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We develop the local theory of surfaces immersed in the pseudo-Galilean space, a special type
of Cayley-Klein spaces. We define principal, Gaussian, and mean curvatures. By this, the general
setting for study of surfaces of constant curvature in the pseudo-Galilean space is provided. We
describe surfaces of revolution of constant curvature. We introduce special local coordinates for
surfaces of constant curvature, so-called the Tchebyshev coordinates, and show that the angle
between parametric curves satisfies the Klein-Gordon partial differential equation. We determine
the Tchebyshev coordinates for surfaces of revolution and construct a surface with constant
curvature from a particular solution of the Klein-Gordon equation.

1. Introduction

Study of differential geometry of curves and surfaces in Euclidean, as well as in other non-
Euclidean ambient spaces, has a long history. Classical context of the Euclidean space is a
source of results which could be transferred to some other geometries. One way of defining
new geometries is through Cayley-Klein spaces. They are defined as projective spaces D, (R)
with an absolute figure, a subset of D, (R) consisting of a sequence of quadrics and planes [1].
Projectivities of the projective space ,(R) which leave invariant the absolute figure define
the subgroup of projectivities called the group of motions of a Cayley-Klein space. By means
of the absolute figure, metric relations are also defined and they are invariant under the group
of motions.

In three-dimensional projective space P3(R) various types of Cayley-Klein spaces
can be defined, such as elliptic and hyperbolic space, Euclidean and pseudo-Euclidean
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(Minkowski) space, simple and double isotropic space, Galilean and pseudo-Galilean space,
and quasielliptic and quasihyperbolic space. General theory of differential geometry of
curves and surfaces in Cayley-Klein spaces can be found in [1]. Foundations of these areas in
the pseudo-Galilean space were established in [2], as well as in the papers [3-7]. Geometry
of the Galilean space G3 was studied in [8-11]. The four-dimensional Galilean space appears
in connection with classical Newtonian mechanics, where first coordinate describes time and
other three coordinates are space coordinates.

The main interest of this paper is to develop the local theory of surfaces in the pseudo-
Galilean space and to study surfaces of constant curvatures. As in the Minkowski space
[12], two classes of surfaces are introduced, spacelike and timelike surfaces, and for them
the Gaussian curvature is defined. The obtained results are compared to the well-known
results in the Euclidean and Minkowski geometry. The results can easily be transferred to the
Galilean space. Furthermore, we define the Tchebyshev coordinates on a surface and show
that the asymptotic lines form the Tchebyshev net if and only if this surface is a spacelike
surface of constant negative curvature or timelike surface of constant positive curvature.
We study the angle between the Tchebyshev curves on a surface of constant curvature and
show that the angle satisfies the Klein-Gordon partial differential equation. In this respect,
the Klein-Gordon equation plays the analogous role in the pseudo-Galilean space as the
sine-Gordon equation in Euclidean space. We construct a surface with constant Gaussian
curvature from a known solution of a Klein-Gordon equation. Similar problem is treated in
[13] for the Galilean space and in wider context in [14] by means of Cartan frames.

2. Preliminaries

The absolute figure of the pseudo-Galilean space is the ordered triple {cw, f,I}, where w is
the ideal (absolute) plane in the real three-dimensional projective space D3(R), f the line
(absolute line) in w, and I the fixed hyperbolic involution of points of f. Homogeneous
coordinates in G} are introduced in such a way that the absolute plane w is given by xq = 0,
the absolute line f by xy = x; = 0, and the hyperbolic involution by (0 : 0: x7 : x3) — (0 :
0 : x3 : x2). The last condition is equivalent to the requirement that the conic x3 — x5 = 0
is the absolute conic. Metric relations are introduced with respect to the absolute figure. In
affine coordinates defined by (xg : x1 : x2 : x3) = (1 : x : y : z), distance between points
P; = (xi,vi,zi), i =1,2,is defined by

22 = x1], if x1 #x2,

b, P,) = \/

The group of motions of G; is a six-parameter group given (in affine coordinates) by

2| . (2.1)
(yz - y1)2 —(z2—2z1) |, if x1=x3.

X=a+x,

Yy cx +ycoshy + zsinh g, (2.2)

b+
z=d+ex+ysinhg+ zcoshe.

It leaves invariant the absolute figure as well as the pseudo-Galilean distance (2.1) of points.
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In the pseudo-Galilean space, a vector is called isotropic if it is of the form (0, vy, z).
Among these vectors, there are also vectors with supplementary norm 4/|y? — z2| equal to

zero; they are called lightlike vectors. Isotropic vectors satisfying y? — z2 > 0 are said to be
spacelike vectors and vectors satisfying y* — z? < 0 timelike vectors. A plane of the form x =
const. is called a pseudo-Euclidean plane (since its induced geometry is pseudo-Euclidean,
i.e.,, Minkowski plane geometry), otherwise it is called isotropic (since its induced geometry
is isotropic, i.e., Galilean plane geometry). In the pseudo-Euclidean plane distance between
points P;, i = 1,2, given by their affine coordinates P; = (x;, ;) is defined by

d(P, P) = \/| (x2—x1)* = (y2 - y1)2|, (2.3)
while in the isotropic plane

|XQ—X1|, if x; # X2,

(2.4)
|y2 -

d(P, ) = {

, if x1 = x.

The pseudo-Galilean space Gj can be also regarded as a Cayley-Klein space equipped
with the projective metric of signature (0,0,+,—-), as explained in [15]. According to the
description of the Cayley-Klein spaces in [1], it is denoted by P131|001 and also called the
Galilean space of index 1.

3. The Gaussian Curvature of Surfaces in G;

We will treat a C"-surface, r > 2, as a subset @ C Gé for which there exists an open subset D of
R? and C"-mapping x : D — G; satisfying ® = x(D). A C"-surface ® C G} is called regular if
x is an immersion and simple if x is an embedding. It is admissible if it does not have pseudo-
Euclidean tangent planes. Let us denote x = x(x(u1, u2), y(u1, uz), z(u1,u2)), x; = 0x/0u;,
yi=0y/0u;, z; = 0z/0u;, i = 1,2. Then a surface is admissible if and only if x; #0, for some
i=1,2. If we assume

X1 Ya

0, 3.1
%o ya|” (3.1)

then such a surface is admissible and can be locally expressed in the form
z =z(x,y). (3.2)

Let @ C G} be a regular admissible surface. We define a side tangential vector by

1
o= W(x,1x,2 - X2X1). (3.3)
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The vector o is a vector in a tangent plane and we assume that it is not an isotropic lightlike
vector, but a unit isotropic spacelike or timelike vector. The function W, W > 0, defined by

W= \/‘ (x1y2 = x2y1)" = (X122 — X021)°), (34)

is equal to the pseudo-Galilean norm of the isotropic vector x 1x, — xx 1. In particular, in the
parametrization (3.2) we have

1
G:W(O,l,z,y), W =14/|1-23]| (3.5)

In the following, we will not consider surfaces with W = 0, that is, surfaces having lightlike
side tangential vectors (lightlike surfaces).

In a tangent plane in a point Py of a regular admissible surface, there is a unique
isotropic direction defined by the condition x ;du +x,du, = 0. This isotropic line in a tangent
plane in a point P, of the surface meets the absolute line f in a point S. If we denote by S* a
point on f obtained from S by the hyperbolic involution I, then a line connecting Py and S*
is perpendicular to the tangent plane. Therefore a unit surface normal field is defined by

1
N = W (0,x122 = X221, X1y — x,zy,1). (3.6)

We introduce a pseudo-Galilean cross-product in the following way:

0 —€r €3
axgb=|ay ay az|, (3.7)
by b, by

where e; = (0,1,0), e3 = (0,0,1), e, is a unit spacelike, and e;3 is a unit timelike vector, a =
(a1, az,a3), b = (by, by, bs). Now we can write

1
N = WX X6 X (3.8)

which for (3.2) turns to N = (1/W)(0, z,, 1). Furthermore, we can notice that the pseudo-
Galilean cross product can be defined by means of the pseudo-Galilean scalar product so that
a x¢ b is the isotropic vector defined by the relation

(a xg b) - c=—det(a,b,?), (3.9)

for any vector c. By ~ above a vector, the projection of a vector on the pseudo-Euclidean yz-
plane is denoted and by - the pseudo-Euclidean scalar product in the same plane, (y1,12) -
(z1,22) = Y1z1 — Y222.

Obviously the following proposition holds.
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Proposition 3.1. The side tangential vector o and the normal vector N are unit isotropic vectors that

satisfy

0-N=0, N?:=e=41, o’ = —e. (3.10)

Since the normal vector field satisfies N-N = e = 1, we distinguish two basic types of
admissible surfaces: spacelike surfaces having timelike surface normals (¢ = ~1) and timelike
surfaces having spacelike normals (e = 1). A surface is spacelike if (x1x2 — x2%1)* = (x1y2 —
xlgy,1)2 —(x1z9 — x,ZZ,l)z > 0 in all of its points, timelike otherwise. In the parametrization
(3.2) a surface is spacelike if 1 - zlzy > 0.

The first fundamental form of a surface is induced from the metric of the ambient space

G;
ds? = (x1dug + xpduy)? + 6(X1duy + X pduy)?, (3.11)
where
5= {O, %f d%rect%on duy : duy %s .nonisot'ropic, (3.12)
1, ifdirection du; : duy is isotropic.
We introduce the fundamental coefficients
g=x, hj=%;-%;, i,j=12, (3.13)
by which the first fundamental form can be written as
ds? = (gid + godir)” + 6 (hirdud + 2o duy + handud ). (3.14)

Notice again that the indices i or ij on variables denote different symbols, whereas indices, i
or, i, j denote the partial derivatives with respect to the ith and jth parameter. Furthermore
hij = hji, &ij = i i=1,2.

Now the function W has the form

W? = —e(gix2 - g2x1)°
(3.15)
= —€<g12h22 - 2g1&h12 + g22h11> >0,

and the surface is spacelike if glzhzz -2gq1gh1 + g%hn > 0, timelike otherwise. We can notice
that if a surface is spacelike, both parts of the first fundamental form, ds% = (g1duy + gzdu2)2
and

WZ
ds% = hndu% + 2h1pdudus + h22du§ = —€—2du§, Q7 0, (3.16)
1



6 International Journal of Mathematics and Mathematical Sciences

\\\\\\\\\\\\\\

2

\\\\\

o

.

////%//
.

N\ N

7
////
////

/
_
7
.
%)
.

y
y
//
%
_
.
I,

Z////
////
///

7
7

\\ X
N

RN
T

Vo v

NI

\\\\\\\\\\\\ﬁ““*‘&““i&:&\“@i\\\@\\
A
N

K
nakkk

%

\
N

Y
W

%,

.

NN

%
7

%,

Figure 1: Lightlike planes, a spacelike and a timelike hyperbolic sphere.

are positive definite, while for the timelike surfaces, the form ds% is positive definite whereas
ds% is negative definite. We have assumed here, without loss of generality, g1 # 0. In the latter
case this means that the matrix of the first fundamental form

ds? 0
(4 2) -

is indefinite, analogously to the timelike surfaces in the Minkowski space R} [12].
In particular, for the parametrization (3.2) we have

dszzdx2+5(1—z§)dy% (3.18)

since dx = 0 when 6 = 1.

Example 3.2. Hyperbolic cylinders z?> — y> = R* (y* - z> = R?) are surfaces which are
everywhere spacelike (timelike). They are spheres of the space G}, called hyperbolic spheres.
Planes y? — z* = 0 are everywhere lightlike surfaces, see Figure 1.

The Gaussian curvature of a surface is defined by means of the coefficients of the
second fundamental form L;j, i,j = 1,2, which are the normal components of x;;, i = 1,2,
respectively. If we put

2
xM=me+MN (3.19)
k=1

then the following proposition follows.
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Proposition 3.3. One has
1 - - 1 - -
Lij=e o (§1%i = &ijX1) N = ‘ ($2Xij — gijX2) N, (3.20)

Proof. The first coordinate of (3.19) is given by

8ij =&+ T8 (321)
Under assumption g; #0 we have
i — T2
oo 89 8 (3.22)
ij <1
and therefore (3.19) turns to
1 2
X = o (gi,,x,1 + Wl“i].0> +LyN. (3.23)

From (3.23) it follows that g1x;; — ;X1 is an isotropic vector equal to WI“I.ZI.O' + L;jg1N. The
coefficients L;; are obtained by scalar multiplication by N. O

In particular, for the parametrization (3.2) we have

1 1 1 1
L= €w(0, 0,2xx) (0,2,,1) = AT Lip = —eq7 Ly = —E

(3.24)

Functions Fl’.‘j defined by (3.19) are called the Christoffel symbols of the second kind.
Now we can prove the following proposition.

Proposition 3.4. Derivatives of the side tangential vector o and the normal vector N are given by

0 1
O, = a—uiO' = W(glLiz _gZLli)N-
(3.25)

1 .
N, = W(glLiz -gLi)o, i=1,2

Proof. Vectors o; and N; are isotropic vectors and therefore can be expressed as linear
combinations of ¢ and N. Since N? := ¢ = +1, 0> = —e it follows N-N; = 0,0 -0; = 0.
Also 0;-N + 0 - N; = 0. Having a pseudoscalar product in the isotropic plane, we conclude
o;=fN,N; = fo, for a C"-function f,r > 1.

Now, from the definition of o it follows that

o;= <%>l X — (5—5,)1 X1+ %X,Z,i - %X,u- (3.26)
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By using (3.19) it is easy to show that the component by N of ¢; is equal to (1/W)(g1L —
oLy). ]

We will define the Gaussian curvature K as the product of principal curvatures, the
normal curvatures in the principal direction. The principal directions are tangent directions
of a curve ¢ on a surface along which the normal field of the surface determines developable
ruled surface, that is, det(¢,N,N) = 0. This property characterizes principal directions in
Euclidean space [16].

Proposition 3.5. The principal directions on a regular admissible surface ® are given by
g1 duy +g,dup =0 (3.27)
(the isotropic direction) and
(g2L11 — g1L12) duq + (g,L12 — g1 L22) dup = 0. (3.28)

Proof. Let c(t) = (x(t),y(t), z(t)) be a curve on a surface @. Since N, N are isotropic vectors,
det(¢,N,N) = 0 if and only if x = x1du; + xpdu, = 0 which gives (3.27) or det(N, N) =0
which by using Proposition 3.4 gives (3.28). O

The principal curvature is given in the next proposition.
Proposition 3.6. The principal curvature ky for the direction (3.27) is given by

e Liig) - 2Lingigr + Lng; (3.29)

ki = W2

and the principal curvature ky for the direction (3.28) by

LiiLy - L3,

ko= —— .
L11g; —2L12g18 + Loz gy

(3.30)

Proof. Principal curvatures are calculated from k = I1/I, where II = Lndu% + 2L 1pdudusy +
Lzzdué is the second and I = ds? the first fundamental form. Therefore, for the direction (3.27)
we have

_ Lndu% + 2L12du1du2 + Lzzdu%

k= 2 2
hndul + 2h12du1du2 + hzzduz

(3.31)
B Li1g3 —2L1ng1g + Log? B L11g5 —2L1ng19 + Lo gt

- hi1g7 — 2h1219 + hng? w2
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and for the direction (3.28)

_ Lndu% + 2L12du1du2 + Lzzdug

k> 5
(gldul + gzduz) (3 32)
B LiiLy - L3,
L11g5 —2L1219 + Lo gt
O
The Gaussian curvature of a regular admissible surface is defined by
LuLy -1
K = kik, = —eT“ (3.33)
or for (3.2)
2
ZxxZyy ~ Zay
K=o T, (3.34)
The mean curvature of a surface is defined by
H=-—— <82L11 —2g18Ln + 82L22> - (3.35)
2W2\°? ! 27
and for (3.2) it turns to
€
= Wzly,y. (336)

Such definition of H is motivated by Proposition 3.7

The third fundamental form II1 is introduced in the analogous way as in Euclidean
space. Since N is a unit isotropic field along ®, the end points of its associated position vectors
lie on a hyperbolic unit sphere. More precisely, if N is a timelike (spacelike) field, that is, if a
surface is spacelike (timelike), then the end points of associated position vectors of N lie on a
unit spacelike sphere z? — y? = 1 (unit timelike sphere y? — z> = 1), see Figure 1. The obtained
mapping is called the Gauss map (the spherical map); the set of all end points of N is called
the spherical image of a surface. The third fundamental form is the first fundamental form of
the spherical image. Therefore it is defined by

I1I = dN-dN = (N, du; + Ndu)®
(3.37)
= Nidu; + 2N - Npduydu, + N5duj,
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where

€
Ni= - w2 <g§L§1 ~ 28182l + gfLﬁ),
€
Ni-N2= -7 <g§L11L12 - 8182 <L11L22 * Li) " gllezL22>' (339)

€
N,ZZ = - <g§L%2 =2¢19 L2l + gngz)-

Particularly, for (3.2) we have N = (1/W)(0,z,,1), and

Zy\? 1\?2 1 2
III=-ef d W -d W =—€ W(Z'x'ydx-'-z’y'ydy) . (3.39)

By a simple computation we can notice that the following relation holds.
Proposition 3.7. Onehas K I -2H II + III =0.

Theorem 3.8. Minimal surfaces in a pseudo-Galielan space G} are ruled conoidal surfaces, that is,
they are cones with vertices on the absolute line or ruled surfaces with the absolute line as a director
curve in infinity.

Proof. We define a normal section in a point of a surface as a plane curve obtained as a section
of the surface by a pseudo-Euclidean plane. It can be shown that the curvature of a normal
section (parametrized by the arc-length) as a curve in a pseudo-Euclidean plane is x* = k.
This is obtained from the fact that, for a curve c(t) = x(u(t), v(t)) parametrized by the arc
length, tangent vector field ¢'(t) is equal to the side tangential field o, and therefore ¢"(t) =
kiN.

Furthermore, x* = 0 if and only if a curve is a line in the pseudo-Euclidean plane, and
therefore c(t) is an isotropic line in Gé. Since H = ki/2, the assertion follows. O

4. Surfaces of Revolution

In the pseudo-Galilean space Gj there are two types of rotations: pseudo-Euclidean rotations
given by the normal form

cosht + zsinht, (4.1)

Y
z = ysinht + zcosht
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and isotropic rotations with the normal form

x(t) = x + bt,

t2
y(t)=y+xt+ bE’ (4.2)
z(t) = z,

where t € R and b = const > 0.
The trajectory of a single point under a pseudo-Euclidean rotation is a pseudo-
Euclidean circle (i.e., a rectangular hyperbola)

x = const., y2 -z2=R?, ReR. (4.3)

The invariant R is the radius of the circle. Pseudo-Euclidean circles intersect the absolute line
f in the fixed points of the hyperbolic involution (Fj, F). There are three kinds of pseudo-
Euclidean circles: circles of real radius, of imaginary radius, and of radius zero. Circles of
real radius are timelike curves (having timelike tangent vectors) and of imaginary radius
spacelike curves (having spacelike tangent vectors).

The trajectory of a point under the isotropic rotation is an isotropic circle whose normal
form is

z = const., Y= (4.4)

The invariant b is the radius of the circle. The fixed line of the isotropic rotations (4.2) is the
absolute line f.

By rotating a nonisotropic curve u — (f(u),g(u),0), g > 0, around the x-axis by
pseudo-Euclidean rotations, we obtain a timelike surface

x(u,v) = (f(u), g(u) coshv, g(u) sinhv), (4.5)

and by rotating a curve u — (f(u),0,g(u)), g > 0, around the x-axis, we obtain a spacelike
surface

x(u,v) = (f (u), g(u) sinh v, g(u) coshv). (4.6)

The Gaussian curvature of these surfaces is given by K = —e(g'/f")' (1/f'g) or if we
assume that the rotated curve is parametrized by the arc length u, u — (u, g(u),0) (u —

(u,0,g(u))) by

K=-e5. (4.7)
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Therefore, surfaces with constant curvature Ky are described by the ordinary differ-
ential equation

¢"+€eKog=0, Kj=const. (4.8)
Their implicit equation is
v -2 = eg’(x) (4.9)
and the first fundamental form
ds? = du® - 64 (u)dv?. (4.10)
The following theorem holds.

Theorem 4.1. The profile curve of surfaces of revolution of constant Gaussian curvature in pseudo-
Galilean space is as follows.

(1) IfK = —€1/a? (i.e., K = 1/ a? for spacelike surfaces and K = —1/ a® for timelike surfaces),
then the general solution of the differential equation (4.8) is

g(u) = Asinh(%) + Bcosh(%), A,B,a eR. (4.11)

(2) If K = 0, then the general solution of the differential equation (4.8) is

g(u)=Au+B, ABER (4.12)

(3) If K = €1/ a?, then the general solution of the differential equation (4.8) is

g(u) = Asin(%) + Bcos(g), A,B,acR. (4.13)

Examples of these surfaces are given in Figures 2 and 3. Notice that if K = 0, then the
profile curve is a line (4.12). Among these surfaces there are also hyperbolic spheres (A =0,
y? — 22 = +B?), see Figures 1 and 4. Cones (A#0, y* — 22 = +(Ax + B)?) are also surfaces of
revolution with vanishing curvature.

Next we consider the isotropic rotations. By rotating an isotropic curve u
(0, f(u), g(u)) about the z-axis by isotropic rotation, we obtain a surface

2
x(u,v) = (v,f(u) + ;—b,g(u)>, b#0. (4.14)

Let us assume that the rotated curve is parametrized by the arc length

f2-g%=-¢ (4.15)
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Figure 2: A spacelike (timelike) surface of revolution with positive (negative) curvature.

Figure 3: A spacelike (timelike) surface of revolution with negative (positive) curvature.

that is, the curve is spacelike (its tangent vectors are spacelike, € = —1) or timelike (its tangent
vectors are timelike, ¢ = 1). By a simple calculation it can be shown that by revolving a
spacelike (timelike) curve a spacelike (timelike) surface is obtained. From (4.15) it follows
¢ = (f'/¢)f", and therefore, the following expression for K is obtained regardless of the
type of the surface:

K =-— =Ky= const. (4.16)

b
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Figure 4: A spacelike hyperbolic sphere (K = 0).

Therefore, the profile curve of a surface with constant curvature is described by the ordinary
differential equation

f" = —bK,. (4.17)

Theorem 4.2. The profile curve u — (0, f (1), g(u)) of a surface with constant curvature obtained
by isotropic rotations is given by

_ 2
ﬂm:l%ﬂruw+ﬂ A,BER,
. (4.18)
gﬁﬁ:—ﬂ%SOA—me)(A—mef—l—AmmﬁuA—meo+C)
for a spacelike surface and
1
g(u) = “K, <(A - bKou)\/(A - bKou)* + 1+ Arcsinh (A - bKou) + C> (4.19)
and for a timelike surface, where C € R is a constant.
If Ko =0, then
f(u)=Au+B, gu)=Cu+D, ABCDER, A*-C’=-¢ (4.20)

which implies that the profile curve is a line and obtained surface a parabolic sphere x(u,v) =
(bv, (Au + B) + bv?/2,Cu + D) (Figure 5).
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Figure 5: A spacelike parabolic sphere (K = 0).

We can notice that this situation appears much more simpler than the same situation
in the Euclidean space, where the expressions of the profile curves involve elliptic integrals.

Now we treat surfaces of constant mean curvature. The mean curvature H of the
surfaces (4.5), (4.6) is given by

H= =—. (4.21)

Therefore the following theorem holds.

Theorem 4.3. There are no minimal surfaces of revolution (4.5), (4.6). Surfaces with constant mean
curvature H #0 are hyperbolic timelike, respectively, spacelike spheres obtained by rotating a line
(u,-1/2H,0), resp., (u,0,—(1/2H)).

The mean curvature H of a surface (4.14) is given by

H=-tt=—2—=
RN o (4.22)

Theorem 4.4. The profile curve of a surface of revolution of constant mean curvature obtained by
isotropic rotations (Figure 6) in pseudo-Galilean space is as follows.

(1) If H =0, then f(u) = Au+B, g(u) = Aju+ By, A,B, A1, By, A> - A% = —¢, that is, the
surface is generated by an isotropic rotation of an isotropic line (a parabolic sphere).

(2) If H #0, then for a spacelike surface (e = —1)

f(u) = hl sinh(hou + ¢) + c1, g(u) = hl cosh(hou +c¢) + ¢ (4.23)
0 0

and for a timelike surface (e = 1)

1

o sinh(hou + ¢) + -2, (4.24)
0

fu) = hl cosh(hou + ¢) + ¢y, g(u) =
0
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Figure 6: A surface with constant mean curvature obtained by an isotropic rotation.

where hy = £2He = const, ¢, c1, ¢, = const. A surface is obtained by an isotropic rotation
of a pseudo-Euclidean circle.

5. Klein-Gordon Equation and the Tchebyshev Coordinates in G;

In the context of classical surface theory in the three-dimensional Euclidean space, the
sine-Gordon equation has the geometrical interpretation in terms of surfaces with negative
constant Gaussian curvature. This is shown by parametrizing a surface by coordinates that
satisfy

E=G=1, F =cos ¢, (5.1)

where E, F, and G are coefficients of the first fundamental form (i.e., by Tchebyshev
coordinates). Then Theorema Egregium implies

P =—Ksineg. (5.2)

In particular, for a surface with constant negative curvature K = —1/m?, the previous
equation turns to the sine-Gordon equation for the angle ¢ between parametric curves

1
Pup = s sin ¢. (5.3)

Similar results hold in a three-dimensional pseudo-Riemannian manifold of constant
curvature (e.g., Minkowski space R}). The angle between curves of the Tchebyshev net on
a spacelike (timelike) surface of constant negative (positive) curvature satisfies the sine-
Gordon equation or its hyperbolic analogue sinh-Gordon equation [17].

Our aim is to introduce the analogue of the Tchebyshev coordinates on a surface in the
pseudo-Galilean space and to establish a partial differential equation satisfied by the angle
between the parametric curves. In order to be able to consider the angle between parametric
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curves of a surface, it is assumed that parametric curves are non-isotropic curves, that is,

8170, 8, #0.
We proceed with the following definition.

Definition 5.1. Tchebyshev net on a surface is the net of parametric curves for which the first
fundamental coefficients satisfy g1 = g» = 1, h112 = hop 1.

Notice that according to our notation we have h;; ; = 0h;;/0u;,i,j =1,2.

The first condition from the definition implies that the parametric curves of this net
are parametrized by the arc length. The side tangential vector in these coordinates is given by
o= (1/W)(x, - x1), where W2 = —e(x, — x,1)2. Furthermore, since

X3 x>
hi1p = —= =2x1-X12, hoi =% =2x2-x1, (5.4)
’ ov o ’ ou o
it follows that
- (X2 = 1) X12 = 5 (i — hi12) = 0 (55)
O-X12 = W X2 —X1) X12= W 22,1 11,2) = U. .

Such definition of the Tchebyshev coordinates is motivated by the following theorem whose
counterpart holds in Euclidean space. For the analogous result in simply isotropic space I}
see [18].

Theorem 5.2. Asymptotic curves on a C"-surface ® in G, r > 3, form the Tchebychev net if and only
if @ is a spacelike surface with constant negative curvature or timelike surface with constant positive
curvature.

Proof. First notice that on spacelike surfaces with negative curvature and timelike surface
with positive curvature there are two families of real asymptotic curves, due to the fact that
the equation for the asymptotic curves I1 = 0 has two real solutions.

Proof follows from the analogues of the Gauss and Codazzi-Mainardi equations for
surfaces in the pseudo-Galilean space G}. They are obtained in the following way.

Let x = x(x(u1,u2),y(u1,u2), z(u1,u2)) be a parametrization of @, and let N denote
its unit normal field. Multiplying (3.23) by o (and analogous expression obtained when
assuming ¢» #0), it can be shown that the Christoffel symbols of the second kind defined
by (3.19) are given by

6 ~ ~
L = w (82X — 8ijX2) - 0,

/ (5.6)
I = _W(gli,i,j - 8i%1) - 0.
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Under assumption x; jx = X, k,; the following is obtained:

( ik = lk,+z<r Lok — ))N

Z( i~ Tkt Z(FZTZ"k — T + 878" (LijLuk ~ Liijn)>>X,m =0,

(5.7)

where ¢! = ¢/W, ¢* = —g1/W. We can notice that the previous formula differs from its
analogue in the Galilean space [10] in the sign of the term ¢"g¢"(L;jL.x — LikLj,). This is a
consequence of the formulas for N; in Proposition 3.4 (with the opposite sign than in the
Galilean space).

The component by x,, gives the Gauss (integrability) equation

T Z(rsrzz e

(5.8)
=->8"8"(LijLuk - LiLjn), m=1,2,
n
and the component by N the Codazzi-Mainardi equation
Lk = Licj = = S (TG Lok = Tk ) (5.9)

n

Now, let us assume that the Gaussian curvature K of a surface is constant and that the
parametric curves asymptotic. For parametrization with asymptotic lines we have Li; =
Ly, = 0. We consider spacelike surfaces with negative curvature and timelike surfaces with
positive curvature, that is, surfaces that have two families of asymptotic lines. In asymptotic
coordinates equation (5.9) fori=j=1,k=2,andi=k =2,j = 1 reduces to

Lip1 = Lo (Fh - rﬁ),
(5.10)
Lizy = Lip (T3, - T}, ).

Furthermore, the assumption K = const. = e(1/m?) implies L2, = W?(1/m?). By derivating
this equation with using (5.10) we get

Wy = W<F%1 - F%z)r (5.11)
Wa=w(r2,-1,). |
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On the other hand, partial derivatives of W, W2 = —¢( 1Xp — gzx,l)2 for an arbitrary parame-
trization of a regular admissible surface are equal to

W =W (T} +T3,),

(5.12)
Wa =W (12, +T,).
They are obtained by derivating the expression W2 = —e(g1x, — g2x,1)* and using
w
&2X1,1°0 = ?Th + g1,1X2 - O,
(5.13)
W
81X120 = —?Flz +812X1 0,
obtained from (5.6) fori=j=1landi=1,j=2.
Now from (5.11) and (5.12) it follows that
Iy, =17, =0. (5.14)
By using expressions in (5.6) we can write this system as
(g12x1 — g1X12) -0 =0,
(5.15)
(§2x12 - g12%2) -0 =0.
It follows that
g12(x1 - g1x2) -0 =0. (5.16)

Furthermore (g2x1 — g1X2) - 0 = -Wc? #0, and therefore the previous equation implies
g1,2 =0. (5.17)
Substituting (5.17) into the system (5.15) we obtain (since g; #0,i =1, 2)

X120 = 0. (518)

Let us analyze conditions (5.17), (5.18). Condition (5.17) implies g1 = g1(1), & = £(v), that
is, functions g; are functions of one parameter only.
Condition (5.18) implies

1

1
X120 = 75X12° (g1x2 — gx1) = m(gﬂlzm - ghip), (5.19)
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and therefore
g1hn1 — ghip =0. (5.20)

Condition (5.17) enables us to introduce new coordinates
u= fgldu, U= Igzdv (5.21)

to obtain g, = dx/du = (dx/du)(du/du) = g1(1/g1) = 1. Analogously we can obtain g, = 1.
For the coefficients Eij of the new parametrization we have

2 (5.22)
— ox 1
hyy = <8__> —h»
v &
Therefore, since g1, =0,
hiip = gzgfzu,zr hot = g182ho 1. (5.23)

Condition (5.20) now implies (h11/07) — (Oha/dU) = hiip — hoy = (1/g8%)hiy -
(1/5183)h01 = (1/8783) (2112 — g1h221) = 0, which means that the considered coordinates
are Tchebychev.

Conversely, if the asymptotic curves form the Tchebychev net, let us prove that @ has
constant curvature. The assumptions imply L1 = Ly, = 0 and

X120 = 0, (5.24)

where 0 = (1/w)(x2 — x1). Expressions in (5.6) imply that in Tchebyshev coordinates

Christoffel symbols I'},, %), are given by

1 €
Flz = Wx’l'z 0 = 0,

(5.25)
2, =-x1,-0=0
12— w 120 =U.

Therefore Codazzi-Mainardi equations (5.10) are equal to

Lipy = LpoTq,, Lips = L1oT3,. (5.26)
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Now by differentiating
K=e¢ va_% , (5.27)
partially in the first variable, we obtain
KiW? = 2¢eLyp(LipiW - LioW)) (5.28)
and (5.26) implies
KaW? =213, (T W - W,). (5.29)
Since from (5.12) we have
Wy =T W, (5.30)
it follows that
Ki=0. (5.31)
In the same way we can conclude
K, =0, (5.32)
and therefore K = const, what was claimed. O

Let us now determine the angle between curves of the Tchebyshev net on a regular
admissible surface. The angle between nonisotropic unit vectors

a=(l,a,a3), b=(1,byb3) (5.33)
in the pseudo-Galilean space Gj is determined by using the following expression:
9 = Z(a,b)’ = | (b2 — a2)* - (b3 — a3)*|- (5.34)

The defined angle is invariant under the group of motions (2.2). By applying expression (5.34)
to the tangent vectors of the Tchebyshev parametric curves, we obtain

0= |2 - 1)’ - -2 = W2, (5.35)
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and therefore we can write
(Pz = —e((y2 - yl)z —(z2 - zl)z>. (5.36)

The function ¢ and the function W as well are differentiable of class C", r > 2, if and only if a
surface is not lightlike.
For the Tchebyshev coordinates we have

gi=p=1 T},=T},=0, (5.37)

and the Gauss (integrability) equation (5.8) fori=j =1, k =2, m =1 turns to

T}y, + 5T, = —év—% = —eK. (5.38)
Furthermore, from (5.12) we have
rl, = % I3, = % (5.39)
which with (5.6) implies
I3 = —%, I, = —%. (5.40)
Therefore
—eK = WW,l,ZM—ﬂW,lW,z + (—%) <—%> = % (5.41)

thatis, W1, = —eK W. Since W = ¢, where ¢ is the angle between Tchebyshev curves, then
we have

¢12 = —€Kgp. (5.42)

If the Gaussian curvature of the surface is constant K = e(1/m?), m € R, the previous
equation turns to the Klein-Gordon equation

1
P12=~—5¢. (5.43)

Therefore we have proved the following theorem:

Theorem 5.3. The angle between curves of the Tchebychev net and the function W as well on a
spacelike surface of constant negative curvature and timelike surface of constant positive curvature in
G; satisfy the Klein-Gordon equation.
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Finally, the functions

K(14,0) = X1 (,0) x11(0)],  F(w,0) = \/Ix22(1,0)] - x22(u, ) (5.44)

satisfy the Klein-Gordon equation as well. The function x(u,vy) is the curvature of a
parametric curve v = vy of the Tchebychev net and x(uo, v) a parametric curve u = uy. Notice
that these curves are parametrized by the arc-length, since x; = x, = 1.

Theorem 5.4. The functions «, K on a spacelike surface of constant negative curvature and timelike
surface of constant positive curvature in G} satisfy the Klein-Gordon equation.

Proof. We have

x11=T1,(x1 —x2) =T}, (-Wo) = -W;0 (5.45)

and therefore x; 1 is a spacelike (timelike) vector for a spacelike (timelike) surface. Hence we
can write

Kz(u,v) =—€X11°X11 = W21 (5.46)

Now we have
KK1 = W/l W,l,lr KK2 = W/l W,l,Z- (5.47)

Therefore
KK12 = (KK2) | —K1K)
1, 1, (5.48)
=(WaWap) 1 - WaiiWap =WiWip1 = -—— W7 = -——«".
m? m

Therefore we have 1, = —(1/m?)x. Analogously we prove for . O

Theorem 5.5. The parametric net on a spacelike surface of revolution (4.6) obtained by pseudo-
Euclidean rotations forms the Tchebyshev net in the following parametrization of the surface (K =
-1/a?):

x(u,v)=u+o,

y(u,v) = (Asin<u+v) +Bcos<qu

U>>Sinh<u;v)’ (5.49)
z(u,v) = <Asin<u;v> + Bcos<u ; U)) COSh(u ; v)/
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and on a timelike surface of revolution (4.5) (K = 1/a?, see Figure 7)

x(u,v)=u+0o,

y(u,v) = <Asin<uzv> +Bcos<u+v>) cosh(u;v>, (5.50)
uav> +Bcos<uav>> sinh<u;v>.

The parametric net on a surface of revolution (4.14) obtained by isotropic rotations forms the
Tchebyshev net in the following parametrization of a spacelike surface with K = -2a/b < 0,
a,b e R\ {0} (see Figure 8):

Q

+
+

z(u,v) = (A sin(

x(u,v)= u+o,

- (casom ([ w-0)) & vy o)

1 (5.51)
+B+ o (u+ v)?,
z(u,v) = i <% sinh <\/% (Qu - Zv)> - \/% (u- v)>,
and of a timelike surface with K = (2a/b) > 0,a,b € R\ {0}
x(u,v) =u+o,
y(u,v) = - —< —sinh <\/7 (u- v)>> < —sinh <\/7 (u- v)>>
(5.52)

1 2
+B+%(u+v) ,

z(u,v) = < s1nh<\/7 (2u - 27))) \/7(11 v>

Remark 5.6. Notice that for the given parametrizations of surfaces obtained by pseudo-
Euclidean rotations we have

a=%=1, hi1 = hyy, (5.53)

that is, Tchebyshev curves satisfy condition similar to that one in the Euclidean space (E =
G = 1). Therefore, the parametric curves satisfy hi12 = hp1 = hi1,1 and hay = hiip = hxp,
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Figure 7: A timelike surface obtained by pseudo-Euclidean rotations parametrized by the Tchebychev net
and the projection of a parametric curve onto yz-plane.
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Figure 8: A spacelike surface obtained by isotropic rotations parametrized by the Tchebychev net and the
projection of a parametric curve onto yz-plane.

which describes ki1, hy, as the functions of form ¢ (u + v). The angle between curves of the
Tchebychev net for spacelike and timelike surfaces obtained by pseudo-Euclidean rotations
is equal to

p(u,v) = %(Asin(uzv>+3cos<uzv>>. (5.54)

For spacelike surfaces obtained by isotropic rotations we have

u+o

hll - h22 = W,

(5.55)
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¢p(u,v) = \/%sinh \/%(u - ) (5.56)

and for timelike surfaces obtained by isotropic rotations to

p(u,v) = \/%cosh \/%(u - ). (5.57)

Furthermore, functions x(u, v), ¥(u, v) are given by

and the angle is equal to

K(u,v):f(u,v):%(Acos(u;v)—Bsin(l;v)) (5.58)

for spacelike and timelike surfaces obtained by pseudo-Euclidean rotations and by

x(u,v) =x(u,v) = % cosh \/%(u - ), x(u,v) =x(u,v) = % sinh \/%(u - ) (5.59)

for spacelike, respectively, timelike surfaces obtained by isotropic rotations.

Remark 5.7. Notice that the torsion of the parametric curves in the Tchebyshev parametriza-
tion is constant. This is the consequence of the general result which states that the torsion
of asymptotic curves on a spacelike surface of negative curvature and timelike surface of
positive curvature is equal to 7 = +v/eK.

Remark 5.8. From a known solution of the Klein-Gordon equation, we can construct a surface.
Let us consider a more general particular solution of the Klein-Gordon equation, that is, the
solution

(1, 0) = eM”—v)/“(Acos(@> + Bsin(@)), A u,ABacR,  (560)

which satisfies ¢ 1o = —((A* + p?)/a*)¢p. Considering (5.60) as the curvature x of a family of
curves in the Tchebyshev net, we can construct a surface of constant curvature K by means
of the Frenet frame {f,n, b} of parametric curves. Frenet formulas are t' = xn, n' = b, ' = Tn,

where T = /(A% + y?) /a?, and they allow us to construct fields t = x; or t = x, and n,b and
therefore a parametrization x = x(u, v). The obtained family of surfaces contains family of
surfaces of revolution (A = 0 for surfaces obtained by pseudo-Euclidean rotations and p = 0
for surfaces obtained by isotropic rotations).
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Figure 9: A spacelike surface of constant curvature K = -5withA =2, y=A=a=1,B=0.

Example 5.9. A surface with parametrization

x(u,v) =u+o,
y(u,v) = 11—062(”_1’) <2 cos(u +v) +sin(u + v) (\/5 Cosh(x/g(u -v) - 2sinh<\f5(u - v))))),

z(u,v) = 11—062(”‘”) <2 cos(u + v) + sin(u + v) <—2 cosh(x@(u - v)) +/5sinh v5(u - v))() |
5.61

is a spacelike surface parametrized by the Tchebyshev net having K = -5 (see Figure 9).
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