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We give another characterization of the annihilator of the space of (dual) harmonic tensors in the
group algebra of symmetric group.

1. Introduction and Preliminaries

Let m,n ∈ N. Let K be an infinite field and V a 2m-dimensional symplectic vector space
over K equipped with a skew bilinear form ( , ). The symplectic group Sp(V ) acts naturally
on V from the left hand side, and hence on the n-tensor space V ⊗n. Let Bn = Bn(−2m) be
the Brauer algebra over K with canonical generators s1, . . . , sn−1, e1, . . . , en−1 subject to the
following relations:

s2i = 1, e2i = (−2m)ei, eisi = siei = ei, ∀1 ≤ i ≤ n − 1,

sisj = sjsi, siej = ejsi, eiej = ejei, ∀1 ≤ i < j − 1 ≤ n − 2,

sisi+1si = si+1sisi+1, eiei+1ei = ei, ei+1eiei+1 = ei+1, ∀1 ≤ i ≤ n − 2,

siei+1ei = si+1ei, ei+1eisi+1 = ei+1si, ∀1 ≤ i ≤ n − 2.

(1.1)

Note that Bn is a K-algebra with dimension (2n − 1)!! = (2n − 1) · (2n − 3) · · · 3 · 1.
The Brauer algebra was first introduced by Brauer (see [1]) when he studied how

the n-tensor space decomposes into irreducible modules over the orthogonal group or the
symplectic group. There is a right action of Bn on V ⊗n which we now recall. Let δij denote the
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Kronecker delta. For each integer iwith 1 ≤ i ≤ 2m, set i′ := 2m+ 1− i. We fix an ordered basis
{vi}2mi=1 of V such that

(
vi, vj

)
= 0 =

(
vi′ , vj ′

)
,
(
vi, vj ′

)
= δij = −(vj ′ , vi

)
, ∀1 ≤ i, j ≤ m. (1.2)

For any i, j ∈ {1, 2, . . . , 2m}, let

εi,j :=

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = j ′, i < j,
−1 if i = j ′, i > j,
0 otherwise.

(1.3)

For any simple tensor vi1⊗· · ·⊗vin ∈ V ⊗n, the right action of Bn on V ⊗n is defined on generators
by

(vi1 ⊗ · · · ⊗ vin)sj := −
(
vi1 ⊗ · · · ⊗ vij−i ⊗ vij+1 ⊗ vij ⊗ vij+2 ⊗ · · · ⊗ vin

)
,

(vi1 ⊗ · · · ⊗ vin)ej := εij ,ij+1vi1 ⊗ · · · ⊗ vij−1 ⊗
(

m∑

k=1

(vk′ ⊗ vk − vk ⊗ vk′)
)

⊗ vij+2 ⊗ · · · ⊗ vin .
(1.4)

The sj acts as a signed transposition, and ej acts as a signed contraction. It is well known that
the centralizer of the image of the group algebra KSp(V ) in EndK(V ⊗n) is the image of Bn
and vice versa. This fact is called Schur-Weyl duality (see [1–3]).

There is a variant of the above Schur-Weyl duality as we will describe. Let B(1)
n be the

two-sided ideal of Bn generated by e1. We set

W1,n :=
{
v ∈ V ⊗n | vx = 0, ∀x ∈ B(1)

n

}
. (1.5)

We callW1,n the subspace of harmonic tensors or traceless tensors. It should be pointed out that
this definition coincides with that given in [4] and [11, Section 2.1] by [5, Corollary 2.6]. Note
that Bn/B

(1)
n

∼= KSn, the group algebra of the symmetric group Sn. The right action of Bn on
V ⊗n gives rise to a right action of KSn on W1,n. We, therefore, have two natural K-algebra
homomorphisms

ϕ : (KSn)op −→ EndKSp(V )(W1,n), ψ : KSp(V ) −→ EndKSn(W1,n). (1.6)

In [4], De Concini and Strickland proved that the dimension of W1,n is independent of the
fieldK and ϕ is always surjective. Moreover, they showed that ϕ is an isomorphism ifm ≥ n.
Whenm < n, in [4, Theorem 3.5] they also described the kernel of ϕ, that is, the annihilator of
W1,n in the group algebraKSn. In this paper, we give another combinatorial characterization
of Kerϕ.

For our aim, we need the notation of dual harmonic tensors. Maliakas in [6] proved
thatW∗

1,n has a good filtration when m ≥ n by using the theory of rational representations of
symplectic group. He claimed that it is also true for arbitrarym. This claimwas proved by Hu
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in [5] using representations of algebraic groups and canonical bases of quantized enveloping
algebras. Furthermore, [5, Corollary 1.6] shows that

V ⊗n

V ⊗nB(1)
n

∼=W∗
1,n, (1.7)

and, thus, we call V ⊗n/V ⊗nB(1)
n the space of dual harmonic tensors. Therefore, we will only

characterize the annihilator of V ⊗n/V ⊗nB(1)
n in the group algebra KSn.

2. The Main Results

In this section, we will give an elementary combinatorial characterization of the annihilator
of V ⊗n/V ⊗nB(1)

n in the group algebra KSn. Besides [4, Theorem 3.5], other characterizations
of such annihilator can be found in [7, Theorem 4.2] and [8, Theorem 1.3]. We would like to
point out that these approaches depend heavily on invariant theory [4] or representation
theory [7, 8]. Therefore, the approach of this paper is more elementary and hence is of
independent interest for studying the action of the Brauer algebra Bn(−2m) on n-tensor space
V ⊗n.

For convenience, we set

I(2m,n) :=
{
(i1, . . . , in) | ij ∈ {1, 2, . . . , 2m}, ∀j}. (2.1)

For any i = (i1, · · · , in) ∈ I(2m,n), we write vi = vi1 ⊗ · · · ⊗vin . For i ∈ I(2m,n), an ordered pair
(s, t) (1 ≤ s < t ≤ n) is called a symplectic pair in i if is = i′t. Two ordered pairs (s, t) and (u, v)
are called disjoint if {s, t}∩{u, v} = ∅. We define the symplectic length �s(vi) to be the maximal
number of disjoint symplectic pairs (s, t) in i (see [3, Page 198]). Without confusion, we will
adopt the same symbol for the image of the canonical generator si of the Brauer algebra in
the group algebra KSn. More or less motivated by the work [9] of Härterich, we have the
following proposition.

Proposition 2.1. For any simple tensor vi ∈ V ⊗n there is vixm+1 ∈ V ⊗nB(1)
n , where xm+1 =∑

w∈Sm+1
w.

Proof. If we have proved the proposition over the base field Q of rational numbers, it can be
restated as a result in ZSn by restriction since xm+1 is a Z-linear combination of basis elements
of ZSn. Applying the specialization functorK⊗Z, we obtain the present statement. Therefore,
we now assume we work on the base field Q.

By the actions of Brauer algebras on n-tensor spaces defined in Section 1, we know that
xm+1 only acts on the firstm+ 1 components of vi. Hence, we can set n = m+ 1 without loss of
the generality. Let vi = vi1 ⊗ vi2 ⊗ · · · ⊗ vim+1 . If the (m + 1)-tuple (i1, i2, . . . , im+1) has a repeated
number, for instance, is = ir with s < r, then obviously vixm+1 = vi(s, r)xm+1 = −vixm+1 and
hence vixm+1 = 0, where (s, r) is a transposition.

Then, we assume that i1, i2, . . . , im+1 are different from each other. Noting that
dimQ V = 2m, there exists at least one symplectic pair in i. We assume the symplectic length
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�s(vi) = s (1 ≤ s ≤ [(m+1)/2]) and vi = v1⊗v2m⊗v2⊗v2m−1⊗· · ·⊗vs⊗v2m−s+1⊗vs+1⊗· · ·⊗vm−s+1
without loss of the generality. Then

vixm+1 = v1 ⊗ v2m ⊗ v2 ⊗ v2m−1 ⊗ · · · ⊗ vs ⊗ v2m−s+1

⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1

=
1
2
(v1 ⊗ v1′ − v1′ ⊗ v1) ⊗ v2 ⊗ v2′ ⊗ · · · ⊗ vs ⊗ vs′

⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1

≡ 1
2

⎛

⎝
m∑

j=2

vj ′ ⊗ vj − vj ⊗ vj ′
⎞

⎠ ⊗ v2 ⊗ v2′ ⊗ · · · ⊗ vs ⊗ vs′

⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1

(
mod V ⊗(m+1)B

(1)
m+1

)

=

⎛

⎝
m∑

j=m−s+2
vj ′ ⊗ vj

⎞

⎠ ⊗ v2 ⊗ v2′ ⊗ · · · ⊗ vs ⊗ vs′

⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1.

(2.2)

In the following, the notation ≡ always means equivalence modV ⊗(m+1)B
(1)
m+1. We abbreviate

wj for vj ′ ⊗ vj , noting that wj(1, 2) = −vj ⊗ vj ′ . By the same procedures, we obtain

vixm+1 ≡ w1′ ⊗ · · · ⊗w(k−1)′ ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗w(k+1)′ ⊗ · · · ⊗ws′ ⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1,

(2.3)

where 1 ≤ k ≤ s.
Now we assume for 1 < l ≤ s that

((l − 1)!)vixm+1 ≡ w1′ ⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗wk′1 ⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗wk′2

⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗wk′(l−1)
⊗ · · · ⊗ws′

⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1,

(2.4)
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where the l − 1 summands
∑m

j=m−s+2wj appear at the (k1 − 1)-th, (k2 − 1)-th, . . ., (kl−1 − 1)-th
positions (1 ≤ k1 − 1 < k2 − 1 < · · · < kl−1 − 1 ≤ s), respectively. We want to prove that

(l!)vixm+1 ≡ w1′ ⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗wk′1 ⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗wk′2

⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗wk′
l
⊗ · · · ⊗ws′

⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1,

(2.5)

where the l summands
∑m

j=m−s+2wj appear at the (k1−1)-th, (k2−1)-th, . . ., (kl−1)-th positions
(1 ≤ k1 − 1 < k2 − 1 < · · · < kl − 1 ≤ s), respectively. Without loss of the generality, we only
need to prove it for the case 1 ≤ k1 − 1 < k2 − 1 < · · · < kl − 1 ≤ l. In fact, we have

(2(l − 1)!)vixm+1 ≡ v1 ⊗ v1′ ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗ v(l+1) ⊗ v(l+1)′

⊗ · · · ⊗ vs ⊗ vs′ ⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1

+

⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗ vl ⊗ vl′

⊗ · · · ⊗ vs ⊗ vs′ ⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1

= (v1 ⊗ v1′ + vl ⊗ vl′) ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠

⊗ v(l+1) ⊗ v(l+1)′ ⊗ · · · ⊗ vs ⊗ vs′ ⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1

≡
⎛

⎝
l−1∑

j=2

wj +
m∑

j=m−s+2
wj

⎞

⎠ ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠

⊗ v(l+1) ⊗ v(l+1)′ ⊗ · · · ⊗ vs ⊗ vs′ ⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1

≡ − (l − 2)((l − 1)!)vixm+1 +

⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠

⊗ v(l+1) ⊗ v(l+1)′ ⊗ · · · ⊗ vs ⊗ vs′ ⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1,

(2.6)

where the last equivalence follows from the induction hypothesis and the fact wj(1, 2) =
−vj ⊗ vj ′ . Hence, we have proved what we desired.
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As a consequence, we immediately get that

(s!)vixm+1 ≡
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗ · · · ⊗
⎛

⎝
m∑

j=m−s+2
wj

⎞

⎠ ⊗ vs+1 ⊗ · · · ⊗ vm−s+1xm+1. (2.7)

However, m − (m − s + 1) = s − 1, there must exists a repeated wj in the right hand side
of the above equivalence when written as a linear combination of simple tensors. Therefore,
vixm+1 ≡ 0.

Theorem 2.2. The annihilator of the space V ⊗n/V ⊗nB(1)
n of dual harmonic tensors in the group

algebra KSn is the principal ideal 〈xm+1〉.

Proof. We denote Ann(V ⊗n/V ⊗nB(1)
n ) as the annihilator of the space V ⊗n/V ⊗nB(1)

n of dual
harmonic tensors in the group algebra KSn. It follows from Proposition 2.1 that

〈xm+1〉 ⊆ Ann

(
V ⊗n

V ⊗nB(1)
n

)

. (2.8)

On the other hand, by the work of [10], we know that

〈xm+1〉 = K − Span
{
mλ

s,t | λ � n, �(λ) > m, s, t ∈ Std(λ)
}
, (2.9)

where each mλ
s,t is the Murphy basis element in [10], and Std(λ) denotes the set of standard

λ-tableaux with entries in {1, 2, . . . , n}. In particular, [5, Theorem 1.8] shows that (see also
[4])

dimK〈xm+1〉 =
∑

λ�n,�(λ)>m

(
dimKS

λ
)2

= dimQ QSn − EndQSp(V )

(
V ⊗n

V ⊗nB(1)
n

)

= dimK KSn − EndKSp(V )

(
V ⊗n

V ⊗nB(1)
n

)

= dimK Ann

(
V ⊗n

V ⊗nB(1)
n

)

,

(2.10)

where Sλ denotes the Specht module of KSn associated to λ. This completes the proof of the
theorem.

Let B(f)
n be the two-sided ideal of Bn generated by e1e3 · · · e2f−1 with 1 ≤ f ≤ [n/2]. Let

Xm+1 ∈ Bn be the element defined in [7, Page 2912]. We end this note by a conjecture which is
connected with the invariant theory of classical groups (see [11, 12]).
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Conjecture 2.3. The annihilator of the space V ⊗n/V ⊗nB(f)
n of dual partially harmonic tensors of

valence f in the algebra Bn/B
(f)
n is the principal ideal 〈Xm+1 + B

(f)
n 〉.
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