
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2013, Article ID 109754, 7 pages
http://dx.doi.org/10.1155/2013/109754

Research Article
The Ulam Type Stability of a Generalized Additive
Mapping and Concrete Examples

Hiroyoshi Oda,1 Makoto Tsukada,1 Takeshi Miura,2 Yuji Kobayashi,3 and Sin-Ei Takahasi4

1 Department of Information Sciences, Toho University, Funabashi, Chiba 274-8501, Japan
2 Yamagata University, Yonezawa, Yamagata 273-0866, Japan
3 Toho University, Funabashi, Chiba 274-8501, Japan
4Toho University, Yamagata University, Funabashi, Chiba 273-0866, Japan

Correspondence should be addressed to Makoto Tsukada; tsukada@is.sci.toho-u.ac.jp

Received 27 December 2012; Accepted 21 February 2013

Academic Editor: Irena Lasiecka

Copyright © 2013 Hiroyoshi Oda et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We give anUlam type stability result for the following functional equation:𝑓(𝛼𝑥−𝛼𝑥󸀠+𝑥
0
) = 𝛽𝑓(𝑥)−𝛽𝑓(𝑥󸀠)+𝑦

0
(for all 𝑥, 𝑥󸀠 ∈ 𝑋)

under a suitable condition. We also give a concrete stability result for the case taking up 𝛿‖𝑥‖𝑝‖𝑥󸀠‖
𝑞 as a control function.

1. Introduction

In 1940, Ulam [1] proposed the following stability problem:
“When is it true that a function which satisfies some func-
tional equation approximatelymust be close to one satisfying
the equation exactly?” Next year, Hyers [2] gave an answer to
this problem for additive mappings between Banach spaces.
Furthermore, Aoki [3] and Rassias [4] obtained indepen-
dently generalized results of Hyers’ theorem which allow the
Cauchy difference to be unbounded.

Let 𝑋 and 𝑌 be normed spaces over K, which denotes
either the real field R or the complex field C. Throughout
the paper, we fix scalars 𝑎, 𝑏, 𝑐, 𝑑 ∈ K \ {0} and vectors
𝑥
0

∈ 𝑋 and 𝑦
0

∈ 𝑌. We say that a mapping 𝑓 of 𝑋 into 𝑌
is (𝑎, 𝑏, 𝑐, 𝑑; 𝑥

0
, 𝑦
0
)-additive if

𝑓 (𝑎𝑥 + 𝑏𝑥󸀠 + 𝑥
0
) = 𝑐𝑓 (𝑥) + 𝑑𝑓 (𝑥󸀠) + 𝑦

0
(1)

for all 𝑥, 𝑥󸀠 ∈ 𝑋. When 𝑥
0

= 𝑦
0

= 0, we say it to be
(𝑎, 𝑏, 𝑐, 𝑑)-additive. Aczél [5] specified what this generalized
Cauchy equation is. The Ulam type stability problem for
such an 𝑓 has been investigated in [6–8]. However, these
results have been obtained in cases where either 𝑎 + 𝑏 ̸= 0
or 𝑐 + 𝑑 ̸= 0 (see Theorems A and B). In this paper, we
will investigate the problem for (𝑎, −𝑎, 𝑐, −𝑐; 𝑥

0
, 𝑦
0
)-additive

mappings, that is, in the case 𝑎 + 𝑏 = 𝑐 + 𝑑 = 0. In Section 2,
we state the details of (𝑎, −𝑎, 𝑐, −𝑐; 𝑥

0
, 𝑦
0
)-additive mappings

(Theorem 3). In Section 3, we give our main results about the
stability for them (seeTheorems 7–10). In the final section, we
apply the results to some concrete examples, where we take
up 𝛿‖𝑥‖𝑝‖𝑥󸀠‖

𝑞 as a control function 𝜀(𝑥, 𝑥󸀠) (see Corollaries
11–14).

2. (𝑎,−𝑎,𝑐,−𝑐;𝑥
0
,𝑦
0
)-Additive Mappings

The following result asserts that any (𝑎, −𝑎, 𝑐, −𝑐; 𝑥
0
, 𝑦
0
)-

additive mapping is transformed into some (𝑎, −𝑎, 𝑐, −𝑐)-
additive mapping by a certain translation and that any
(𝑎, −𝑎, 𝑐, −𝑐)-additive mapping is an additive mapping in
usual sense with some extra condition.

Proposition 1. Let 𝑓 and 𝑔 be two mappings of 𝑋 into 𝑌 such
that 𝑔(𝑥) = 𝑓(𝑥 + 𝑥

0
) − 𝑦
0
for all 𝑥 ∈ 𝑋. Then the following

three statements are equivalent:

(i) 𝑓 is (𝑎, −𝑎, 𝑐, −𝑐; 𝑥
0
, 𝑦
0
)-additive,

(ii) 𝑔 is (𝑎, −𝑎, 𝑐, −𝑐)-additive,

(iii) 𝑔 is additive and 𝑔(𝑎𝑥) = 𝑐𝑔(𝑥) for all 𝑥 ∈ 𝑋.
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Proof. (i)⇔(ii) Since

𝑓 (𝑎𝑥 − 𝑎𝑥󸀠 + 𝑥
0
)

= 𝑔 (𝑎𝑥 − 𝑎𝑥󸀠) + 𝑦
0

= 𝑔 (𝑎 (𝑥 − 𝑥
0
) − 𝑎 (𝑥󸀠 − 𝑥

0
)) + 𝑦

0
,

𝑐 (𝑥) − 𝑐𝑓 (𝑥󸀠) + 𝑦
0

= 𝑐 (𝑓 (𝑥) − 𝑦
0
) − 𝑐 (𝑓 (𝑥󸀠) − 𝑦

0
) + 𝑦
0

= 𝑐𝑔 (𝑥 − 𝑥
0
) − 𝑐𝑔 (𝑥󸀠 − 𝑥

0
) + 𝑦
0

(2)

for all 𝑥, 𝑥󸀠 ∈ 𝑋, it follows that

𝑓 : (𝑎, −𝑎, 𝑐, −𝑐; 𝑥
0
, 𝑦
0
)-additive

⇔ 𝑔(𝑎(𝑥−𝑥
0
)−𝑎(𝑥󸀠−𝑥

0
))+𝑦
0

= 𝑐𝑔(𝑥−𝑥
0
)−𝑐𝑔(𝑥󸀠−

𝑥
0
) + 𝑦
0

(for all 𝑥, 𝑥󸀠 ∈ 𝑋)

⇔ 𝑔(𝑎𝑥 − 𝑎𝑥󸀠) = 𝑐𝑔(𝑥) − 𝑐𝑔(𝑥󸀠) (for all 𝑥, 𝑥󸀠 ∈ 𝑋)

⇔ 𝑔 : (𝑎, −𝑎, 𝑐, −𝑐)-additive.

(ii)⇒(iii) Suppose that

𝑔 (𝑎𝑥 − 𝑎𝑥󸀠) = 𝑐𝑔 (𝑥) − 𝑐𝑔 (𝑥󸀠) (3)

for all 𝑥, 𝑥󸀠 ∈ 𝑋. When 𝑥 = 𝑥󸀠, we have 𝑔(0) = 0. Using
this, 𝑔(𝑎𝑥) = 𝑐𝑔(𝑥) and also 𝑔(−𝑎𝑥) = −𝑐𝑔(𝑥) for all 𝑥 ∈ 𝑋.
Therefore,

𝑔 (𝑥 + 𝑥󸀠) = 𝑔 (𝑎
𝑥

𝑎
− 𝑎 (−

𝑥󸀠

𝑎
))

= 𝑐𝑔 (
𝑥

𝑎
) − 𝑐𝑔 (−

𝑥󸀠

𝑎
)

= 𝑐𝑔 (
𝑥

𝑎
) + (−𝑐) 𝑔 (−

𝑥󸀠

𝑎
) = 𝑔 (𝑥) + 𝑔 (𝑥󸀠)

(4)

for all 𝑥, 𝑥󸀠 ∈ 𝑋.
(iii)⇒(ii) Because 𝑔(−𝑥) = −𝑔(𝑥) for all 𝑥 ∈ 𝑋 (see also

the following remark), it is trivial.

Remark 2. We denote by Q the field of all rational numbers.
It is well known that if 𝑔 is additive, then 𝑔(𝑞𝑥) = 𝑞𝑔(𝑥) for
every 𝑞 ∈ Q and 𝑥 ∈ 𝑋, that is, 𝑔 is Q-linear. Hence, if 𝑔 is
additive and continuous, 𝑔 must be R-linear. On the other
hand, when K = C, we have a lot of continuous additive
nonlinearmappings by considering the composition of linear
transformations on R2 and the R-linear isometry (𝑥, 𝑦) 󳨃→
𝑥 + 𝑖𝑦.

The constant 𝑦
0
is a trivial (𝑎, −𝑎, 𝑐, −𝑐; 𝑥

0
, 𝑦
0
)-additive

mapping of 𝑋 into 𝑌. The following theorem says that
unless it is a unique (𝑎, −𝑎, 𝑐, −𝑐; 𝑥

0
, 𝑦
0
)-additive mapping,

discontinuous one always exists.

Theorem 3. (I) If 𝑎 = 𝑐, then there exists a discontinuous
(𝑎, −𝑎, 𝑐, −𝑐; 𝑥

0
, 𝑦
0
)-additive mapping of 𝑋 into 𝑌.

(II) If 𝑎 ̸= 𝑐, then the followings hold:

(i) If both 𝑎 and 𝑐 are transcendental numbers, then there
exists a discontinuous (𝑎, −𝑎, 𝑐, −𝑐; 𝑥

0
, 𝑦
0
)-additive

mapping of 𝑋 into 𝑌.

(ii) If one of 𝑎 and 𝑐 is transcendental and the other is
algebraic, then the constant 𝑦

0
is a unique (𝑎, −𝑎, 𝑐,

−𝑐; 𝑥
0
, 𝑦
0
)-additive mapping of 𝑋 into 𝑌.

(iii) If both 𝑎 and 𝑐 are algebraic with a common minimal
polynomial, then there exists a discontinuous (𝑎, −𝑎,
𝑐, −𝑐; 𝑥

0
, 𝑦
0
)-additive mapping of 𝑋 into 𝑌.

(iv) If 𝑎 and 𝑐 are algebraic with distinct minimal poly-
nomials, then the constant 𝑦

0
is a unique (𝑎, −𝑎, 𝑐,

−𝑐; 𝑥
0
, 𝑦
0
)-additive mapping of 𝑋 into 𝑌.

Moreover, when K = R, there is no nontrivial continuous
(𝑎, −𝑎, 𝑐, −𝑐; 𝑥

0
, 𝑦
0
)-additive mapping 𝑓 of 𝑋 into 𝑌. On the

other hand, when K = C, if 𝑎 is not real and 𝑎 = 𝑐 (the
complex conjugate of 𝑐), then the mapping 𝑥 󳨃→ 𝑓(𝑥 + 𝑥

0
) −

𝑦
0
must be conjugate linear for every continuous (𝑎, −𝑎, 𝑐,

−𝑐; 𝑥
0
, 𝑦
0
)-additive mapping 𝑓 of 𝑋 into 𝑌.

In order to show Theorem 3, we need some lemmas for
K-valued (𝑎, −𝑎, 𝑐, −𝑐)-additive functions defined on K. For
any 𝑥 ∈ K, we denote by Q(𝑥) the subfield of K generated by
𝑥 overQ.

By the following proofs of Lemma 6 and Theorem 3, if
there is a discontinuous (𝑎, −𝑎, 𝑐, −𝑐; 𝑥

0
, 𝑦
0
)-additive map-

ping, then there are sufficiently many such mappings in the
sense that there exists such a mapping which separates any
Q(𝑎)-linear independent points of 𝑋.

Lemma 4. Any (𝑎, −𝑎, 𝑐, −𝑐)-additive 𝜑 ofK into itself satisfies
𝜑(𝑝(𝑎)𝑥) = 𝑝(𝑐)𝜑(𝑥) for all 𝑥 ∈ K and 𝑝(𝑋) ∈ Q[𝑋].

Proof. Note that 𝜑 is additive and 𝜑(𝑎𝑥) = 𝑐𝜑(𝑥) for each
𝑥 ∈ K by Proposition 1. Let 𝑝(𝑋) = 𝑎

0
+𝑎
1
𝑋+⋅ ⋅ ⋅+𝑎

𝑛
𝑋𝑛 with

𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
∈ Q. Since 𝜑 isQ-linear,

𝜑 (𝑝 (𝑎) 𝑥) = 𝑎
0
𝜑 (𝑥) + 𝑎

1
𝜑 (𝑎𝑥) + ⋅ ⋅ ⋅ + 𝑎

𝑛
𝜑 (𝑎𝑛𝑥)

= 𝑎
0
𝜑 (𝑥) + 𝑎

1
𝑐𝜑 (𝑥) + ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑐𝑛𝜑 (𝑥)

= 𝑝 (𝑐) 𝜑 (𝑥)

(5)

for all 𝑥 ∈ K.

Lemma5. Let𝐸 and𝐹 be subfields ofK and𝜓 an isomorphism
of 𝐸 onto 𝐹.Then,𝜓 has an additive bijective extension 𝜑 to the
full space K such that

𝜑 (𝜀𝑥) = 𝜓 (𝜀) 𝜑 (𝑥) (6)

for all 𝜀 ∈ 𝐸 and 𝑥 ∈ K. Moreover, one has a discontinuous one
whenever R \ 𝐸 ̸= 0.

Proof. Let {𝑒
𝑗

: 𝑗 ∈ 𝐽} and {𝑓
𝑗

: 𝑗 ∈ 𝐽󸀠} be an𝐸-linear base and
an𝐹-linear base ofK, respectively. Because both of themhave
same cardinality, we take 𝐽 = 𝐽󸀠. Moreover, we may assume
without loss of generality that 𝑒

𝑗0
= 𝑓
𝑗0

= 1 for some 𝑗
0

∈ 𝐽.
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For any 𝑥 ∈ K, there exist a finite 𝐼 ⊂ 𝐽 and {𝑥
𝑖
}
𝑖∈𝐼

⊆ 𝐸 such
that

𝑥 = ∑
𝑖∈𝐼

𝑥
𝑖
𝑒
𝑖
, (7)

and this decomposition is unique. Hence, we can define 𝜑 :
K → K by

𝜑 (𝑥) = ∑
𝑖∈𝐼

𝜓 (𝑥
𝑖
) 𝑓
𝑖
. (8)

This 𝜑 is a desired extension.
In order to get a discontinuous extension, we consider the

base {𝑒
𝑗

: 𝑗 ∈ 𝐽} and {𝑓
𝑗

: 𝑗 ∈ 𝐽} such that 𝑓
𝑗1

̸= 𝑒
𝑗1

∈ R \ 𝐸
for some 𝑗

1
∈ 𝐽. BecauseQ ⊆ 𝐸, take a rational sequence {𝜀

𝑛
}

converging to 𝑒
𝑗1
. Suppose that 𝜑 is continuous. Then,

𝜑 (𝜀
𝑛
) 󳨀→ 𝜑 (𝑒

𝑗1
) = 𝑓
𝑗1

,

𝜑 (𝜀
𝑛
) = 𝜓 (𝜀

𝑛
) = 𝜀
𝑛

󳨀→ 𝑒
𝑗1

,
(9)

as 𝑛 → ∞. This is contradiction. Thus 𝜑 is discontinuous.

Lemma 6. Suppose that 𝑎 ̸= 𝑐.

(i) If both 𝑎 and 𝑐 are transcendental numbers, then there
exists a discontinuous (𝑎, −𝑎, 𝑐, −𝑐)-additive function
of K into itself.

(ii) If one of 𝑎 and 𝑐 is transcendental and the other is
algebraic, then the constant 0 is a unique (𝑎, −𝑎, 𝑐, −𝑐)-
additive function of K into itself.

(iii) If both 𝑎 and 𝑐 are algebraic with a common min-
imal polynomial, then there exists a discontinuous
(𝑎, −𝑎, 𝑐, −𝑐)-additive function of K into itself.

(iv) If 𝑎 and 𝑐 are algebraic with distinct minimal polyno-
mials, then the constant 0 is a unique (𝑎, −𝑎, 𝑐, −𝑐)-
additive function of K into itself.

Moreover, whenK = R, every nontrivial (𝑎, −𝑎, 𝑐, −𝑐)-additive
function of K into itself is discontinuous. On the other hand,
when K = C, if 𝑎 is not real and 𝑎 = 𝑐, then any continuous
(𝑎, −𝑎, 𝑐, −𝑐)-additive function𝑓 ofC into itself must be of form
𝑓(𝑥) = 𝛼𝑥 (𝑥 ∈ C) for some 𝛼 ∈ C.

Proof. (i) Suppose that both 𝑎 and 𝑐 are transcendental.Then,
Q(𝑎) (resp.,Q(𝑐)) is isomorphic to the rational function field
in indeterminate 𝑎 (resp., 𝑐). So, the substitution 𝑎 → 𝑐
induces an isomorphism 𝜑

𝑎𝑐
: Q(𝑎) → Q(𝑐) of fields.

By Lemma 5, because R \ Q(𝑎) ̸= 0, 𝜑
𝑎𝑐
has a discontinuous

additive extension 𝜑 to K such that 𝜑(𝜀𝑥) = 𝜑
𝑎𝑐

(𝜀)𝜑(𝑥) for
every 𝜀 ∈ Q(𝑎) and 𝑥 ∈ K. Then, 𝜑(𝑎𝑥) = 𝜑

𝑎𝑐
(𝑎)𝜑(𝑥) =

𝑐𝜑(𝑥) for all 𝑥 ∈ K, and, hence, 𝜑 is (𝑎, −𝑎, 𝑐, −𝑐)-additive by
Proposition 1.

(ii) Let 𝜑 be any (𝑎, −𝑎, 𝑐, −𝑐)-additive function. If 𝑎 is
transcendental and 𝑐 is algebraic with nonzero polynomial
such that 𝑝(𝑐) = 0, then from Lemma 4, we have

𝜑 (𝑥) = 𝜑 (𝑝 (𝑎) 𝑝(𝑎)
−1𝑥) = 𝑝 (𝑐) 𝜑 (𝑝(𝑎)

−1𝑥) = 0 (10)

for all 𝑥 ∈ K. If 𝑐 is transcendental and 𝑎 is algebraic with
nonzero polynomial such that 𝑞(𝑎) = 0, then from Lemma 4,
we have

𝜑 (𝑥) =
1

𝑞 (𝑐)
𝑞 (𝑐) 𝜑 (𝑥) =

1

𝑞 (𝑐)
𝜑 (𝑞 (𝑎) 𝑥) =

1

𝑞 (𝑐)
𝜑 (0) = 0

(11)

for all 𝑥 ∈ K.
(iii) If 𝑎 is algebraic with minimal polynomial 𝑝(𝑋) ∈

Q[𝑋], then Q(𝑎) consists of all polynomials 𝑓(𝑎) in 𝑎 of
degree up to deg 𝑝 − 1. So, if 𝑐 is also algebraic with the same
minimal polynomial 𝑝, then the substitution 𝑎 → 𝑐 induces
an automorphism 𝜑

𝑎𝑐
: Q(𝑎) → Q(𝑐) = Q(𝑎). As same as

(i), 𝜑
𝑎𝑐
has a discontinuous (𝑎, −𝑎, 𝑐, −𝑐)-additive extension.

(iv) Suppose that 𝑎 and 𝑐 are algebraic with distinct
minimal polynomials 𝑝 and 𝑞 over the field Q, respectively.
Let 𝜑 be any (𝑎, −𝑎, 𝑐, −𝑐)-additive function. To show 𝜑 =
0, we assume, on the contrary, that there is an 𝑥

0
∈ K

with 𝜑(𝑥
0
) ̸= 0. Then, from Lemma 5, we have 𝑝(𝑐)𝜑(𝑥

0
) =

𝜑(𝑝(𝑎)𝑥
0
) = 𝜑(0) = 0, and hence 𝑝(𝑐) = 0. This contradicts

the prerequisite for 𝑎 and 𝑐. Hence, 𝜑 must be zero.
When K = R, since every continuous additive function

is R-linear and 𝑎 ̸= 𝑐, there is no continuous (𝑎, −𝑎, 𝑐, −𝑐)-
additive function by Proposition 1. Now, we consider the case
K = C. Let𝜑 be a nontrivial continuous (𝑎, −𝑎, 𝑐, −𝑐)-additive
function. Note that 𝜑 is R-linear. If 𝑎 is not real and 𝑎 = 𝑐,
we can easily see that 𝜑(𝑖𝑥) = −𝑖𝜑(𝑥) for all 𝑥 ∈ C. Thus,
𝜑 is conjugate linear, and hence 𝜑(𝑥) = 𝛼𝑥 (𝑥 ∈ C), where
𝛼 = 𝜑(1).

Proof of Theorem 3. (I) We assume without loss of generality
that 𝑥

0
= 𝑦
0

= 0 with the help of Proposition 1. Given an
(𝑎, −𝑎, 𝑐, −𝑐)-additive function 𝜑, take a 𝑦

1
∈ 𝑌 with ‖𝑦

1
‖ = 1

and a nonzero functional ℎ in 𝑋∗, the dual space of 𝑋. Put

𝑓 (𝑥) = 𝜑 (ℎ (𝑥)) 𝑦
1

(𝑥 ∈ 𝑋) . (12)

Then, we can easily see that 𝑓 is an (𝑎, −𝑎, 𝑐, −𝑐)-additive
mapping of 𝑋 into 𝑌. Also, if 𝜑 is discontinuous, then so is
𝑓. In fact, if 𝜑 is discontinuous, we can find a sequence {𝑎

𝑛
}

in K such that lim
𝑛→∞

𝑎
𝑛

= 0 and |𝜑(𝑎
𝑛
)| ≥ 1 (𝑛 = 1, 2, . . .).

Choose an 𝑥
1
in 𝑋 with ℎ(𝑥

1
) = 1 and put 𝑥

𝑛
= 𝑎
𝑛
𝑥
1
for

each 𝑛 ∈ N. Then, ‖𝑥
𝑛
‖ = |𝑎

𝑛
| ‖𝑥
1
‖ → 0 as 𝑛 → ∞ and

‖𝑓(𝑥
𝑛
)‖ = |𝜑(𝑎

𝑛
)| ≥ 1 (𝑛 = 1, 2, . . .), so 𝑓 is discontinuous, as

required.ThereforeTheorem 3(I), (II)-(i), and (II)-(iii) follow
easily from Lemmas 4 and 6.

Given an (𝑎, −𝑎, 𝑐, −𝑐)-additive mapping 𝑓 of 𝑋 into 𝑌,
take 𝑥 ∈ 𝑋 and ℎ ∈ 𝑌∗ arbitrarily, and put 𝜑(𝑡) = ℎ(𝑓(𝑡𝑥))
for each 𝑡 ∈ K. Then, 𝜑 : K → K is (𝑎, −𝑎, 𝑐, −𝑐)-additive. If
𝜑 = 0 for each ℎ ∈ 𝑌∗ and 𝑥 ∈ 𝑋, then 𝑓 = 0 by the Hahn-
Banach theorem. Therefore, Theorem 3(II)-(ii) and (II)-(iv)
follow easily from Lemma 6. The final assertion in (II) also
follows from Lemma 6 and its proof.

3. A Stability of Generalized
Additive Mappings

In this section, we consider a couple of cases which are left out
in [8] about the Ulam type stability. We take a nonnegative
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function 𝜀 (say a control function) on 𝑋×𝑋 and also a certain
nonnegative function 𝛿 on𝑋which depends on 𝜀.We say that
a system of all (𝑎, 𝑏, 𝑐, 𝑑; 𝑥

0
, 𝑦
0
)-additive mappings is strictly

(𝜀, 𝛿)-stable whenever the following statement is true:
“If a mapping 𝑓 of 𝑋 into 𝑌 satisfies

󵄩󵄩󵄩󵄩󵄩𝑓 (𝑎𝑥 + 𝑏𝑥󸀠 + 𝑥
0
) − 𝑐𝑓 (𝑥) − 𝑑𝑓 (𝑥󸀠) − 𝑦

0

󵄩󵄩󵄩󵄩󵄩 ≤ 𝜀 (𝑥, 𝑥󸀠)

(†)

for all 𝑥, 𝑥󸀠 ∈ 𝑋, then there exists a unique (𝑎, 𝑏, 𝑐, 𝑑; 𝑥
0
, 𝑦
0
)-

additive mapping 𝑓
∞

such that
󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓

∞
(𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝛿 (𝑥) (‡)

for all 𝑥 ∈ 𝑋.”
Throughout the remainder of this paper, we assume that𝑌

is a Banach space.This is because all of our results depend on
the following theorems whose proofs need the Banach fixed
point theorem.

Theorem A (see [8, Theorem 3.1]). Let 𝑎 + 𝑏 ̸= 0 and 𝐾 ≥ 0
with𝐾|𝑐+𝑑| < 1. One takes a control function 𝜀which satisfies

𝜀 (𝑥, 𝑥󸀠) ≤ 𝐾𝜀 ((𝑎 + 𝑏) 𝑥 + 𝑥
0
, (𝑎 + 𝑏) 𝑥󸀠 + 𝑥

0
) (13)

for all 𝑥, 𝑥󸀠 ∈ 𝑋 and puts

𝛿 (𝑥) =
𝐾𝜀 (𝑥, 𝑥)

1 − 𝐾 |𝑐 + 𝑑|
(14)

for each 𝑥 ∈ 𝑋.
Then, the strict (𝜀, 𝛿)-stability holds for the system of (𝑎, 𝑏,

𝑐, 𝑑; 𝑥
0
, 𝑦
0
)-additive mappings.

Theorem B (see [8, Theorem 3.2]). Let 𝑐 + 𝑑 ̸= 0 and 𝐾 ≥ 0
with 𝐾 < |𝑐 + 𝑑|. One takes a control function 𝜀 which satisfies

𝜀 ((𝑎 + 𝑏) 𝑥 + 𝑥
0
, (𝑎 + 𝑏) 𝑥󸀠 + 𝑥

0
) ≤ 𝐾𝜀 (𝑥, 𝑥󸀠) (15)

for all 𝑥, 𝑥󸀠 ∈ 𝑋 and puts

𝛿 (𝑥) =
𝜀 (𝑥, 𝑥)

|𝑐 + 𝑑| − 𝐾
(16)

for each 𝑥 ∈ 𝑋.
Then, the strict (𝜀, 𝛿)-stability holds for the system of

(𝑎, 𝑏, 𝑐, 𝑑; 𝑥
0
, 𝑦
0
)-additive mappings.

Both of these theorems do not say about (𝑎, −𝑎, 𝑐,
−𝑐; 𝑥
0
, 𝑦
0
)-additive mappings at all; however, we will get the

following stability theorems for them. Theorem 7 is of the
case 𝑎 ̸= − 1, Theorem 8 is of the case 𝑏 ̸= − 1, andTheorems
9 and 10 are for (−1, 1, −1, 1; 𝑥

0
, 𝑦
0
)-additive mappings.These

cover all of the systems of (𝑎, −𝑎, 𝑐, −𝑐; 𝑥
0
, 𝑦
0
)-additive map-

pings.

Theorem 7. Let 𝑎 + 1 ̸= 0 and 𝐾 ≥ 0 with 𝐾|1 + 𝑐| < |𝑐|. One
takes a control function 𝜀 which satisfies

𝜀 (𝑥, 𝑥󸀠) ≤ 𝐾𝜀 ((𝑎−1 + 1) 𝑥 − 𝑎−1𝑥
0
, (𝑎−1 + 1) 𝑥󸀠 − 𝑎−1𝑥

0
)

(17)

for all 𝑥, 𝑥󸀠 ∈ 𝑋, and puts

𝛿 (𝑥) =
𝐾𝜀 ((𝑎−1 + 1) 𝑥 − 𝑎−1𝑥

0
, 𝑥)

|𝑐| − 𝐾 |1 + 𝑐|
(18)

for each 𝑥 ∈ 𝑋.
Then, the strict (𝜀, 𝛿)-stability holds for the system of (𝑎, −𝑎,

𝑐, −𝑐; 𝑥
0
, 𝑦
0
)-additive mappings.

Proof. Put 𝑢 = 𝑎𝑥 − 𝑎𝑥󸀠 + 𝑥
0
and 𝑢󸀠 = 𝑥󸀠 for each 𝑥, 𝑥󸀠 ∈ 𝑋.

Then, (†) changes into
󵄩󵄩󵄩󵄩󵄩𝑓 (𝑎−1𝑢 + 𝑢󸀠 − 𝑎−1𝑥

0
) − 𝑐−1𝑓 (𝑢) − 𝑓 (𝑢󸀠) + 𝑐−1𝑦

0

󵄩󵄩󵄩󵄩󵄩

≤ 𝜀
1

(𝑢, 𝑢󸀠) ,
(19)

where

𝜀
1

(𝑢, 𝑢󸀠) =
1

|𝑐|
𝜀 (𝑎−1𝑢 + 𝑢󸀠 − 𝑎−1𝑥

0
, 𝑢󸀠) (20)

for all 𝑢, 𝑢󸀠 ∈ 𝑋. By denoting 𝑎
1

= 𝑎−1, 𝑏
1

= 1, 𝑐
1

= 𝑐−1,
𝑑
1

= 1, 𝑢
0

= −𝑎−1𝑥
0
and V
0

= −𝑐−1𝑦
0
in (19), (†) changes up

to the following estimate of 𝑓 by the control function 𝜀
1
:

󵄩󵄩󵄩󵄩󵄩𝑓 (𝑎
1
𝑢 + 𝑏
1
𝑢󸀠 + 𝑢

0
) − 𝑐
1
𝑓 (𝑢) − 𝑑

1
𝑓 (𝑢󸀠) − V

0

󵄩󵄩󵄩󵄩󵄩 ≤ 𝜀
1

(𝑢, 𝑢󸀠)

(21)

for all 𝑢, 𝑢󸀠 ∈ 𝑋.
Under these transformations, 𝑎

1
, 𝑏
1
, 𝑐
1
, 𝑑
1
, and 𝜀

1
are

equipped with

𝑎
1

+ 𝑏
1

̸= 0, 𝐾
󵄨󵄨󵄨󵄨𝑐1 + 𝑑

1

󵄨󵄨󵄨󵄨 < 1,

𝜀
1

(𝑢, 𝑢󸀠) ≤ 𝐾𝜀
1

((𝑎
1

+ 𝑏
1
) 𝑢 + 𝑢

0
, (𝑎
1

+ 𝑏
1
) 𝑢󸀠 + 𝑢

0
)

(22)

for all 𝑢, 𝑢󸀠 ∈ 𝑋. The latter follows from the inequality in
which 𝜀 must satisfy because by using (20), we get

|𝑐| 𝜀
1

(𝑢, 𝑢󸀠) = 𝜀 (𝑎−1𝑢 + 𝑢󸀠 + 𝑢
0
, 𝑢󸀠) = 𝜀 (𝑥, 𝑥󸀠) ,

𝜀 ((𝑎−1 + 1) 𝑥 − 𝑎−1𝑥
0
, (𝑎−1 + 1) 𝑥󸀠 − 𝑎−1𝑥

0
)

= 𝜀 ((𝑎−1 + 1) 𝑥 − 𝑎−1𝑥
0
, (𝑎
1

+ 𝑏
1
) 𝑢󸀠 + 𝑢

0
)

= 𝜀 ((𝑎−1 + 1) (𝑎−1𝑢 + 𝑢󸀠 + 𝑢
0
)

−𝑎−1𝑥
0
, (𝑎
1

+ 𝑏
1
) 𝑢󸀠 + 𝑢

0
)

= 𝜀 (𝑎−1 ((𝑎
1

+ 𝑏
1
) 𝑢 + 𝑢

0
)

+ ((𝑎
1

+ 𝑏
1
) 𝑢󸀠 + 𝑢

0
)

−𝑎−1𝑥
0
, (𝑎
1

+ 𝑏
1
) 𝑢󸀠 + 𝑢

0
)

= |𝑐| 𝜀
1

((𝑎
1

+ 𝑏
1
) 𝑢 + 𝑢

0
, (𝑎
1

+ 𝑏
1
) 𝑢󸀠 + 𝑢

0
)

(23)

for all 𝑢, 𝑢󸀠 ∈ 𝑋. Since (21) and (22) hold, it follows from
Theorem A that there exists a unique (𝑎

1
, 𝑏
1
, 𝑐
1
, 𝑑
1
; 𝑢
0
, V
0
)-

additive mapping 𝑓
∞

such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓
∞

(𝑥)
󵄩󵄩󵄩󵄩 ≤

𝐾𝜀
1

(𝑥, 𝑥)

1 − 𝐾
󵄨󵄨󵄨󵄨𝑐1 + 𝑑

1

󵄨󵄨󵄨󵄨
(24)
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for all 𝑥 ∈ 𝑋. However, we can easily see the following two
assertions:

(i) 𝑓
∞
is (𝑎
1
, 𝑏
1
, 𝑐
1
, 𝑑
1
; 𝑢
0
, V
0
)-additive if and only if 𝑓

∞
is

(𝑎, −𝑎, 𝑐, −𝑐; 𝑥
0
, 𝑦
0
)-additive,

(ii) (24) is equivalent to (‡).

This completes the proof.

Theorem 8. Let 𝑐 + 1 ̸= 0 and 𝐾 ≥ 0 with 𝐾|𝑐| < |𝑐 + 1|. One
takes a control function 𝜀 which satisfies

𝜀 ((𝑎−1 + 1) 𝑥 − 𝑎−1𝑥
0
, (𝑎−1 + 1) 𝑥󸀠 − 𝑎−1𝑥

0
)

≤ 𝐾𝜀 (𝑥, 𝑥󸀠)
(25)

for all 𝑥, 𝑥󸀠 ∈ 𝑋 and puts

𝛿 (𝑥) =
𝜀 ((𝑎−1 + 1) 𝑥 − 𝑎−1𝑥

0
, 𝑥)

|𝑐 + 1| − 𝐾 |𝑐|
(26)

for each 𝑥 ∈ 𝑋.
Then the strict (𝜀, 𝛿)-stability holds for the system of (𝑎, −𝑎,

𝑐, −𝑐; 𝑥
0
, 𝑦
0
)-additive mappings.

Proof. We consider the same transformations and the same
estimate (21) of𝑓 by 𝜀

1
in the proof ofTheorem 7.Under these

transformations, we have

𝑐
1

+ 𝑑
1

̸= 0, 𝐾 <
󵄨󵄨󵄨󵄨𝑐1 + 𝑑

1

󵄨󵄨󵄨󵄨 . (27)

Moreover, for every 𝑢, 𝑢󸀠 ∈ 𝑋 we have

𝜀
1

((𝑎
1

+ 𝑏
1
) 𝑢 + 𝑢

0
, (𝑎
1

+ 𝑏
1
) 𝑢󸀠 + 𝑢

0
) ≤ 𝐾𝜀

1
(𝑢, 𝑢󸀠) , (28)

because

|𝑐| 𝜀
1

(𝑢, 𝑢󸀠) = 𝜀 (𝑎−1𝑢 + 𝑢󸀠 + 𝑢
0
, 𝑢󸀠) = 𝜀 (𝑥, 𝑥󸀠) , (29)

|𝑐| 𝜀
1

((𝑎
1

+ 𝑏
1
) 𝑢 + 𝑢

0
, (𝑎
1

+ 𝑏
1
) 𝑢󸀠 + 𝑢

0
)

= 𝜀 ((𝑎−1 + 1) 𝑥 − 𝑎−1𝑥
0
, (𝑎−1 + 1) 𝑥󸀠 − 𝑎−1𝑥

0
) .

(30)

Since (21), (27) and (28) hold, it follows fromTheorem B that
there exists a unique (𝑎

1
, 𝑏
1
, 𝑐
1
, 𝑑
1
; 𝑢
0
, V
0
)-additive mapping

𝑓
∞

such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓
∞

(𝑥)
󵄩󵄩󵄩󵄩 ≤

𝜀
1

(𝑥, 𝑥)
󵄨󵄨󵄨󵄨𝑐1 + 𝑑

1

󵄨󵄨󵄨󵄨 − 𝐾
(31)

for all 𝑥 ∈ 𝑋. This means (‡) and 𝑓
∞

is (𝑎, −𝑎, 𝑐, −𝑐; 𝑥
0
, 𝑦
0
)-

additive.

Theorem 9. Let 0 ≤ 𝐾 < 1/2. One takes a control function 𝜀
which satisfies

𝜀 (𝑥, 𝑥󸀠) ≤ 𝐾𝜀 (2𝑥 − 𝑥
0
, 2𝑥󸀠 − 𝑥

0
) (32)

for all 𝑥, 𝑥󸀠 ∈ 𝑋 and puts

𝛿 (𝑥) =
𝐾𝜀 (𝑥, 2𝑥 − 𝑥

0
)

1 − 2𝐾
(33)

for each 𝑥 ∈ 𝑋.
Then the strict (𝜀, 𝛿)-stability holds for the system of

(−1, 1, −1, 1; 𝑥
0
, 𝑦
0
)-additive mappings.

Proof. Put 𝑢 = 𝑥, 𝑢󸀠 = −𝑥 + 𝑥󸀠 + 𝑥
0
for each 𝑥, 𝑥󸀠 ∈ 𝑋. Then,

(†) changes into the following estimate of 𝑓 by the control
function 𝜀

1
:

󵄩󵄩󵄩󵄩󵄩𝑓 (𝑢 + 𝑢󸀠 − 𝑥
0
) − 𝑓 (𝑢) − 𝑓 (𝑢󸀠) + 𝑦

0

󵄩󵄩󵄩󵄩󵄩 ≤ 𝜀
1

(𝑢, 𝑢󸀠) , (34)

where

𝜀
1

(𝑢, 𝑢󸀠) = 𝜀 (𝑢, 𝑢 + 𝑢󸀠 − 𝑥
0
) . (35)

for all 𝑢, 𝑢󸀠 ∈ 𝑋. Put 𝑎
1

= 𝑏
1

= 𝑐
1

= 𝑑
1

= 1.
Under these transformations, 𝑎

1
, 𝑏
1
, 𝑐
1
, 𝑑
1
, and 𝜀

1
are

equipped with

𝑎
1

+ 𝑏
1

= 2 ̸= 0, 𝐾
󵄨󵄨󵄨󵄨𝑐1 + 𝑑

1

󵄨󵄨󵄨󵄨 = 2𝐾 < 1,

𝜀
1

(𝑢, 𝑢󸀠) ≤ 𝐾𝜀
1

((𝑎
1

+ 𝑏
1
) 𝑢 − 𝑥

0
, (𝑎
1

+ 𝑏
1
) 𝑢󸀠 − 𝑥

0
)

(36)

for all 𝑢, 𝑢󸀠 ∈ 𝑋. The latter follows from the following
inequality:

𝜀
1

(𝑢, 𝑢󸀠) = 𝜀 (𝑢, 𝑢 + 𝑢󸀠 − 𝑥
0
)

≤ 𝐾𝜀 (2𝑢 − 𝑥
0
, 2 (𝑢 + 𝑢󸀠 − 𝑥

0
) − 𝑥
0
)

= 𝐾𝜀 (2𝑢 − 𝑥
0
, (2𝑢 − 𝑥

0
) + (2𝑢󸀠 − 𝑥

0
) − 𝑥
0
)

= 𝐾𝜀
1

(2𝑢 − 𝑥
0
, 2𝑢󸀠 − 𝑥

0
)

(37)

for all 𝑢, 𝑢󸀠 ∈ 𝑋. Since (34), (36) hold, it follows from
Theorem A that there exists a unique (𝑎

1
, 𝑏
1
, 𝑐
1
, 𝑑
1
; −𝑥
0
, −𝑦
0
)-

additive mapping 𝑓
∞

such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓
∞

(𝑥)
󵄩󵄩󵄩󵄩 ≤

𝐾𝜀
1

(𝑥, 𝑥)

1 − 𝐾
󵄨󵄨󵄨󵄨𝑐1 + 𝑑

1

󵄨󵄨󵄨󵄨
(38)

for all 𝑥 ∈ 𝑋. However we can easily see the following two
assertions:

(i) 𝑓
∞

is (𝑎
1
, 𝑏
1
, 𝑐
1
, 𝑑
1
; −𝑥
0
, −𝑦
0
)-additive if and only if

𝑓
∞

is (−1, 1, −1, 1; 𝑥
0
, 𝑦
0
)-additive;

(ii) (38) is equivalent to (‡).

This completes the proof.

Theorem 10. Let 0 ≤ 𝐾 < 2. One takes a control function 𝜀
which satisfies

𝜀 (2𝑥 − 𝑥
0
, 2𝑥󸀠 − 𝑥

0
) ≤ 𝐾𝜀 (𝑥, 𝑥󸀠) (39)
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for all 𝑥, 𝑥󸀠 ∈ 𝑋 and puts

𝛿 (𝑥) =
𝜀 (𝑥, 2𝑥 − 𝑥

0
)

2 − 𝐾
(40)

for each 𝑥 ∈ 𝑋.
Then the strict (𝜀, 𝛿)-stability holds for the system of

(−1, 1, −1, 1; 𝑥
0
, 𝑦
0
)-additive mappings.

Proof. We consider the same transformation and the same
estimate (34) of 𝑓 by 𝜀

1
in the proof of Theorem 9. Under

these transformations, 𝑐
1
, 𝑑
1
and 𝜀
1
are equipped with

𝑐
1

+ 𝑑
1

= 2 ̸= 0, 𝐾 < 2 =
󵄨󵄨󵄨󵄨𝑐1 + 𝑑

1

󵄨󵄨󵄨󵄨 , (41)

𝜀
1

(2𝑢 − 𝑥
0
, 2𝑢󸀠 − 𝑥

0
)

= 𝜀 (2𝑢 − 𝑥
0
, (2𝑢 − 𝑥

0
) + (2𝑢󸀠 − 𝑥

0
) − 𝑥
0
)

= 𝜀 (2𝑥 − 𝑥
0
, 2 (𝑢 + 𝑢󸀠 − 𝑥

0
) − 𝑥
0
)

= 𝜀 (2𝑥 − 𝑥
0
, 2𝑥󸀠 − 𝑥

0
)

≤ 𝐾𝜀 (𝑥, 𝑥󸀠)

= 𝐾𝜀 (𝑢, 𝑢 + 𝑢󸀠 − 𝑥
0
)

= 𝐾𝜀
1

(𝑢, 𝑢󸀠)

(42)

for all 𝑢, 𝑢󸀠 ∈ 𝑋. So it follows that

𝜀
1

((𝑎
1

+ 𝑏
1
) 𝑢 − 𝑥

0
, (𝑎
1

+ 𝑏
1
) 𝑢󸀠 − 𝑥

0
) ≤ 𝐾𝜀

1
(𝑢, 𝑢󸀠) (43)

for all 𝑢, 𝑢󸀠 ∈ 𝑋. Since (34), (41) and (43) hold, it follows from
Theorem B that there exists a unique (𝑎

1
, 𝑏
1
, 𝑐
1
, 𝑑
1
; −𝑥
0
, −𝑦
0
)-

additive mapping 𝑓
∞

such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓
∞

(𝑥)
󵄩󵄩󵄩󵄩 ≤

𝜀
1

(𝑥, 𝑥)
󵄨󵄨󵄨󵄨𝑐1 + 𝑑

1

󵄨󵄨󵄨󵄨 − 𝐾
(44)

for all 𝑥, 𝑥󸀠 ∈ 𝑋. This means (‡) and 𝑓
∞

is (−1, 1, −1,
1; 𝑥
0
, 𝑦
0
)-additive.

4. Concrete Examples

Throughout this section, let 𝑥
0

= 𝑦
0

= 0. We fix nonnegative
constants 𝑝, 𝑞 and 𝛿 and take the control function 𝜀 defined
by 𝜀(𝑥, 𝑥󸀠) = 𝛿‖𝑥‖𝑝‖𝑥󸀠‖

𝑞 for every 𝑥, 𝑥󸀠 ∈ 𝑋.

Corollary 11. When 𝑎 + 1 ̸= 0 and |𝑎|𝑝+𝑞|𝑐 + 1| < |𝑐||𝑎 + 1|𝑝+𝑞,
one puts

𝛿󸀠 (𝑥) =
𝛿|𝑎 + 1|𝑝|𝑎|𝑞‖𝑥‖𝑝+𝑞

|𝑐| |𝑎 + 1|𝑝+𝑞 − |𝑐 + 1| |𝑎|𝑝+𝑞
(45)

for each 𝑥 ∈ 𝑋.
Then, the system of (𝑎, −𝑎, 𝑐, −𝑐)-additive mappings is

strictly (𝜀, 𝛿󸀠)-stable.

Proof. Put 𝐾 = |𝑎−1 + 1|−(𝑝+𝑞). Then 𝐾|𝑐 + 1| < |𝑐| and

𝜀 (𝑥, 𝑥󸀠) = 𝐾𝜀 ((𝑎−1 + 1) 𝑥, (𝑎−1 + 1) 𝑥󸀠) (46)

for all 𝑥, 𝑥󸀠 ∈ 𝑋. By Theorem 7, for a mapping 𝑓 of 𝑋 into 𝑌
satisfying (†) for 𝑎 = −𝑏 and 𝑐 = −𝑑, there exists a unique
(𝑎, −𝑎, 𝑐, −𝑐)-additive mapping 𝑓

∞
such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓
∞

(𝑥)
󵄩󵄩󵄩󵄩 ≤

𝐾𝛿
󵄨󵄨󵄨󵄨󵄨𝑎
−1 + 1

󵄨󵄨󵄨󵄨󵄨
𝑝

‖𝑥‖𝑝+𝑞

|𝑐| − 𝐾 |𝑐 + 1|
(47)

for all 𝑥, 𝑥󸀠 ∈ 𝑋. Because of 𝐾 = |𝑎−1 + 1|
−(𝑝+𝑞), we have the

corollary.

Corollary 12. When 𝑐 + 1 ̸= 0 and |𝑎 + 1|𝑝+𝑞|𝑐| < |𝑐 + 1||𝑎|𝑝+𝑞,
one puts

𝛿󸀠 (𝑥) =
𝛿|𝑎 + 1|𝑝|𝑎|𝑞‖𝑥‖𝑝+𝑞

|𝑎|𝑝+𝑞 |𝑐 + 1| − |𝑎 + 1|𝑝+𝑞 |𝑐|
(48)

for each 𝑥 ∈ 𝑋.
Then the system of (𝑎, −𝑎, 𝑐, −𝑐)-additive mappings is

strictly (𝜀, 𝛿󸀠)-stable.

Proof. Put 𝐾 = |𝑎−1 + 1|𝑝+𝑞. Then 𝐾|𝑐| < |𝑐 + 1| and

𝜀 ((𝑎−1 + 1) 𝑥, (𝑎−1 + 1) 𝑥󸀠) = 𝐾𝜀 (𝑥, 𝑥󸀠) (49)

for all 𝑥, 𝑥󸀠 ∈ 𝑋. By Theorem 8, for a mapping 𝑓 of 𝑋 into
𝑌 satisfying (†) for 𝑎 = −𝑏 and 𝑐 = −𝑑, there exists a unique
(𝑎, −𝑎, 𝑐, −𝑐)-additive mapping 𝑓

∞
such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓
∞

(𝑥)
󵄩󵄩󵄩󵄩 ≤

𝛿
󵄨󵄨󵄨󵄨󵄨𝑎
−1 + 1

󵄨󵄨󵄨󵄨󵄨
𝑝

‖𝑥‖𝑝+𝑞

|𝑐 + 1| − 𝐾 |𝑐|
(50)

for all 𝑥 ∈ 𝑋. Because of 𝐾 = |𝑎−1 + 1|
𝑝+𝑞, we have the

corollary.

Corollary 13. When 𝑝 + 𝑞 > 1, one puts

𝛿󸀠 (𝑥) =
2𝑞 𝛿‖𝑥‖𝑝+𝑞

2𝑝+𝑞 − 2
(51)

for each 𝑥 ∈ 𝑋.
Then, the system of (−1, 1, −1, 1)-additive mappings is

strictly (𝜀, 𝛿󸀠)-stable.

Proof. Put 𝐾 = 2−(𝑝+𝑞). Then,

𝜀 (𝑥, 𝑥󸀠) = 𝐾𝜀 (2𝑥, 2𝑥󸀠) (52)

for all 𝑥, 𝑥󸀠 ∈ 𝑋. Since 𝑝 + 𝑞 > 1, we also have 0 ≤ 𝐾 < 1/2.
By Theorem 9, for a mapping 𝑓 of 𝑋 into 𝑌 satisfying (†) for
𝑎 = 𝑐 = −1 and 𝑏 = 𝑑 = 1, there exists a unique (−1, 1, −1, 1)-
additive mapping 𝑓

∞
such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓
∞

(𝑥)
󵄩󵄩󵄩󵄩 ≤

2𝑞𝛿𝐾 ‖𝑥‖𝑝+𝑞

1 − 2𝐾
(53)

for all 𝑥 ∈ 𝑋. Because of 𝐾 = 2−(𝑝+𝑞), we have the corollary.
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Corollary 14. When 𝑝 + 𝑞 < 1, one puts

𝛿󸀠 (𝑥) =
2𝑞 𝛿‖𝑥‖𝑝+𝑞

2 − 2𝑝+𝑞
(54)

for each 𝑥 ∈ 𝑋.
Then, the system of (−1, 1, −1, 1)-additive mappings is

strictly (𝜀, 𝛿󸀠)-stable.

Proof. Put 𝐾 = 2𝑝+𝑞. Then,

𝜀 (2𝑥, 2𝑥󸀠) = 𝐾𝜀 (𝑥, 𝑥󸀠) (55)

for all 𝑥, 𝑥󸀠 ∈ 𝑋. Since 𝑝 + 𝑞 < 1, we also have 0 ≤ 𝐾 < 2.
ByTheorem 10, for a mapping 𝑓 of 𝑋 into 𝑌 satisfying (†) for
𝑎 = 𝑐 = −1 and 𝑏 = 𝑑 = 1, there exists a unique (−1, 1, −1, 1)-
additive mapping 𝑓

∞
such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓
∞

(𝑥)
󵄩󵄩󵄩󵄩 ≤

2𝑞 𝛿 ‖𝑥‖𝑝+𝑞

2 − 𝐾
(56)

for all 𝑥 ∈ 𝑋. Because of 𝐾 = 2𝑝+𝑞, we have the corollary.

Remark 15. In Corollary 14, taking 𝑝 = 𝑞 = 0, we can easily
observe that the corollary is just the stability result due to
Hyers [2, Theorem 1].
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