminaries

Let m,n € N. Let K be an infinite field and V a 2m-dimensional symplectic vector space
over K equipped with a skew bilinear form (, ). The symplectic group Sp(V) acts naturally
on V from the left hand side, and hence on the n-tensor space V*". Let B, = B,(-2m) be
the Brauer algebra over K with canonical generators sy,...,5,-1,€1,...,e,-1 subject to the
following relations:

=1, ef = (-2m)e;, ejsi=siei=¢e;, V1<i<n-1,

SiSj = SjSi, Si€j =ejSi, eijej = eje;, Vi<i< ] -1<n-2,
(1.1)
SiSi+15i = Si+15iSi+1, €i€i+1€i = €j, €i+1€i€iy1 = €iy1, V1 <i<n-2,

Si€ir1€; = Si+1€i, €i+1€iSi+1 = €i415;, V1<i<n-—2.

Note that B, is a K-algebra with dimension 2n-1)!!=(2n-1)-(2n-3)---3-1.

The Brauer algebra was first introduced by Brauer (see [1]) when he studied how
the n-tensor space decomposes into irreducible modules over the orthogonal group or the
symplectic group. There is a right action of B, on V*" which we now recall. Let 6;; denote the
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Kronecker delta. For each integer i with 1 <i < 2m, seti' := 2m + 1 —i. We fix an ordered basis
{0:)7 of V such that

(U,’,Uj) =0= (Uir,v]'r), (U,’, U]‘/) = 5,']' = —(U]‘r,Ui), V1< i,j <m. (1.2)
Foranyi,je {1,2,...,2m},let

1 ifi=j,i<j,
gj=4q-1 ifi=j,i>j, (1.3)
0  otherwise.

For any simple tensor v;, ®- - -®v;, € V*", the right action of B, on V*" is defined on generators
by

(v, ®--®U;,)8j = —(vil ® - ®Uv;, ®Vj;, ®V;; ®Vj, ®---®vin>,

(1.4)

m
(‘(Jil Q- ® v,-n)e]- = iy Uiy Q:--® Vij 4 ® (Z(ka QUL — Uk ® ka)> ® Vij.a ®---®0;,.
k=1

The s; acts as a signed transposition, and e; acts as a signed contraction. It is well known that
the centralizer of the image of the group algebra KSp(V) in Endx (V*") is the image of B,
and vice versa. This fact is called Schur-Weyl duality (see [1-3]).

There is a variant of the above Schur-Weyl duality as we will describe. Let B! be the
two-sided ideal of B,, generated by e;. We set

Wi, = {v e Ve | vx =0, Yx € BY } (1.5)

We call W1, the subspace of harmonic tensors or traceless tensors. It should be pointed out that
this definition coincides with that given in [4] and [11, Section 2.1] by [5, Corollary 2.6]. Note
that B, /B = K&,, the group algebra of the symmetric group &,,.. The right action of B,, on
Ve gives rise to a right action of K&, on Wi ,,. We, therefore, have two natural K-algebra
homomorphisms

@ (KGn)Op — Enszp(v)(Wl,n), [V KSp(V) — EndKGn(WLn). (16)

In [4], De Concini and Strickland proved that the dimension of W;, is independent of the
field K and ¢ is always surjective. Moreover, they showed that ¢ is an isomorphism if m > n.
When m < n, in [4, Theorem 3.5] they also described the kernel of ¢, that is, the annihilator of
W1, in the group algebra K&,,. In this paper, we give another combinatorial characterization
of Ker ¢.

For our aim, we need the notation of dual harmonic tensors. Maliakas in [6] proved
that W7 has a good filtration when m > n by using the theory of rational representations of
symplectic group. He claimed that it is also true for arbitrary m. This claim was proved by Hu



International Journal of Mathematics and Mathematical Sciences 3

in [5] using representations of algebraic groups and canonical bases of quantized enveloping
algebras. Furthermore, [5, Corollary 1.6] shows that

yen
—=Wj, (1.7)
yen Br(ll) n

and, thus, we call V®"/ V®"B,(11) the space of dual harmonic tensors. Therefore, we will only
characterize the annihilator of V®*/V®"B{" in the group algebra KG&,,.

2. The Main Results

In this section, we will give an elementary combinatorial characterization of the annihilator
of ver/venBY in the group algebra K&,,. Besides [4, Theorem 3.5], other characterizations
of such annihilator can be found in [7, Theorem 4.2] and [8, Theorem 1.3]. We would like to
point out that these approaches depend heavily on invariant theory [4] or representation
theory [7, 8]. Therefore, the approach of this paper is more elementary and hence is of
independent interest for studying the action of the Brauer algebra B, (-2m) on n-tensor space
ven,
For convenience, we set

12m,n) = {(i1,...,in) |ij € {1,2,...,2m},Vj}. (2.1)

Foranyi= (i1, -+ ,i,) € I(2m,n), we write v; = v;, ®---®v;,. For i € I(2m, n), an ordered pair
(s,t) (1 <s<t<m)iscalleda symplectic pair in i if i = i;. Two ordered pairs (s, t) and (u,v)
are called disjoint if {s,t} N {u, v} = 0. We define the symplectic length £,(v;) to be the maximal
number of disjoint symplectic pairs (s, t) in i (see [3, Page 198]). Without confusion, we will
adopt the same symbol for the image of the canonical generator s; of the Brauer algebra in
the group algebra K&,,. More or less motivated by the work [9] of Harterich, we have the
following proposition.

Proposition 2.1. For any simple tensor v; € V®" there is viXpy1 € V‘X’”B,(ll), where Xy =
ZWEGWH] w.

Proof. If we have proved the proposition over the base field Q of rational numbers, it can be
restated as a result in Z&,, by restriction since x,,.1 is a Z-linear combination of basis elements
of Z&,,. Applying the specialization functor K®z, we obtain the present statement. Therefore,
we now assume we work on the base field Q.

By the actions of Brauer algebras on n-tensor spaces defined in Section 1, we know that
Xm+1 only acts on the first 7 + 1 components of v;. Hence, we can set n = m + 1 without loss of
the generality. Let v; = v;, ® v;, ® --- @ v;,,. If the (m + 1)-tuple (iy,i2,...,im1) has a repeated
number, for instance, is = i, with s < r, then obviously v;x;.,1 = vi(5,7)Xps1 = —ViXpe1 and
hence v;x,,11 = 0, where (s, ) is a transposition.

Then, we assume that iy,iy,...,im are different from each other. Noting that
dimg V' = 2m, there exists at least one symplectic pair in i. We assume the symplectic length
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gs(vi) =S (1 <s< [(m+1)/2]) and 0 = V1®V2; @UV2® V219 *QUs®V2p—54+1 @Vs1+1 @ *@Up—s+1
without loss of the generality. Then

ViXm+1 = U1 @ U2y @ U2 @ U1 @+ + @ Vs @ Upp—s+1

@ Us+1 ® *+* @ Uppp—s41Xm+1
1
= E(Ul QU -V ®UV) UV QUVy Q-+ ® Vg ® Uy

®UVs+1 ® *** @ U541 Xm+1

m
Zv]v@vj—v]-@vjf UV ® ® Vs ®Vy (2.2)
i=

® Vg @+ ® Uppesi1 Xmsl <mod V®(”‘+1)B211>

m
= Y vev |ev,0u 00U 8y

j=m—s+2

@ UVs+1 ® *+* @ U541 Xm+1-

In the following, the notation = always means equivalence mod V®(’"+1)B$11. We abbreviate
w; for v ® vj, noting that w;(1,2) = -v; ® vj. By the same procedures, we obtain

m
VX1 EWr @ OWy ® (D) Wi ) Wiy @+ @ Wy ® Vi1 @+ @ Vg1 X1,
j=m—s+2
(2.3)
where1 < k < s.
Now we assume for 1 < [ < s that
m m
((l—l)!)vimerley@-”@ Z w;j ®wk/1®~--® Z w;j ®wk’2
j=m—s+2 j=m—s+2
(2.4)

m
ol > w)ewy, ©ews

j=m—s+2

® V541 @+ +* @ Upp—s41Xm+1,
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where the [ — 1 summands Z;"zm,s ., wj appear at the (k; — 1)-th, (ko = 1)-th, ..., (k-1 — 1)-th
positions (1 < k; —1 <k, —1<--- <ki1 —1<s), respectively. We want to prove that

m m
Mvixp1 =wy ®---® Z wj |Qwy ®---® Z wj | ®wy,
jEm=s+2 j=m-s+2
m (2.5)
0| > w)ewge -ows
j=m—s+2

@ Vs41 @+ * @ Upp—s41Xm+1,

where the I summands 37", _,,, w; appear at the (k; —1)-th, (ky—1)-th, ..., (k;—1)-th positions
(I1<ki-1<ky-1<--- <k —1<s), respectively. Without loss of the generality, we only
need to prove it forthecase 1 < kj -1 <k, -1 <---<k;—1 <[ In fact, we have

m m
QI-DNvixpm = Qv @ Z wj | Z w; | ® U1y ® Vs1y
j=m—s+2 j=m—s+2

Q" QU5 ® Vg ® Vg1 @+ ® Upyy—s+1Xm+1

m m
+ dowj)e-el D w |eveuw
j=m—s+2 j=m—s+2

Q- QU ®Vg @ Vg11 @+ ® Upp—s+1Xm+1

m m
= (01®vr +UQUy)® Z wj |- Z w;j
j=m—s+2 j=m—s+2 (26)

® O(1+1) ® O(1+1y @ QU ®Vy ®Vs11 @+ & Upyp—s+1Xm+1

-1 m m m
= Zw]-+ Z wi | ® Z wj |1 Z wi
j=2 j=m—s+2 j=m—s+2 j=m—s+2

® O(1+1) ® O(1+1y @ QUVUs ®Vy ®Vs11 @+ * @ Upyp—s+1Xm+1

m m

—(=-(-DYoixpma+ (D wy oo D w;

j=m—s+2 j=m—s+2

® O(1+1) ® O(1+1y @BV ®Vy ®Vs11 O+ & Upyp—s+1Xim+1,

where the last equivalence follows from the induction hypothesis and the fact w;(1,2) =
-v; ® vj. Hence, we have proved what we desired.
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As a consequence, we immediately get that

m m
(8N vixme = < Z w]-> R ® < Z w]-> ® Vg1 @+ * @ Uppesi1 Xyl - (2.7)

j=m-s+2 j=m-s+2

However, m — (m — s + 1) = s — 1, there must exists a repeated w; in the right hand side
of the above equivalence when written as a linear combination of simple tensors. Therefore,
ViXmi1 = 0. ]

Theorem 2.2. The annihilator of the space V*"/ yenpd of dual harmonic tensors in the group
algebra K&, is the principal ideal {X41).

Proof. We denote Ann(V*®"/ venBY) as the annihilator of the space V*®"/ venBY of dual
harmonic tensors in the group algebra K&,,. It follows from Proposition 2.1 that

®n
(xme1) C ADII<V—(1)> (2.8)
V®an

On the other hand, by the work of [10], we know that

(X)) = K - 'span{mjt | AFn,€(0) > m, s teStd(d) } (2.9)

where each mif,t is the Murphy basis element in [10], and Std(\) denotes the set of standard
A-tableaux with entries in {1,2,...,n}. In particular, [5, Theorem 1.8] shows that (see also

[4])

dimg (K1) = > <dimKS)‘>2
An,(A)>m

' V®n
= dimg Q&,, - End@sp(V) (1)
V®an

V®Tl
= dimg K&, — Endksp(v)

venp)
n
= dimg Ann v ,
venB()

where S* denotes the Specht module of K&, associated to A. This completes the proof of the
theorem. O

(2.10)

Let Bflf ) be the two-sided ideal of B, generated by eje3---exf1 with 1 < f < [n/2]. Let
Xm+1 € By, be the element defined in [7, Page 2912]. We end this note by a conjecture which is
connected with the invariant theory of classical groups (see [11, 12]).
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Conjecture 2.3. The annihilator of the space V®"/ V®"B,(1f ) of dual partially harmonic tensors of
valence f in the algebra B,/ Bilf Vis the principal ideal (X1 + Bﬁlf ) ).
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