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ABSTRACT. In this paper we study the system governing flows in the magnetic field within the earth.
The system is similar to the magnetohydrodynamic (MHD) equations. For initial data in space L?, we
obtained the local in time existence and uniqueness of weak solutions of the system subject to appropriate
initial and boundary conditions.
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1. INTRODUCTION

We consider in this work the following differential system arising from geophysics (cf. Hide [1]),
which governs the flow of an electrically-conducting fluid in the presence of a magnetic field, when
referred to a frame which rotates with angular velocity Q2 relative to an inertial frame:

ov 1 1 .
—+@W- Viv=vAv—-=-Vp-2Q x v+ —(V x b) X'b + f(z), 11
o+ 9) SVp (V% 8) X+ (z) amn
b _ AAB+V x (vxb) — £ Vg +g(z) 12
i v " q + g(z), .
divv=0; divb=0, (1.3)

where v is the Eulerian flow velocity, p is the density, b is the magnetic field, p is the pressure, v, u are

respectively constants of kinematical viscosity, magnetic permeability, A = ﬁ with electrical resistivity 7,

and f(z), g(z) are volume forces. Let K be an open bounded subset of R™ with boundary I'. The initial
and boundary conditions are as follows respectively:

v=0;, b=0 onT (14

v(z,0) =vy; b(z,0)=by for z€ K (1.5)

where n is the outward unit normal on I'.

The existence of solutions of systems (1.1)-(1.5) in L? has been proved in Qu et al. [2]. Some
regularity properties and large time behaviors of the solutions for a similar system, the MHD equations,
are obtained in Sermange [3] and Temam [4].
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In this work we consider the initial value problem for the above system in infinite cylinder
Sr = (0,T) x R™ with initial data vy, by € L?. Following Fabes et al. [5], we consider the solution of
(1.1)-(1.5) in weak form. And we prove the local existence and uniqueness of weak solution of the
system in L? space.

This article is arranged in the following order. In Section 2, we first introduce some notations and
definitions and formulate the setting of our problem. Then we prove that solving the system (1.1)-(1.5) is
equivalent to solving a nonlinear integral equation. Applying a well-known imbedding theorem, we prove
in Section 3 the uniqueness of the solution for all T and the existence of the solution for small value of T'.

2. NOTATIONS AND AN INTEGRAL EQUATION

In this section, we introduce some notations and define the weak solution of differential system
(1.1)-(1.5). Then reduce the system to an integral equation. We prove later in this section that the
differential system (1.1)-(1.5) and the integral equation are equivalent.

We use LP? to denote the standard functional space consisting of Lebesque measurable vector
functions f = (fi, fe, -+, fn) with the following property

1
q

Il =3 [ /0 i ( /R n |f,(z,t)|’dz> %} <o

=1

Denote L£P9(St) = LP9(Sr) x LP9(Sr)with the standard product norm [|(v,5)|,, = llvll,; + lIbll,,
and L?(R") = LP(R") x --- x LP(R™) with the norm ||g||, = Zn llg:]l, for g € LP(R™).
1

1=
Let S(R™) denote the space of rapidly decreasing functions on R™,S'(R"™) the space of temperated
distributions, and Dy the space of functions ¢(z,t) = (¢1(z,t), -, #n(z,t)) with the properties:
¢, € S(R™1), ¢i(z,t) = 0fort > T, diveg =3, D, ¢i(z,t) =0forallt.

=1
DEFINITION 2.1. A function v = (v,b) is a weak solution of (1.1)-(1.5) with inmitial divergence
free data (vp, bg) € LP(R™) x LP(R™) if the following conditions hold.
Q1) u(z,t) € LP9(ST) for some p,q with p,q > 2,
(2) For ¢,¢ € Dr,

/OT/’;"(U, (vA + D,)¢)dz dt + /oT/Ru(b’ (Vé)b)dz dt

T 1 T
+ /0 /m(u,zax ¢)dzd; r /o /m(b, (V)b)dz dt
= - [ ons@opaz+ [ [ (sat)p)dza @
R~ 0 JR"

/OT/R"(b, (AA + D, )y)dz dt + /:_/,;,,(v’ (V)b)dz dt

- / i / (b, (Vyp)v)dz dt
0 R"
T
= = [ oo (a0 + [ [ 6@t waza 22)
Rn 0 R"

(3) For almost every t € [0,T), divu(z,t) = divb(z,t) = 0 in the distributional sense.
Following Fabes et al. [5], we can find a divergence free matrix fundamental solution E, , for n-
dimensional heat equation. We define matrices (E¥,), k = 1,2 as follows:

EF = 6;;Ti(z,t) - RiR,Ti(z, ), 23)

where
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_i _l=?

e ot e~ o

1= ) r2 = Ty
(4mvt)? (dmat)

R, is the jth Riesz transform, namely R, is a singular integral operator on L?(R"),1 < p < oo, defined
as

RN =PV.G, [ (@ = wle vl @, @4)
It is easy to check that B = (E',"_j), k = 1,2, are symmetric and divergence free, i.e.,

Y D,Et(z,t)=0,t>0. (2.5)
=1

In the formulas above we assumed that classical derivatives were taken for t > 0; distributional
derivatives were taken for the limit as ¢ — 0.
It is easy to see that if div f = 0, ast — 0,
Z /R" E,'fjfj(y —z)dz — fi(y) in LP,1<p<oo. (2.6)
7

Now we define an integral operator A(v, w) for v = (vy,--,v,),w = (w1, -, w,). Denote

t
Bi(v,w)(z, 1) = /o /m (v, 9), V E*(z — vt — ))w(y, s)dy ds; @7

D(v)(z,t) = /0 /Rﬂ(v(y, 3),2w x El(z — y,t — 3))dyds. (2.8)

Forul = (vlvbl)yuZ = (v2)b2)7 let

By (v1,v2) — L By(by, bo)
Auy,ug) = o .
(t1: ) ( 1(By(01,51) - Ba(b,v1) + Ba(tn,by) — Ba(ba,va)] ) @9
Consider the following integral equation
u+ A(u,u) + D(u) = u® + f°, (2.10)
where
o_ [ JeTilz—v, t)vo(y)dy)
‘= ( JaTa(z = y,t)bo(y)dy @1y
and
_( foJwE @ =yt~ 9)f(,9)dy ds) ’ 12
£ (fo'me’(z-y,t—s)g(y,s)dyds ' @12

We are ready to state the main result in this section.

THEOREM 2.1. Let vp,bg € L™, 1< < oo, be divergence free weakly. u(z,t)=(v(z,t),b(z,t))€
LP(ST),p,9 > 2,p < o, is a weak solution of (1.1)(1.5) with imtial value (vy, by) if and only if u 1s a
solution of integral equation (2.10).

PROOF. We prove the theorem for the case of f = g = 0 (the proof for the case when f # 0, g # 0
is similar).

Let us first assume that u = (v,b) is a solution of the integral equation (2.10).  Set
v; = By(v,v),ve = By(b,b),by = By(v,b),by = By(b,v). Following the argument in the proof of
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Theorem 2.1 in Fabes et al. [5], we can prove that v;, vg, by, b are all weakly divergence free for almost
every t € [0,T]. Since {E}} is weakly divergence free by (2.5), it can be easily verified that D(u) is
also divergence free. Hence, bothv = v — v; + ‘%p + D(u),b = b° — b; + b, are divergence free.

To see u = (v,b) satisfies (1.1), (1.2), we first show that for ¢ € Dr,v,w € LP9(S7) with

divv=divw =0,

T T
/o /R (Bi(v,w), Dr¢ +vA¢)dz dt = /0 /R (v, Vo(w))dz dt;

T T
/(; /R" (B2(v,w), Dr¢ + AA¢)dz dt = /0 /R" (v, Vo(w))dz dt.

In fact,
By (v, u)(z,t) = /0 /mw(y, 9, VENz — y,t — 8))u(y, s)dyds
= / / Ti(z -y, t — 8)(Vu(w))(y, s)dyds
0 R"t
- /o /mrl<z — 4t — 8)(R.R;)(Vo(w))(y, s)dy ds.
This implies that

(vA — D;)B;(v,w) = — Vu(w) + R;R,(Vv(w)).

Since (R;R,)(¢) = 0 for ¢ € Dr, we obtain

/o i /R“ (B1(v,w), Dr¢ + vA@)dz dt = /0 r /m (v, Vo(w))dz dt.

Similarly, we can prove (2.14) and

/OT/RH (v, Dr¢ + vA¢)dz dt = /;T/R" (29 x v, p)dz dt.

(2.13)

(2.14)

(2.15)

(2.16)

Considering (2.13), (2.14), (2.16) and the fact that u = (v, b) is a solution of the integral equation, we

have

/0 ! /R (v, (vA+ Di)¢)dzdt + /0 ! /; (b, (Vg)b)dz dt

T s
+T /0 /m (v,2Q x ¢)dzdt —- Z /0 /Rn (b, (Vé)b)dz dt

= / / (vo — By(v,v) + 1 By (b,b) — D(v), D¢ + vA¢)dz dt
o R Py

+/OT/R"<v, V¢(v))dz dt — /OT/R"(v, 2Q x ¢)dz dt — i ‘/;T/R"(b, V(b))dz dt

1

T
/ / (°, Dip + vAQ)dz dt
0 JR"
- / (vO’ ¢(.‘t, 0))d£.
Rn

(2.17)

since (2 X v,¢) = — (v, x ¢). Similarly we can show that (2.2) in Definition 2.1 holds. Hence, u is a

weak solution of (1.1)-(1.5).

On the other hand, suppose u is a weak solution of (1.1)-(1.5) with initial data (vo,p). Choose
a € C°(R"™) such that a(z) =1 when |z| >2; a(z) =0 when |z| <1 and choose ¥ € C*(R")
such that ¥(t) =1 when [t|>2;4(t)=0 when |t| <1. Let EF(\z,t)={E(\z, »:)}f= v
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Ef,(\z,t) = F~Yay(E,,)), where a)(z) = a(\z),F is the Fourier transform taken in z variables.
For ¥(t) = ¥(%) and fixed z,t, we use ¢ ,(y,s) = ¥(s +2)¥e(t — ) E¥(A\,z —y,t — ) as test
functions in Definition 2.1 and following Fabes et al. [S] we can show that «u is a solution of (2.10). O
3. ON THE INTEGRAL EQUATION

In this section we study the integral equation (2.10). We will show that it has a unique solution in

LP9(Sr) with initial data in £P9(S7). In the following, it is assumed that F' = O (the case F # 0 can be
treated similarly).

Consider A(uj,u2), D(u) as mappings from L£P9(S7) to LP9(Sr), when >+ % <1. The
following theorem establishes the continuity of A(uy, uz2), D(u).

THEOREM 3.1. For uy,ug € LP(St), we have the following estimates:
(1) 2+2=1withn < p < oo, then

| Aus, “2)"0.0(5,) < C(n,p,q)llw "[M(s,.) ) "p.q(s,)§ (ERY)

”D(“l)"u.q(s,) < C(n,p,9)llva "[N(s,y (3.2)

2 If§+% < 1lwithn < p < oo, then
1{1_n_2
A1)l pasr) < €2 T3 sl a2l sy 3.3)

"D(Ul)"[y.q(s,.) < C(n,p, Q)"ulllmq(sr)' 34

PROOF. First of all, it is easy to show that

C
| D Ef (2, 1) < —
(a1 +¢t)
for each 1, j,. Therefore, for a,b € LP9(St),
B <Cf / e la(u, )l /by, )l dy ds. (.5)
T +tz
To prove (3.1) and (3.2), we see for §,0 < 6 < 1,
1 C(6) ,u=oesy)
(il +a)™ P

Since |a(y, s)], b(y,8)| € LE(R™), if we choose 0 < 0 < ;57,1 = % — (418 by Hardy-Littlewood-
Sobolev imbedding theorem,

t
”Bk(ar b)uu(ﬂﬂ) < C(0, p)n)L zt-_)lnm " |a'( : 73)| : lb( : 73)| "L;(m)d-" (36)
— o)

If2+Z=1andp>n, then ;= 2 [1 - $"__+1¥1_:‘l] Applying Hardy-Littlewood-Sobolev theorem
again, we obtain
|| Bx(a, b)"u(m) < C(n,p, Q)”a"u.q(s,.)”b"p.v(s,)- (EX)]
By the definition of A(u1,ug), we see that (3.1) holds.
As for (3.2), we have
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t
D(u;) = /0 /R“ (w10, 9), 2 x EL (& - y,t - s))dyds

t
= / / Ci(z —y,t — 8)(2Q x u; + R,R;(2Q X uy1))(y, s)dyds. (3.8)
o Jr
Since Riesz transform is continuous from L? to L? for p > 1, R,R,(22 x u;) € LP9(Sr) and

1R: R;(2Q X )| gpagsyy < Cllwll gragsy).
So from (3.89),

1D e < /0 " /Rnrx(z —yt- )20 xu+ RECY x W)y, s)dy|  ds

|I'J’"(5r)
t
=€ [ 120 x ullpursy + IRRS202 % Wl rs)ds

t
<0 [ 1t Mo
from which (3.2) follows.

For (3.3), (3.4), we consider two cases: p = ocoandn < p < co.
In the first case, for a,b € LP9(ST),

t
1
| Bk (a, b)”[,w(m) < C/ — lla(- ,s)lIL,(R,.)"b( ’ ,3)”Lw(m)d3~
0 (t—s)?
If ¢ = oo, then

1
1Bk (@, 0)| Lo(rmy < C(T)?l|al| poo(spy 10l Lo s7)-

If ¢ < oo, by Hardy-Littlewood-Sobolev theorem, || Bx(a,b)( - , )|l ;=g € L7(0, T), where 1= % -
Since r > q,

1_1 11
1Bk (@, )|l pwa(syy < CT ™" | Br(@, b)ll poor(sr) < CT* % ||all pos sy 1Ml Lo sy -

Finally, for the second case, n < p < oo, we choose g+ and r such that ¢ <g¢g<r and
1= ;]2; [1 - S"—t%(l—'-ol], where 6 is chosen so that £ = 2 — [%ﬂz], 0 < 6 < 2. Therefore, by
Hardy-Littlewod-Sobolev theorem and Hélder's inequality, we have

11
1Bk (@, b)ll oa(syy < €T 7 || B(a, b)l| Larsy)

1_1
< CT |laf| oo (5 10Nl Loem (1)

i(1-n_-2
< T 30l pagsr bl nacsny

Hence using the same argument in the proof of (3.1), (3.2), we can similarly derive (3.3), (3.4).
Before stating the main results of this article, we introduce the following lemma Calderén [6]):
LEMMA 3.1. Let T(u,v) = A(u,v) +1(u) + F be an operator on Banach space E, where

A(u,v) is bilinear, 1(u) is linear. The norm of the space is denoted by || - ||. If T(u,v) satisfies

1T, )|l < eallull livll + eollull + | Fl,
then T(u,u) maps the ball B = {||u|| < s,} into itself if s, is the smaller root of

O

as’+(ce~1)s+|F||=0

for ¢y, ¢, | F|| satisfying (1 — c3)* > 4c1||F|, €1 < 0, 0 < ¢ < 1. Moreover, T(u,v) is a contraction
mapping in ball B if ¢, ¢y, || F|| satisfy

1
2a)|FI(( = e2)® —4cl||FII)* + 2 < 1.
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In the following, we use the above lemma to prove the existence of solutions of the integral equations
(2.10).

THEOREM 3.2 (i). Suppose 2 +% =1 with n < p< oo. Then there exists a constant Cy
depending on n, q, 2 such that when

||”0||cm(sr) < Co,
there exists T > 0 such that the integral equation:
u+ A(u,u) + D(u) = u° 3.1
has a solution in LP?(ST).
(ii). Suppose % + % < 1withn < p < oo. Then there exists T > 0 such that the integral equation

(3.11) has a solution in LP9(St).
PROOF. Let T(u,v) = A(u,v) + D(u) + u°. By Theorem 3.1, we have

I o) amnsry < OTHC D)l gy el magsy + CT Ml Bmngsy + 1 sy G-12)

Let ¢; = CT%(I_E_E), ¢ = CT and ||F|| = |[4°|| ng(s,). Then if we chose [[u°||zq(s,) and T small
enough in case (i) and T small enough in case (ii), conditions in Lemma 3.1 are satisfied. Brown's fixed
point theorem implies the existence of solution of integral equation (3.11). O

The following theorem assures the uniqueness of the solution of (3.11)

THEOREM 3.3. Suppose p, q satisfy the conditions of Theorem 3.1. Then the solution of (3.11) is
unique in the space LP9(St) forany T > 0.

PROOF. If uj,us € LP9(ST) are two solutions of the integral equation with the same initial data
ug = (vo, bo), then

up —ug = — [A(ur,u1 — ug) + A(ur — ug,u2)] — D(u1 — ug).
By Theorem 3.1, for7 < T,
flut — "-‘2"0»1(5,) <2 C("'ulna.v(s,) + Iluzllm(s,))llul - "2”1;”(5,) + Crllur - U2||uq(s,)-

Choose 7 so small that
C("“l”uw(s,) + ""‘2”0-9(5.,)) +C- <1

So we see that u; = uy in S;. Repeating the same procedure, we can conclude that u; = uy in So,.
Continuing repeating the procedure, we can prove finally that uy = up inSy. O

Under the conditions of Theorem 3.1, we can easily translate the existence and uniqueness results for
the integral equation (2.10) with F' = 0 to respectively existence and uniqueness results for the system
(1.1)-(1.5) because of the equivalence result of Theorem 2.1.
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