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Generalized solutions to the abstract Cauchy problem for a quasilinear equationwith the generator
of an integrated semigroup andwith terms reflecting nonlinear perturbations andwhite noise type
perturbations are under consideration. An abstract stochastic Colombeau algebra is constructed,
and solutions in the algebra are studied.

1. Introduction

The paper is devoted to construction of solutions to the abstract quasilinear Cauchy problem

X′(t) = AX(t) + F(X) + BW(t), t ≥ 0, X(0) = f, (1.1)

whereA is the generator of a C0 semigroup or an integrated semigroup in a Hilbert spaceH,
F is a nonlinear mapping from H to H, B is a linear bounded operator from a Hilbert space
H to H, and W = {W(t), t ≥ 0} is a stochastic process of white noise type with values in H:
W(t) = W(t, ω), ω ∈ (Ω,B(Ω), μ).

Irregularity of white noise caused by independence of random variables W(t1) and
W(t2) for t1 /= t2 and by infinite variance necessitates to define the white noise in such a way
that the problem (1.1) makes certain sense.
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One of the well-known ways to do this is to consider the corresponding integral
equation replacing the white noise term by the integral with respect to a Wiener process W
(Ito integral), written as usually in Ito theory in the following form of differentials:

dX(t) = AX(t)dt + F(X)dt + BdW(t), t ≥ 0, X(0) = f. (1.2)

For the Cauchy problem (1.2) with generators of semigroups of class C0, with Lipschitz
nonlinearities under some growth conditions mild solutions are constructed (see, i.e., [1, 2]).
In this approach questions of whether the solutions obtained are differentiable, whether
they satisfy the problem (1.1), and whether the techniques can be applied for A generating
regularized semigroups remain open.

Another approach, which we are going to use and generalize, is to consider (1.1)
in spaces of abstract distributions, but here, due to nonlinearity of F in the equation, the
problem of distribution products arises. A novel approach is to define an abstract stochastic
Colombeau algebra G(Ω,Ha) (see definition in Section 1) and extend the distribution
approach to the algebra.

LetHa be an algebra in a Hilbert spaceH, in particular, the subspace of continuous or
a finitely many times differentiable functions in L2(R) closed under the topology of Ck(R),
k = 0, 1, . . .. We consider the Cauchy problem (1.1) in the abstract stochastic Colombeau
algebra G(Ω,Ha) supposing that F is an infinitely differentiable mapping, B ∈ L(H,Ha),
and Ha ⊂ domA. We define white noise W as an element in D′

+(H), the space of abstract
distributions with values in H and supports in [0,∞), then by convolution with functions
fromDwe transformW ∈ D′

+(H) to infinitely differentiable with respect to t functions and as
a result we obtain an element BW belonging to the algebra G(Ω,Ha).

As examples of A satisfying the conditions and generating different integrated
semigroups one can take many of differential operators A = P(i(∂/∂x)) of correct in the
sense of Petrovskiy systems [3]. The operators may be disturbed by bounded ones of any
nature. For more examples see in [4, 5].

In the paper we combine the multiplication theory in Colombeau algebras which has
found applications in solving differential equations, mainly hyperbolic ones (see, e.g., [6, 7])
with the theory of regularized semigroups and the theory of stochastic processes in spaces
of abstract distributions (see, e.g., [8, 9]). This makes possible to solve nonlinear abstract
stochastic equations with different types of white noise.

2. Definition of Abstract Colombeau Algebras

At the beginning we introduce Colombeau space of abstract (Hilbert space valued)
generalized functions. For each q ∈ N0 let Aq be the set of all ϕ ∈ D such that

∫
R

ϕ(t)dt = 1,
∫

R

tkϕ(t)dt = 0, k = 1, . . . , q. (2.1)

For algebra Ha in a Hilbert space H we define the space of functions u(ϕ) := u(ϕ(t), t), ϕ ∈
A0, t ∈ R as follows:

E(Ha) := (C∞(R;Ha))A0 = {u : A0 −→ C∞(R;Ha)}. (2.2)
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According to the definition u(ϕ) is an infinitely differentiable Ha-valued function of real
argument t ∈ R for each ϕ ∈ A0. Thus u can be considered as a function of two variables:
ϕ ∈ A0 and t ∈ R, that is,

u : A0 × R −→ Ha : u = u
(
ϕ, t

)
, ϕ ∈ A0, t ∈ R. (2.3)

and it is infinitely differentiable with respect to the second variable.
Differentiation and multiplication are defined as follows:

(uv)
(
ϕ
)
:= u

(
ϕ
)
v
(
ϕ
)
,

u(n)(ϕ) :=
dn

dtn
u
(
ϕ
)
,

ϕ ∈ A0. (2.4)

The space of the Ha-valued distributions D′(Ha) being a subset of the abstract distributions
space D′(H) is embedded in E(Ha) by the following mapping:

i : D′(Ha) −→ E(Ha), (iw)
(
ϕ
)
:= w ∗ ϕ, w ∈ D′(Ha), ϕ ∈ A0. (2.5)

Now let us introduce the functions ϕε(t) := (1/ε)ϕ(t/ε), t ∈ R, ε > 0, ϕ ∈ A0 and define
the linear manyfold of moderate elements EM(Ha) consisting of all u ∈ E(Ha) satisfying the
following condition:

(M) for each compact K ⊂ R and each n ∈ N0 there exists q ∈ N such that

sup
t∈K

∥∥∥∥ dn

dtn
u(ϕε, t)

∥∥∥∥
H

= Oε→ 0
(
ε−q

)
for each ϕ ∈ Aq. (2.6)

To complete the definition of the Colombeau algebra of abstract generalized functions we
introduce N(Ha) consisting of all elements u ∈ E(Ha) that satisfy the following condition:

(N) for each compact K ⊂ R and each n ∈ N0 there exists p ∈ N such that

sup
t∈K

∥∥∥∥ dn

dtn
u(ϕε, t)

∥∥∥∥
H

= Oε→ 0
(
εq−p

)
for each ϕ ∈ Aq, q ≥ p. (2.7)

Elements of the space EM(Ha) form a differential algebra, andN(Ha) is the differential ideal
in it. Now define the factor algebra

G(Ha) :=
EM(Ha)
N(Ha)

. (2.8)

Similarly to G(R) (see, e.g., [6]), the algebra G(Ha) is an associative and commutative Ha-
valued differential one. Elements of G(Ha) are classes of mappings. We denote them by
capitalsU,V, . . . and denote representatives of classU ∈ G(Ha) by corresponding small letter
u.

Due to the structure theorems for abstract distributions [10], similarly to the R-valued
case, we obtain that i maps the elements of D′(Ha) into EM(Ha) and i−1(N(Ha)) consists of
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the null element of D′(Ha). Thus, each element of D′(Ha) is imbedded in the corresponding
class of G(Ha) by the mapping i.

Support of an elementU ∈ G(Ha) is defined as follows. We say thatU is equal to zero
on an open set Λ ⊂ R if its restriction to GΛ(Ha) is equal to zero in GΛ(Ha) (where algebra
GΛ(Ha) is defined in the same way as GΛ(Rn) [6]). If w ∈ D′(Ha), then, similarly to the case
of D′(R), support of iw ∈ G(Ha) coincides with that of w ∈ D′(Ha).

Now defineG(Ω,Ha), the algebra ofG(Ha)-valued random variables {U = U(ω), ω ∈
(Ω,B(Ω), μ)} as a mapping from (Ω,B(Ω), μ) to G(Ha) measurable in the following sense:
there exists a representative u ∈ U such that for any ϕ ∈ A0u

−1(ϕ, ·) maps any Borel subset
of B(C∞(Ha)) onto an element of B(Ω), where the Borel σ-algebra B(C∞(Ha)) on the space
C∞(Ha) is generated by the system of neighborhoods in C∞(Ha) defined by the system of
seminorms pn,k(f) = supt∈[−n,n]‖f (k)(t)‖H .

To complete the setting of the problem we define the generalized white noise process
W = W(·, ω) for each ω ∈ Ω, as an element in D′

+(H), and the space of abstract distributions
with values in H and supports in [0,∞), and then transform it into an element of G(Ω,Ha).

One way to do this is based on the ideas of abstract stochastic distributions (see, e.g.,
[8, 9]). Let S = S(R) be the space of rapidly decreasing test functions. Denote by S′(H) the
space of H-valued distributions over S and consider a Borel σ-algebra B(Ω) generated by the
weak topology of Ω := S′(H). Then by the generalization of the Bochner–Minlos theorem to
the case of Hilbert space valued generalized functions [11], there exist a unique probability
measure μ on B(Ω) and a trace class operator Q satisfying the condition as follows

∫
Ω
ei(〈ω,θ〉,h)

Hdμ(ω) = e−(1/2)‖θ‖
2(Qh,h), θ ∈ S, h ∈ H. (2.9)

(Here and below, if it is not pointed out especially, ‖ · ‖ denotes the norm of L2(R)).
It makes possible to define the white noise process on (Ω,B(Ω), μ) with values in

S′(H) ⊂ D′(H) by the identical mapping as follows:

〈W(·, ω), θ(·)〉 := 〈ω, θ〉, θ ∈ S. (2.10)

The above-defined process is the generalization of the corresponding real-valued Gaussian
process [12], and it has zero mean and Cov〈W,θ〉 = ‖θ‖2Q. DefineW+ with support in [0,∞)
as follows:

〈W+(·, ω), θ(·)〉 := (−1)k
〈(

χ ·W (−k)
)
(·), θ(k)(·)

〉
, θ ∈ S. (2.11)

Here W (−k) is a continuous function that according to the structure theorem is a primitive of
W of an order k and χ is the Heaviside function.

Another way to define a generalized H-valued white noise on a (Ω,B(Ω), μ), more
precisely Q-white noise, is via derivative of H-valued Q-Wiener process {WQ(t), t ≥ 0} [9]
continued by zero on (−∞, 0) as follows:

〈W+(·, ω), θ〉 := −〈WQ(·, ω), θ′〉, θ ∈ D. (2.12)
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Finally, we map the defined generalized white noise process into the Colombeau
algebra G(Ω,Ha) in the following manner. By convolution with a function from A0 we
transform W+(·, ω) ∈ D′(H) into the infinitely differential with respect to t ∈ R and
measurable with respect to ω ∈ Ω function w as follows:

w
(
ϕ, t, ω

)
:= 〈W+(·, ω), ϕ(t − ·)〉, ϕ ∈ A0, t ∈ R. (2.13)

So, w(ϕ, ·, ω) ∈ C∞(R,H), ϕ ∈ A0, ω ∈ Ω a.s., and w(ϕ, ·, ·) ∈ C∞(R, L2(Ω,H)).
Let B ∈ L(H,Ha), and then applying B to w we obtain that Bw(ϕ, t, ω) ∈ Ha and the

map

Bw
(
ϕ, ·, ·) : A0 −→ C∞(R, L2(Ω,Ha)) (2.14)

are representative of a class in G(Ω,Ha). The corresponding class we denote by BW . Since
the support of W+ ∈ D′(H) is [0;∞), by definition of support of an element of G(Ω,Ha) we
have suppBW = [0;∞). That is the sense we attach to the stochastic term in (1.1).

3. Solutions to the Cauchy Problem with Infinitely
Differentiable Nonlinearities

Let H = H = L2(R) and the domain of A lie in the set of continuous functions of L2(R). Let
Ha be the set of finitely many times differentiable functions of L2(R) and Ha ⊆ domA. Then
multiplication of elements of L2(R) is well defined on the set L2(R) ∩ domA as pointwise
continuous functions multiplication.

In this section for the problem (1.1), where nonlinearity F is infinitely differentiable,
bounded with all its derivatives, and has the property F(0) = 0 and where stochastic
term BW is constructed above, we will search a solution as an element of the abstract
stochastic Colombeau algebra G(Ω,Ha). Since Ha is chosen as the set of finitely many times
differentiable functions in L2(R), operator B ∈ L(H,Ha) can be taken, for example, as
convolution with a finitely many times differentiable function from L2(R) and with condition
of the convolution existence.

Suppose at the beginning that A generates a C0-semigroup {V (t), t ≥ 0} in L2(R).
Consider the question whether there is a solution to the problem

Y ′ = AY + F(Y ) + BW, suppY ⊆ [0,∞), (3.1)

as an element of algebra G(Ω,Ha). To do this, for an arbitrary η > 0, we consider Bw(t) :=
Bw(ϕ, t, ω), ϕ ∈ A0, ω ∈ Ω, with support in [−η,∞) as a representative of the white noise
term BW ∈ G(Ω,Ha) [7]. By definition of elements of G(Ω,Ha), for each fixed ϕ ∈ A0, Bw(t)
is an infinitely differentiable function of t ∈ R with values inHa and measurable with respect
to ω ∈ Ω. Let us take an arbitrary ϕ ∈ A0 and consider the problem

y′(t) = Ay(t) + F
(
y(t)

)
+ Bw(t), t ≥ −η, y(t) = 0, t ≤ −η, (3.2)

where y(t) = y(ϕ, t, ω), ϕ ∈ A0, ω ∈ Ω. We will search a solution of this problem belonging
to C∞([−η;∞); domA) for ω a.s.
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Consider the equation

y(t) =
∫ t

−η
V (t − s)F

(
y(s)

)
ds +

∫ t

−η
V (t − s)Bw(s)ds =: Qy(t), t ≥ −η. (3.3)

The introduced operator Q is a Volterra type one. Using the differentiability of F and
boundedness of its derivative let us show that Qk (where k = k(T)) is a contraction on the
segment [−η; T].

Since F is differentiable, we have F(μ)−F(λ) = F ′(ξ)(μ−λ), ξ ∈ (μ;λ), for any μ, λ ∈ R.
Then for any y(·) and z(·)we get the pointwise equality

F
(
y(s)

) − F(z(s)) = F ′(ξ)
(
y(s) − z(s)

)
, s ∈ [−η;∞)

, (3.4)

where ξ is an appropriate point from (y(s); z(s)) and the following estimate holds:

∥∥F(y(s)) − F(z(s))
∥∥ ≤ L

∥∥y(s) − z(s)
∥∥, L = max

ξ∈R

∣∣F ′(ξ)
∣∣. (3.5)

This and exponential boundedness of C0 semigroups:

‖V (t)‖L(L2(R)) ≤ Ceat, (3.6)

for each t ∈ [−η;∞) imply that

∥∥Qy(t) − Qz(t)
∥∥ ≤ CLea(t+η)

(
t + η

)
max
s∈[−η;t]

∥∥y(s) − z(s)
∥∥. (3.7)

For squares we have

Q2y(t) − Q2z(t) =
∫ t

−η
V (t − s)F

(Q(
y(s)

))
ds −

∫ t

−η
V (t − s)F(Q(z(s)))ds

=
∫ t

−η
V (t − s)

[
F
(Q(

y(s)
)) − F(Q(z(s)))

]
ds.

(3.8)

Then we have

∥∥∥Q2y(t) − Q2z(t)
∥∥∥ ≤ C2L2e2a(t+η)

(
t + η

)2
2

max
s∈[−η;t]

∥∥y(s) − z(s)
∥∥, (3.9)

and for every k ∈ N

∥∥∥Qky(t) − Qkz(t)
∥∥∥ ≤ CkLkeka(t+η)

(
t + η

)k
k!

max
s∈[−η;t]

∥∥y(s) − z(s)
∥∥, (3.10)
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hence

max
t∈[−η;T]

∥∥∥Qky(t) − Qkz(t)
∥∥∥ ≤ CkLkeka(T+η)

(
T + η

)k
k!

max
t∈[−η;T]

∥∥y(t) − z(t)
∥∥. (3.11)

The constant in this estimate can be made less then unity by choosing k = k(T). Thus Qk is
the contraction, and the sequence of approximations yn(t) = Qnky0(t) has the limit inH:

y(t) = lim
n→∞

Qnky0(t), (3.12)

uniform with respect to t ∈ [−η; T].
Note that if one takes an infinitely differentiable with respect to t function y0(·) as the

first point for the approximating sequence, then function

z(t) = Qy0(t) =
∫ t

−η
V (t − s)F

(
y0(s)

)
ds +

∫ t

−η
V (t − s)Bw(s)ds, t ≥ −η, (3.13)

is also an infinitely differentiable with respect to t function, and consequently y1(·) = Qky0(·)
has the same property as well as all subsequent iterations yn(·).

It can be shown by the same arguments that the sequence y′
n(·) converges to its limit in

H uniformly with respect to t ∈ [−η; T]; hence y(·) is differentiable and y′(t) = limn→∞y′
n(t).

Similarly it can be shown that y(·) is infinitely differentiable function with values in H.
Now we show that yn(t) ∈ Ha if y0(t) ∈ Ha, t ≥ 0. Let t ≥ 0 be fixed. Note firstly

that F(α) = O(α) as α → 0. Really, due to the infinite differentiability of F and property
F(0) = 0F(α) can be repersented by the Taylor series with first term proportional to α. Then,
since y0(t) ∈ Ha, it is differentiable with respect to variable of L2(R), and y0(t) → 0 as
variable of L2(R) tends to infinity. Thus, F(y0(t)) = O(y0(t)) as variable of L2(R) tends to
infinity.

Further, semigroup operators V (t) map L2(R) into L2(R), and, moreover, they map
differentiable functions (with respect to variable of L2(R)) into the set of differentiable ones
due to their boundness. It follows that

V (t − s)F
(
y0(s)

)
: Ha −→ Ha, V (t − s)Bw(s) ∈ Ha, (3.14)

hence Q acts inHa and y1(t) = Qky0(t) ∈ Ha as well as yn(t) for any n ∈ N.
Thus, we obtain yn(t) ∈ Ha, but in the general case limn→∞yn(t) = y(t) does not

belong toHa since algebra Ha is not closed in the sense of L2(R) convergence.
If y(t) ∈ Ha, then we show that it is a representative of a class from G(Ω,Ha). As it is

known (see, e.g., [4]), if F(·) is a differentiable function or F(t) ∈ domA for any t ≥ 0, then
solution of the inhomogeneous abstract Cauchy problem

u′(t) = Au(t) + F(t), t ≥ 0, u(0) = 0, (3.15)

with A generating a C0 semigroup of operators {V (t), t ≥ 0} exists and is defined by the
formulae u(t) =

∫ t
0 V (t−s)F(s)ds. Since in the case under consideration F(y(t)) as well as any
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representative Bw(t) of white noise process are L2(R)-valued infinitely differentiable with
respect to t functions, the solution of (3.3) is a solution to the problem (3.2).

Due to the property of C0 semigroup V (t) = 0 as t < 0, it follows from (3.3) that
y(t) = 0 as t ≤ −η; that is, support of the obtained solution lies in [−η;∞).

Now we show that y is a representative of a class Y ∈ G(Ω,Ha), that means that it
satisfies the condition (M) almost everywhere. It follows from differentiability of F and the
condition F(0) = 0 that for each s ∈ [−η; t] the following equality

F
(
y
(
ϕ, s,ω

))
= F

(
y
(
ϕ, s,ω

)) − F(0) = F ′(ξ)y
(
ϕ, s,ω

)
, (3.16)

where ξ ∈ (0;y(ϕ, s,ω)), ϕ ∈ A0, ω ∈ Ω, holds. Now for an arbitrary compact K ⊂ R from
(3.3) we obtain that

max
t∈K

∥∥y(ϕε, t, ω
)∥∥ ≤ Cmax

t∈K
ea(t+η)

∥∥Bw(
ϕε, t, ω

)∥∥

+ Cmax
ξ∈R

∥∥F ′(ξ)
∥∥max

t∈K
ea(t+η)

∫ t

−η

∥∥y(ϕε, s, ω
)∥∥ds,

(3.17)

and due to boundedness of F ′ we have

max
t∈K

∥∥y(ϕε, t, ω
)∥∥ ≤ C1max

t∈K

∥∥Bw(
ϕε, t, ω

)∥∥ + C2max
t∈K

∫ t

−η

∥∥y(ϕε, s, ω
)∥∥ds. (3.18)

Since Bw is a representative of class BW from G(Ω,Ha), the first term in the right-hand side
of the inequality for every ϕ ∈ Aq increases as ε → 0 not faster than ε−q for some q ∈ N.
Then, due to Gronwall-Bellmann inequality the left-hand side behaves in the same way, that
proves the condition (M) with n = 0. Let us remind that the Gronwall-Bellmann inequality
states that if

y(t) ≤ c +
∫ t

t0

f(s)y(s)ds, c > 0, t > t0, (3.19)

for positive continuous functions y and f , than y(t) ≤ ce
∫ t
t0
f(s)ds. Behavior of derivatives of

y(·) can be checked up in the same manner using that F is infinitely differentiable and its
derivatives are bounded.

Now let us show that supp Y ⊆ [0;∞). To do this we consider two solutions of (3.2)
yη1(·) and yη2(·) corresponding η1 /=η2 and verify that difference yη1(·) − yη1(·) belongs to
N(Ha). Note that η = max{η1, η2}. Then we have

y′
η1(t) − y′

η2(t) = A
(
yη1(t) − yη2(t)

)
+ F

(
yη1(t)

) − F
(
yη2(t)

)
+ g(t), t ≥ −η,

yη1(t) − yη2(t) = 0, t ≤ −η,
(3.20)
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where g ∈ N(Ha) as the difference of two representatives of the stochastic term BW whose
support is in [0;∞). Then, similar to (3.18), we obtain the following estimation:

max
t∈K

∥∥yη1

(
ϕε, t, ω

) − yη2

(
ϕε, t, ω

)∥∥ ≤ C1max
t∈K

∥∥g(ϕε, t, ω
)∥∥

+ C2max
t∈K

∫ t

−η

∥∥yη1

(
ϕε, s, ω

) − yη2

(
ϕε, t, ω

)∥∥ds.
(3.21)

Since the first term satisfies to (N), Gronwall-Bellman lemma implies that yη1(t) − yη2(t) ∈
N(Ha), so suppY ⊆ [0;∞).

Now we show that the solution of (3.1) is unique in the algebra G(Ω,Ha). Let Y1, Y2 ∈
G(Ω,Ha)with support in [0;∞) be two solutions of (3.1). Then for any representatives y1, y2

of these classes and each η > 0 the following relations hold:

y′
1(t) − y′

2(t) = A
(
y1(t) − y2(t)

)
+ F

(
y1(t)

) − F
(
y2(t)

)
+ g(t), t ≥ −η,

y1(t) − y2(t) ∈ N(Ha), t ≤ −η,
(3.22)

where g is an element of N(Ha). Then, as above, Gronwall-Bellman Lemma implies that
y1(t) − y2(t) ∈ N(Ha), that is Y1 − Y2 = 0 in G(Ω,Ha).

Taking into account that the linear Cauchy problem, corresponding to (1.1) has the
following form in spaces of distributions:

〈
X′, ϕ

〉
=
〈
δ, ϕ

〉
f +

〈
AX,ϕ

〉
+
〈
BW,ϕ

〉
, ϕ ∈ D, (3.23)

and the required solution to the Cauchy problem (1.1) in G(Ω,Ha) is related with the
obtained Y as follows: X(t) = Y (t) + (V ∗ iδ)(t)f , t ≥ 0, f ∈ Ha.

In the general case since the limit of yn(t) /∈ Ha, we obtain only the approximated
solutions of (3.3)—the fundamental sequence {yn} obtained by the following equalities

yn(t) = Qkyn−1(t), t ≤ −η. (3.24)

So, we get the following result.

Theorem 3.1. LetA be the generator of aC0-semigroup {V (t), t ≥ 0} in L2(R). Let F be an infinitely
differentiable function in R, bounded with all its derivatives and F(0) = 0. Let B ∈ L(L2(R),Ha) and
BW be an element of G(Ω,Ha) with representative Bw defined by (2.13). Then for any η > 0 and
ϕ ∈ A0 there exists the unique solution of (3.2) y ∈ C∞([−η;∞);H). If y ∈ C∞([−η;∞);Ha), then
(3.1) has the unique solution in algebra G(Ω,Ha). In this case the solution to the Cauchy problem
(1.1) in G(Ω,Ha) is X = Y + (V ∗ iδ)f for any f ∈ Ha.

Now consider the case of A generating an integrated semigroup. If operator A
generates an exponentially bounded n-times integrated semigroup {Vn(t), t ≥ 0}, then
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solution operators V (t) of homogeneous Cauchy problem are defined as follows: 〈V, ϕ〉 =
(−1)n〈Vn, ϕ〉, ϕ ∈ D, and instead of (3.3)we have the following equation:

y
(
ϕ, t, ω

)
=

∫ t

−η
Vn(t − s)F(n)(y(ϕ, s,ω))

ds

+
∫ t

−η
Vn(t − s)(Bw)(n)

(
ϕ, s,ω

)
ds, ϕ ∈ A0, ω ∈ Ω, t ≥ −η.

(3.25)

Here all derivatives (in t) exist due to infinite differentiability of F and Bw. Using the equality,
similarly to the case of semigroups of class C0, we obtain the corresponding approximations
yn and the solution in G(Ω,Ha) if the limit of yn(t) belongs toHa.

4. Conclusions

In conclusion we note that the present paper is only the beginning of researches of abstract
stochastic equations with nonlinearities in Colombeau algebras. Among important questions
that remain open and are supposed to be investigated in future are convergence of solutions
y(ϕε) as ε → 0, equations with generators of more general regularized semigroups, and
equations in arbitrary Hilbert spaces.
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