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ABSTRACT. In this paper we study the system governing flows in the magnetic field within the earth.

The system is similar to the magnetohydrodynamic (MHD) equations. For initial data in space Lp, we
obtained the local in time existence and uniqueness ofweak solutions ofthe system subject to appropriate

initial and boundary conditions.
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1. INTRODUCTION
We consider in this work the following differential system arising from geophysics (cf. Hide [1]),

which governs the flow of an electrically-conducting fluid in the presence of a magnetic field, when

referred to a frame which rotates with angular velocity ft relative to an inertial frame:

O_y.v 1
& +(v.V)v=vh,--V,-2nx v+ 1--(V x b) ’b+f(x).

p
(1 1)

cob
AAb + V x (v x b)

1
Vq + g(x), (1.2)

div v 0; div b 0, (1.3)

where v is the Eulerian flow velocity, p is the density, b is the magnetic field, p is the pressure, v, # are

respectively constants of kinematical viscosity, magnetic permeability, A with electrical resistivity %

and f(z), g(z) are volume forces. Let K be an open bounded subset ofR" with boundary F. The initial

and boundary conditions are as follows respectively:

v=0; b=0 on F (1 4)

v(z, O) vo; b(x, O) bo for xeK (1.5)

where n is the outward unit normal on F.
The existence of solutions of systems (1.1)-(1.5) in L2 has been proved in Qu et al. [2]. Some

regularity properties and large time behaviors of the solutions for a similar system, the MHD equations,

are obtained in Sermange [3] and Temam [4].
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In this work we consider the initial value problem for the above system in infinite cylinder

ST (0, T) x R with initial data v0, b0 E L. Following Fabes et al. [5], we consider the solution of

(1.1)-(1.5) in weak form. And we prove the local existence and uniqueness of weak solution of the

system in Lp space.
This article is arranged in the following order. In Section 2, we first introduce some notations and

definitions and formulate the setting of our problem. Then we prove that solving the system (1.1)-(1.5) is

equivalent to solving a nonlinear integral equation. Applying a well-known imbedding theorem, we prove
in Section 3 the uniqueness ofthe solution for all T and the existence ofthe solution for small value of T.

2. NOTATIONS AND AN INTEGRAL EQUATION
In this section, we introduce some notations and define the weak solution of differential system

(1.1)-(1.5). Then reduce the system to an integral equation. We prove later in this section that the

differential system (1.1)-(1.5) and the integral equation are equivalent.
We use Lp’q to denote the standard functional space consisting of Lebesque measurable vector

functions f (fl, f2, "", fn) with the following property

.=1

Denote "q(ST)= I)"q(ST) x/.7’(ST)with the standard product norm ll(,b)ll,, IIII,, + llbll,
and I.:(R) L’(R) x.-. x L(R) with the norm II#II, IIII, for L().

z--I

Let ,S(R’) denote the space of rapidly decreasing functions on R’, ,.q (R") the space of temperated

distributions, and DT the space of functions (x,t)= (1(x,),...,,,(x,t)) with the properties:, E(R’+),i(x,)=Ofort>_T,div D,i(x,t) 0 for all .
DEFINITION 2.1..4 function u (v,b) is a weak solution of(1.1)-(1.5) with initial divergence

free data (v0, bo) 6 ZT(R’) x LP(R) ifthefollowing conditions hold:

() (,,)
(2) For ,

(v, (uA q- Dt)O)dx dt q- (b, (V)b)dx dt

v0,0(z,0)dz / f(x,t),Odxdt; (2.1)

(bo, e(x, O))dx q- (g(x, t), )dx dr; (2.2)

(3) For almost every 6 [0, T], divv(x, t) divb(x, ) 0 tn the dlstrbutlonal sense.

Following Fabes et al. [5], we can find a divergence free matrix fundamental solution Ew for n-

dim,,ior h,t q,,tio.. Wd,m,tri (t,), , , foo,v:

Z, .,r(:, )- Pa,r(, t), (2.)

where
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e 4 er F2
(4t) (4At)

R is the flh Riesz transfown, namely R is a singular integral operator on L(R,), 1 < p < oo, defined
as

(/) p.v. cfo( )lx 1--I()d. (2.4)

It is easy to check that Ek (Ed), k 1, 2, ae symmetric and divergence fee, i.e.,

(,t) 0, t > 0. (.)

In the formulas above we assumed that classical derivatives were taken for > 0; distributional
derivatives were taken for the limit as t -- 0.

It is easy to see that if div f 0, as t --, 0,

El_ E,JfJ(Y-x)dx’-’ fi(y) in LP, I< p<oo. (2.6)

Now we define an integral operator A(v, w) for v (vl, -.-, v), w (wl, ..-, w,). Denote

Bk(v, w)(x,t) (v(y,s), VE(x y,t s))w(y,s)dyds; (2.7)

(,)(,,t) (,(,.), x (-,t- ))ee. (.

For (v ), u (v ), let

(B(v,u2)--B(b,,b,) ). (29)(’) 1/2[2(,b)- (b,) +(,b) (b,2)]

Consider the following integral equation

+ A(u, u) + D(u) u + l, (2.10)

where

and

uo_ ( fRFl(x y,t)vo(y)dy IfaF2(x V, t)bo(y)dy

fo=(ffE(x-y,t-s)-f(Y,s)dYds)ffE2(x u,t s)g(y,s)dyds
(2.12)

We are ready to state the main result in this section.

THEOREM 2.1. Let vo, bo 6 L’, 1 <_ r < oo, be divergencefree weakly, u(z,t) (v(z, t),b(x, t) E

Y’q(ST),p,q >_ 2,p < oo, s a weak solution of (1.1)-(1.5) with m:aal value (v0, b0) if and only if u :s a

soluaon ofintegral equaaon (2.10).
PROOF. We prove the theorem for the case of f t7 0 (the proof for the case when .f : 0, g 0

is similar).
Let us first assume that u (v,b) is a solution of the integral equation (2.10). Set

v B(v,v),v B(b,b),b B2(v,b),b2 B2(b,v). Following the argument in the proof of
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Theorem 2.! in Fabes et al. [5], we can prove that vl, ,bl,b2 are all weakly divergence free for almost
every t [0,TI. Since {E} is weakly divergence free by (2.5), it can be easily verified that D(u) is

also divergence free. Hence, both v v Vl + + D(u), b b b + b2 are divergence free.

To see u (v,b) satisfies (1.1), (1.2), we first show that for #6:Dr,v, w6v.q(sr) with

div v divw 0,

(B(v,w),DT+vA)dxdt= (v,V(w))dxdt; (2.13)

In fact,

This implies that

(B:(v,w),DT+ AA)dxdt (v,V(w))dxdt.

B(v,w)(x,t) (v(y,a),VE(x-y,t s))w(y,a)dyda

.rl(x y,t a)(Vv(w))(y,s)dyds

F(x y,t s)(R,Rj)(Vv(w))(y,s)dyds.

(2.14)

(A- D)B (v, w) Vv(w) + RR(Vv(w)).

Since (RiRa)() 0 for e :DT, we obtain

(B(v,w),DT+vA>dxdt (v,V(w)>dxdt. (2.15)

Sillily, wec prove (2.14) d

(v, Dr+A)dzdt ( x v,)dzat. (2.6)

Considering (2.13), (2.14), (2.16) d the fact t u (v, b) is a solmion ofe inte equation, we

have

+ (v, 2n x >dx dt (b, (V)b>dz dt

( (,+ (,)- (),,+

(v, Dt + uA)dx dt,(vo, (z, O))dz. (.7)

since (flx v, ) (v, fl x ). Sillily wec show tt (2.2) in Deflation 2.1 holds. Hence, u is a

we solmion of (1.1)-(1.5).
On the other hd, suppose u is a we solution of (1.1)-(1.5) th iti data (vo, b0). Choose

a C(R) such that a(x) 1 when Izl 2; a(z) 0 when Ixl 1 d choose C(R)
such that (t)= 1 when Itl > 2; (t)= 0 when Itl < 1 Let E(X z,t)= {E(a,z,t)}3=1
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E(A,x,t) 9=-I(a(E,.:)), where a(x) a(Ax)," is the Fourier transform taken in x variables.

For b,(t) p() and fixed x, t, we use b,x (Z/, 8) p(8 + 2)b,(t )g,CA, x /,t 8) as test

functions in Definition 2.1 and following Fabes et al. [5] we can showthat u is a solution of(2.10). [-l

3. ON THE INTEGRAL EQUATION
In this section we study the integral equation (2. 0). We will show that it has a unique solution in

"q(ST) with initial data in P,q(ST). In the following, it is assumed that F 0 (the case F - 0 can be

treated similarly).

Consider A(ul,u2), D(u) as mappings from P’q(ST) to P’q(ST), when + _< 1. The

following theorem establishes the continuity of A(al, a2), D0z).
THEOREM 3.1. For u, u2 6 ,P’q(cT), we hae thefollowing estimates:

(1) If + l with n < p < oo, then

(3.2)

(3.3)

PROOF. First of all, it is easy to show that

IDE,(z,t)I <_

for each i, j,. Therefore, for a, b 6/_)"q (ST),

C

(3.4)

IBm(a, b)l _< C
(II + ;]n+l

la(, a)l Ib(/,a)Idr/da. (3.5)

To prove (3. I) d (3.2), we for 0, 0 < 0 < I,

,"+’ [x[0(.+,)tIzl + t)

Sin [a(,s)], b(y,s)[ a L(R"), if we choose 0 < 0 < , by H@-Litflwood-
Sobolv imdgtheor

’ 1,.+,,,_,> I-(. ,s)l. Ib(. ,)l IIL()liB,(a, )ll.(m) S C(o, , n)
(t )

(3.6)

2 [1_ n+ll-#)]If + 1 md p > n, then plng Hdy-Lilewood-Sobolev theorem

agn, we obt

IIn(, b)li,() C(n, p, q)llll.() Ilbll,.(). (3.7)

By the deflation of A(u, u2), we see that (3.1) holds.

for (3.2), we have
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D(Ul) (ul(y,s),2ft E#(x y,t s))dyds

.FI(x- y,t- s)(2ft ul + IRj(2fZ u))(y,s)dyds.

Since esz trmsfo is zominuous from L to for p > 1, R(2fl x u) e ’(ST) md

So om (3.89),

(),, r( ,t )(a x +(a x ))(,.)e
.()

omwch (3.2) follows.
Pot (3.3), (3.4), we considero ses: d < < .
In the first case, or , b E ,(ST),

IIB(,b)llz-() C
(t-) Ila(’,)llL()llb(" ,s)llL-()d.

If q oo, then

If q < oo, by Hardy-Littlewood-Sobolev theorem, [IB(a, b)(-, t)IIL(R) L’(0, T), where

Since r > q,

IIBk(a, b)llL,q(r) <_ CTq- liB,(a, b)llL**.,(r) CT1/2-

(3.8)

then T(u, u) maps the ball/3 {llull _< 81} into itselfifsl is the smaller root of

ClS + (c2 1), + IIFII 0

for cl,c2, IIFII satisfying (1- c2) > 4cllFII, c < 0, 0 < c2 < 1. Moreover, T(u,v)isa contraction

mapping m ball B ifcl, c2, IIFII saasfy

Hence using the same argument in the proof of(3.1), (3.2), we can similarly derive (3.3), (3.4). r-I

Before stating the main results ofthis article, we introduce the following lemma Calder6n [6]:
LEMMA 3.1. Let T(u, v)= A(u, v)+ l(u) + F be an operator on Banach space E, where

A(u, v) is bilinear, l(u) is linear. The norm ofthe space is denoted by II- fiT(u, v) satisfies
IIT(, v)ll _< cllll Ilvll + c21111 + IIFII,

Finally, for the second case, n < p < oo, we choose q. and r such that q. < q < r and
2 1 (,/1 1-0) where 0 is chosen so that ? ? 0 < 0 < Therefore, by
q*

Hardy-Littlewod-Sobolev theorem and H61defs inequality, we have
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In the following, we use the above lemma to prove the existence of solutions of the integral equations
(2.10).

TIOREM 3.2 (i). Suppose - / 1 wM < p < oo. Then tere exists constant 6’0
depending on , , suc out when

there exists T > 0 suc tt the integral equation:

z + A(,) + W() o (3.11)

has a solution m ’,(ST).
(ii). Suppose + < I with n < p < oo. Then there exists T > 0 such that the integral equation

(3.11) has a solution in P’q(ST).
PROOF. Let T(u, v) A(u, v) + D(u) + u. By Theorem 3.1, we have

Let c CT1/2(--), c2 C’T and IIFII IIll<s). Then if we chose Ilullz,.,(s) and T small

enough in case (i) and T small enough in case (ii), conditions in Lemma 3.1 are satisfied. Brown’s fixed

point theorem implies the existence of solution ofintegral equation (3.11). I-I

The following theorem assures the uniqueness ofthe solution of (3.11)
THEOREM 3.3. Suppose p, q satisfy the conditions of Theorem 3.1. Then the solution of(3.1 I) is

unique in the space ffP’q (ST) for any T > O.
PROOF. If ut, ,22 P’q(T) are tWO solutions of the integral equation with the same initial data

uo (vo, bo), then

2 [A(,t 2) + A( ,2)1 D( ).

By Theorem 3.1, for - < T,

Choose " so small that

So we see that u u2 in S,. Repeating the same procedure, we can cdnclude that u u2 in $2,.

Cominuing repeating the procedure, we can prove finally that ttt= u2 in ST. 71

Under the conditions ofTheorem 3.1, we can easily translate the existence and uniqueness results for

the integral equation (2.10) with F 0 to respectively existence and uniqueness results for the system

1.1)-( 1.5) because ofthe equivalence result ofTheorem 2.1.
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