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We introduce and study a subclass of harmonic convex functions of complex order. Coefficient
bounds, extreme points, distortion bounds, convolution conditions, and convex combination are
determined for functions in this class. Further, we obtain the closure property of this class under
integral operator.

1. Introduction

A continuous function f = u+iv is a complex-valued harmonic function in a complex domain
Qif both u and v are real and harmonic in Q. In any simply connected domain D C €, we can
write f = h+g, where h and g are analytic in D. We call h the analytic part and g the coanalytic
part of f. A necessary and sufficient condition for f to be locally univalent and orientation
preserving in D is that |i'(z)| > |¢'(z)| in D (see [1]).

Denote by S the family of functions f = h + g, which are harmonic, univalent, and
orientation preserving in the open unit disc # = {z : |z| < 1} so that f is normalized by f(0) =
h(0) = f2(0) =1 = 0. Thus, for f = h+ g € Sy, the functions h and g analytic in % can be
expressed in the following forms:

h(z) =z+ iakzk, g(z) = ibkzk (1] < 1), (1.1)
k=2 k=1



2 International Journal of Mathematics and Mathematical Sciences

and f(z) is then given by

f(z)=z+ iakzk + ibkzk (Ib1] < 1). (1.2)
k=2

k=1

We note that the family S, of orientation preserving, normalized harmonic univalent
functions reduces to the well-known class S of normalized univalent functions if the co-
analytic part of f is identically zero (g = 0).

Also, we denote by TS the subfamily of S consisting of harmonic functions of the
form f = h + g such that h and g are of the form

0 0

h(z)=z-Ylalz*,  g(z) = X lbklz". (1.3)

k=2 k=1

In [1], Clunie and Sheil-Small investigated the class S as well as its geometric sub-
classes and its properties. Since then, there have been several studies related to the class S
and its subclasses. Following Clunie and Sheil-Small [1], Frasin [2], Jahangiri et al. [3-6],
Silverman [7], Silverman and Silvia [8], Yalcin and Oztiirk [9], and others have investigated
various subclasses of S, and its properties. In particular, Avcr and Ziotkiewicz [10] proved
that the coefficient condition

Skl +be) <1 (b1 =0) (1.4
k=2

is sufficient for functions f = h + g € S to be harmonic convex. Also, Silverman [7] studied
that this coefficient condition is also necessary if ax and by (k =2,3,...) in (1.2) are negative.
Further, Jahangiri [3] showed thatif f = h + g is given by (1.2) and if

® [ k(k- k(k
Z( (1_},Y)|ak|+ (1 —+YY) |ka> <2 (0<y<1, a=1), (1.5)

k=1

then, f is harmonic, univalent, and convex of order y in A. This condition is proved to be
also necessary if h and g are of the form (1.3). Furthermore, Yalgin and Oztiirk [11] have
considered a class T.S?,(y) of harmonic starlike functions of complex order based on a corres-
ponding study of Nasr and Aouf [12] for the analytic case.

Motivated by the earlier works given in the literature [9, 11] now we define the class
of harmonic convex functions of complex order as follows.
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Definition 1.1. For0 <y <1,0<A<y/(1+y)orA>1/(1+y),and b e C\ {0} with |b| <1,
let SC(b,y, L) denote the family of harmonic functions f € S of the form (1.2) that satisfy
the following condition:

o)1 A<z3h’”(z) Sy g”’(z)) + @A+ 1)22K(z)
b A(zzh"(z) + zzg”(z)> +zH (z) + A - 1)zg'(z)

(1-4M)z2¢"(z) + zh'(z) + (1 -20)zg/(z) ~
A(th”(z) 422 g”(z)) + 2zl (2) + (20 - 1)z (2)

for z € U. Further, we define the subclass TSC (b, y, A) of SC (b, y, 1) consisting of functions
f = h+ g of the form (1.3).

We observe that for b = 1 the class SCx(1,y,A) = SCx(y, ) was introduced and
studied by Yalgin and Oztiirk [9], the class SC4(1,y,0) = SCL(y) is given in [3, 4], and the
class SC,(1,0,0) = SC is studied in [10].

In this paper, we investigate coefficient conditions, extreme points, and distortion
bounds for the function class TSC (b, y, 1). We also examine their convolution and convex
combination properties and the closure property of this class under integral operator. We
remark that the results obtained for these general families can be viewed as extensions and
generalizations for various subclasses of S as listed previously in this section.

2. Coefficient Inequalities

Our first theorem gives a sufficient condition for functions in SC(b, v, A).

Theorem 2.1. Let f = h + g be so that h and g are given by (1.2). If

@ k(kd -1+ 1)[(k-1) +|b|(1-7)] @ k(kd+ A= 1)[(k+1) - b|(1-7)]
bl <2,
) (1-7y)lbl lal+ 2, (1-y)lbl el <

k=1 k=1
2.1)

where a1 = 1,0 <y < 1,and b (|b] < 1) is a nonzero complex number, 0 < A < y/(1 +y) or
A>1/(+7y). Then, f € SCu(b,y,\) and f is sense preserving, univalent, and harmonic in U.
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Proof. We show that f € SC(b,y, A). We only need to show that if (2.1) holds, then condition
(1.6) is satisfied. In view of (1.2), condition (1.6) takes the form

g (L=1) + T (Ce(kd -4 + D[k~ 1) + b(1 ~y)])/b)lax|(z*/=)
1+ 32, k(kA = A+ 1)|ag|(z5/z) + 52, k(kd + A — 1)|bk|<2k/z>

320 ((k(kd+ 2= 1) [(k+1) = b(1 - 1)])/b) bl (/=) (2.2)
1+ 3%, k(kd = A+ 1)lagl (2%/2) + 52, k(kd+ A= 1)[bel (2/2)

L1+ A(z)
"1+ B(2)’
Setting
1+A(z) 1+w(z)
1+B(z) 1-w(z)’ 23)
we will have R((1 + A(z))/(1 + B(z))) > 0if |w(z)| <1,
__A(z)-B(2)
w) = A B
—y+ ik(kx -1+1) [ (k=1 +bb(1 0l 1] |a |z
k=2
(2.4)

- SEk(kA+ A= D[([(k+ 1) = b(1-7)]/b) +1] |bk|<z’</z>
2y + I k(L= L+ D[([(k = 1) +b(1-1)]/b) + 1]laxlz*T

© _ _ —k
_Zk(k)L+A—1)|:[(k+1) bb(l 2l —1]|bk|z?
k=1

so that

Y+ 2o k(kd = A+ D)[(A/|b]) - 1]|ax| + 32, k(kA + A = 1) [(B/|b]) + 1] |bx|
2-y -2, k(kA = A+ 1) [(A/|b]) + 1]|ak| = X352 k(KA + A =1)[(B/|b]) - 1]|bk|’
(2.5)

lw(2)] <

where 2 denotes [(k—1) +|b|(1-y)] and B denotes [(k +1) —|b|(1—y)].This last expression is
bounded above by 1 if and only if

k(kA=A+1)[(k-1)+|b|(1 - S k(kd+A-1)|(k+1)-1|b|(1~-
B3+ DI 0] LA DI DDy
k=1

(2.6)

)

k=2
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Or, equivalently
& k(kA-A+1)[(k—-1)+|b|(1-7)] & k(kA+A-1)[(k+1)-|b|(1-7)]
bi| <2.
2 (=) e’ (=) =

2.7)

In order to show that f is univalent in %, we show that f(z1) # f(z2) whenever z; # z,.
Since U is simply connected and convex, we have z(t) = (1 —t)zy +tz, € U, where 0 <t < 1,
and if z1, zp € U so that z; # z;. Then, we write

1
f(z) - f(z1) = f [(z2 = 201 z(0) + (22— 21)g (0 | at. (2.8)
0
Dividing the above equation by z; — z; #0 and taking the real part, we obtain

f@) =) (“wl Py pa—
R L2 ] }_fom[h<z(t))+—ZZ_Zlg(za)) dt N

1
> [ a0 - g ol
On the other hand, for |b| < 1,4 >1/(1+y)or0< A <y/(1+7y), we have

Rh'(2) - |g/(2)] > RH'(2) - > klbil
k=1

>1- D klax| = D klbl
k=2 k=1

Z1_§:k(ki—i+1)[(k—1)+|1?|(1—Y)] (2.10)
= (L-y)lbl

= k(kd+A-1)[(k+1) - [b|(1-7)]
k=1 (1-v)lbl

>0, using (2.1).

lax|

|bi|
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This along with inequality (2.9) leads to the univalence of f. Note that f is sense preserving
in%, for0<A<y/(1+y)ori>1/(1+y). This is because

|1 ()] 2 1= D klae| |2/ > 1= > k|
k=2 k=2

(A%
—_

2 k(kA=A+1)[(k-1) +[b|(1-7)] ]

k=2 (1__Y)|b|
kel A =Dk +D =PI -]

> 2 (1-7)lbl

l (2.11)

k(kd+X=1)[(k+1) - b|(1-7)]

> 2 (1-7)lbl
)y

bk 217"

> N klbi| 1217 > |¢'(2)]-

k=1

The function

e (1-7)Ibl k
f@) =24 ) T D[ - D A=

(2.12)

+i (1-y)lb| K

S k(A +A=1)[(k+1) = [b|(1-7)] s

where > 77, [xk| + 2121 lyk| = 1, shows that the coefficient bound given by (2.1) is sharp. The
functions of the form (2.12) are in SC (b, y, 1) because

i(k(kx—xﬂ)[(k—l) +1b|(1-7)] ] +

(1-y)b]

=1+ > lxl + X wk| =2
k=2 k=1

k(kA+ A =1)[(k+1) - [b|(1-7)] >
|bx|
(1-y)b|

k=1

(2.13)
O

The next theorem shows that condition (2.1) is necessary for f € TSC(b,y, A).

Theorem 2.2. Let f = h + g be so that h and g are given by (1.3). Then, f € TSC,(b,y,\) if and
only if

ik(k)t —A+1)[(k=1)+b|(1-7)
k=1 (L-y)lbl

] & k(kd+ A -1)[(k+1) - pl(1-7)]
br| <2,
ol 2, -1 i

(2.14)

where a1 =1,0<y <L 0<A<y/(1+y)orA>1/(1+y) andbeC\ {0}
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Proof. The “if part” follows from Theorem 2.1 upon noting that TSC(b,y,A) C SCk(b,y, ).
For the “only if” part, we show that f € TSC(b,y, ). Then, for z = re'? in U, we obtain

ol )L<Z3h”’(z) - z3g”’(z)> + QA+ 1)22K"(2)
b A(zzh”(z) + z2g"(z)> +zH (z) + QA - 1)zg'(z)

(1-41)z2¢"(z) + zh'(z) + (1 - 21)zg'(2)

——— — -1
)u<z2h”(z) + zzg”(z)> +zh'(z) + (2L - 1)zg'(z)

{(1 Nz -3, ((k(kA =L+ 1)[(k - 1) +b(1-y)])/b)|ax|zF
z— 30, k(kd = A+ Daglzk + 32, k(kA + A - 1)|be[2F

~ 2 (kKA + A= 1)[(k + 1)~ b(1 - 1)]) /b) bilz* }
z— 32, k(kA = L+ 1)|ag|zk + 32, k(kA + A — 1)|be[zF

L (1=7) = S2a((kOA -1+ D[k~ 1) + b1~ 1)])/b) ™
z= 2o k(kd = A+ 1) |ag|rk=1 + 372, k(kA + A = 1) |bg|rk-1

SR (kKA A=) [(k+ 1) = b(1 - y)]) /) bl
z = >0 k(kd =X+ D)|ag|rk1 + 372, k(kA + X = 1)|bg|rk-1

> 0.

(2.15)

The above inequality must hold for all z € %. In particular, letting z = r — 17 yields the

required condition.

As special cases of Theorem 2.2, we obtain the following two corollaries.

Corollary 2.3. A function f = h + g belongs to TSC (b, y,0) if and only if

ik[(k_1)+|b|(1—y) ik[(k+1) bI(1-)]

|bk| < 2.
k=1 (1 _Y)|b| k=1 >|b|

Corollary 2.4. A function f = h + g belongs to TSC (b, y,1) if and only if

°°k2[(k—1)+|b|(1—Y) < (k+1) bI(1-)]
é (1-y)lbl kzzl —7)Ibl

3. Extreme Points and Distortion Bounds

by < 2.

O

(2.16)

(2.17)

In this section, our first theorem gives the extreme points of the closed convex hulls of

TSCL(b,7,1).



8 International Journal of Mathematics and Mathematical Sciences

Theorem 3.1. A function f = h + g belongs to TSC (b, y, \) if and only if f can be expressed as
f(2) =D (Xche(2) + Yige(2)), z€XU, (3.1)
k=1

where hy(z) = z, hi(z) = z = (1 = y)|b|l/k(kA =L+ 1)[(k = 1) + |b|(1 - y)])z*(k = 2,3,...), and
8k(2) = z+ (L-bl/k(kA + A= D[(k+1) = [b|(1-)])Z" (k = 1,2,3,..), ZZ, (X + Yi) = 1,
Xk 20, Yi > 0. In particular, the extreme points of TSC (b, y, A) are {hi} and {gi}.

Proof. For functions f of the form (3.1), we have

£@) = 3 (Xehi(2) + Yige(2))
k=1

(1-y)lbl k

- ;(X" Yz - ék(ki A+ D)[(k-1) +bl(1-7)] Xz (3.2)
- (1-y)lbl —k
+;k(k1\+x—l)[(k+1) —~|b|(1 —y)]YkZ '
Then,
ik(kA—Ml)[(k—m|b|(1—r>]< (1-y)lb| >Xk
pac (1-y)lb| k(kA=A+1)[(k=1) +[b|(1-7)]
2 k(k)L+Jl—1)[(k+1)—|b|(1—y)]< (1-7)b| >Y
+k§ (1-y)lb| KA+ A-D[(k+ D) - pl(1-1)] )
= iXk + iYk
k=2 k=1
=1-X;<1,
(3.3)

and so f € clcoTSC,(b,y, ).
Conversely, suppose that f € clcoT SC(b,y, ). Letting

X1=1->Xe - DYy, (3.4)
k=2 k=1
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where X = (k(kA-A+1)[(k—-1)+|b|(1-y)]/ (A -p)|b])|ax|, k =2,3,...,and Yi = (k(kA+ A -
D[(k+1)—bl(1-y)]/(1-y)b])|bkl|, k =1,2,..., we obtain the required representation since

f(2) =z = > laxlz" + > |bi[z*
k=2 k=1

- (1-7)IblXx .
e k- DA

(1-y)blYk —k
Tk(kA+ A =1)[(k+1) = b|(1-Y)]

TMs

z- Z(Z hi( Z))Xk_Z(Z—gk(z))Yk

k=1

k=2 =

<1 iXk - iyk>z + ihk(z)xk + igk(z)Yk
k=1 k=2 k=1

i (thk(z) + Ykgk (Z))

k=

—

(3.5)
O

The following theorem gives the distortion bounds for functions in TSC,(b,y, 1),
which yields a covering result for this family.

Theorem 3.2. If f € TSC(b,y,\) then for z = re', one has
(1-y)lb| _(21-1)
20+ [1+b(1-y)] 2(L+1)

(1-pkl @i-1)
20+ 1)[1+b(1-y)] 2(A1+1)

2-b(1-y)
1+b(1-7y)

)

]

2-b(1-y)]
]|b1|>

1+b(1-7)

|f(2)] < (1+|b1|)r+r2<

—|— —|—

|f(2)] > (1~ |b1|)r—r2<

Proof. Let f € TSC,(b,y,A). Taking the absolute value of f and then by Theorem 2.2, we
obtain

|f(2)| < A +ba))r + > (laxl + [br)r
k=2

(1-1)lb| <ik<kx—i+1)[(k—1) +[bl(1 - y)]

S (1+|b1|)r+2()t+1)[1+b(1_}’)] (1_Y)|b| |ak|
KO+ A=D)[(k+1) - [bI(1 - 7)] |bk|>r2
(1-y)lbl
(1-7)lb| L-1)[2-b(1-7)] 2
<@ +bil)r + <2()L +D[1+b(1-1)] 20+ D[1+b(1-7)] lbl|>r

(3.7)
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Similarly,

(3.8)

|f(z)|2(1—|b1|)r—< (1-)lb| _<2A—1>[2—b<1—r)]|bll>r2

20+ D)[1+b(1-y)] 20+1)[1+b(1-7)]

The upper and lower bounds given in Theorem 3.2 are, respectively, attained for the
following functions

B _ 1 (1-y)lbl @L-DR-b(1-7)], \=
fz) =z + bz £ <z()t+ DI+b(1-7)] 2(0+D)[1+b(1-7)] |b1|>z '
(3.9)
_ 1 (1-y)bl @A -D[2-b(1-y)]
f@)=0-1bDz = 5 <z(1 sD)[I+b(1-1)] 20+ D)[1+b(1-7)] |b1|>zz -

4. Convolution and Convex Combinations

In this section we show that the class TSC (b, v, \) is closed under convolution and convex
combinations. Now we need the following definition of convolution of two harmonic func-

tions. For f(z) = z — 32, lax|z* + 32, |be|Z* and F(z) = z - 32, |AxlzF + 32, |Bk|ZF, we
define the convolution of two harmonic functions f and F as

(f*F)(2) = f(2)  F(2) = 2= Y lax| | Akl + 3 [bil |Bi[Z". (4.1)

k=2 k=1

Using the definition, we show that the class TSC(b, y, \) is closed under convolution.

Theorem 4.1. For 0 < 6 <y <1,let f € TSC,(b,y,\) and F € TSC4(b,6,1). Then, f x F €
TSCu(b,y,A) CTSCu(b,6,A).

Proof. Let f(z) = z— 330, |ax|zF + 332, |bk|Zz" and F(z) = z - SO, AR + 32, |Bi|Z" be in
TSCu(b,6,1). Then, f * F € TSC4(b,5,1). We note that |Ax| < 1 and |Bi| < 1. In view of
Theorem 2.2 and the inequality 0 < 6 <y <1, we have

&, k(k)u—)t+l)[(k—1)+|b|(l—5) Sk(kA+A-1)[(k+1)-1|b|(1-06)]
kZ:2 a5l ak| | Ax| + kz a5 |bi| | Bl
k(kA =X +1)[(k-1)+|b|(1 - 6) Sk(kA+A-=1)[(k+1)—|b|(1-6)]
< Z RSB al+ 2, -5 i
E k(kA—A+1) [(k 1) +|b|(1 }f) X k(kA+A-1) [(k+1)— |b|(1—}f)]
< EDS ||
k=2 (1 Y)|b| k=1 (1 - Y)|b|
< 11

(4.2)
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by Theorem 2.2, f € TSC,(b,y,A). By the same token, we then conclude that f x F €
TSCu(b,y,A) CTSCu(b,6,1). O

Next, we show that the class TSC,(b, y, A) is closed under convex combination of its
members.

Theorem 4.2. The class TSC 4(b,y, \) is closed under convex combinations.

Proof. Suppose that f;(z) € TSC,(b,y,A), where f; is given by
fi(z) =z = D lalz" + Dlbiklz",  i=1,2,3,.... (4.3)
k=2 k=1

For 3%, t; = 1,0 < t; < 1, the convex combinations of f; may be written as

Dtifi(z) =z~ Z( ti|ﬂi,k|>zk + <Zti|bi,k|>fk- (4.4)
i=1 k=2 \i=1 k=1 \'i=1

(kA=A +1)[(k = 1)+ [b](1- )] ] +ik(k)L+A— 1[(k+1) - b|(1-7)]
pa] (L-y)lbl - (1-7y)lbl

bixl <1,

(4.5)

from the above equation we obtain

Ek(kA-A+D)[(k-1) +[b|(1-7)] &
tila;
2 CEL 2o
& k(kA+ A -1)[(k+1) - |p|(1-y)] &
t; bi
2 (1-7)P 2.t

k(kA =L +1)[(k—1) +[b|(1-7)]

= th{z a0l |ai k| (4.6)

@ k(kd+ A= 1)[(k+1) - [b](1-7)] }
b
2 (T=7)[b] il

This is the required condition by (2.14) and so >.7°; ti fi(z) € TSC(b,y, A). O
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5. Class-Preserving Integral Operator

In this section, we consider the closure property of the class TSC (b, y, 1) under the Bernardi
integral operator £.[f(z)], which is defined by

c+1
ZC

2.[f(2)] = f:éf-lf(@)dg (c>-1). 51)

Theorem 5.1. Let f(z) € TSC,(b,y,A); then L.[f(z)] € TSCk(b,y,A).

Proof. From the representation of £.[f(z)], it follows that

c+1
ZC

= CZ+C1 J‘: gc—l <§—i|ak|§k>d§+ CZ+C1 J‘Z gl <i|bk|§k>d§ (5.2)
k=2 0 k=1

[ee] [ee]
=z- ZAkzk + ZBkzk,
k=2 k=1

c

2.[f()] = = | #rsoa

fo (@) de +

where A = ((c+1)/(c+k))|ax| and Bx = ((c + 1) /(c + k))|bx|. Hence,

ik(kk—)ﬁl)[(k—l) +b|(1-7)] <C+1|ak|>

k=2 (1-7)lb| crk
' ; — 1|([1(Ii;)1l)b|_ o (2: ,1<|ka>
. ;k(kh—)wl)(g(l_c ;)1|I)?|+ bl(1-7)] " (5.3)
+§k“‘)‘ +4- 1|([1(:)1|)b|— b0, o
and since f € TSC,(b,y, ), by Theorem 2.2, £.[f(z)] € TSC,(b,y, ). -
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