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ABSTRACT. In this paper, we give an application of Jungck’s fixed point theorem to best ap-
proximation theory, which extends the results of Singh and Sahab et al.

KEY WORDS AND PHRASES: Contractive operator, best approximant, compatible map-
pings, fixed point.

1991 AMS SUBJECT CLASSIFICATION CODES: 54H25, 47H10.

Let X be a normed linear space. A mapping T : X — X is said to be contractive on X (resp.,
on a subset C of X) if ||Tz — Ty|| < ||z — yl| for all z,y in X (resp., C). The set of fixed points of
T on X is denoted by F(T). If Z is a point of X, then for 0 < a < 1, we define the set D, of best
(C, a)-approximants to Z consists of the points y in C such that

ally — z|| =inf{||z — Z|| : z € C}.

Let D denote the set of best C-approximants to Z. For @ = 1, our definition reduces to the set D of
best C-approximants to Z. A subset C of X is said to be starshaped with- respect to a point ¢ € C
if, for all z in C and all A € [0,1], Az + (1 — A)g € C. The point p is called the star-centre of C. A
convex set is starshaped with respect to each of its points, but not conversely. For an example, the
set C = {0} x [0,1] U1, 0] x {0} is starshaped with respect to (0,0) € C as the star-centre of C, but
it is not convex.

In this paper, we give an application of Jungck’s fixed point theorem to best approximation
theory, which extends the results of Sahab et al. [9] and Singh [10].

By relaxing the linearity of the operator T and the convexity of D in the original statement of
Brosowski {1}, Singh [10] proved the following:

Theorem 1. Let C be a T-invariant subset of a normed linear space X. Let T : C — C be a
contractive operator on C and let Z € F(T). If D C X is nonempty, compact and starshaped, then
DNF(T)#0.

In the subsequent paper [11], Singh observed that only the nonexpansiveness of T on D' = DU{z}
is necessary. Further, Hicks and Humpbhries [4] have shown that the assumption T : C — C can be
weakened to the condition T : 3C — C if y € C, i.e., y € D is not necessarily in the interior of C,
where OC denotes the boundary of C.

Recently, Sahab, Khan and Sessa [9] generalized Theorem 1 as in the following:
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Theorem 2. Let X be a Banach space. Let T,I : X — X be operators and C be a subset of X
such that T : 8C — C and z € F(T) N F(I). Further, suppose that T and I satisfy

ITz - Tyll < |z - Iyl @

for all z,y in D', I is linear, continuous on D and ITz = TIz for all z in D. If D is nonempty,
compact and starshaped with respect to a point ¢ € F(I) and I(D) = D, then DNF(T)NF(I) # 0.

Recall that two self-maps I and T of a metric space (X, d) with d(z,y) = ||z —y|| for all z,y € X
are said to be compatible on X if

lim d(ITz, TIz,)(= lim |[Tz, - TIz.[}) =0

whenever there is a sequence {z,} in X such that T'z,, [z, — t, as n — oo, for some ¢ in X ([6)-[8]).

We shall use N to denote the set of positive integers and CI(S) to denote the closure of a set S.
For our main theorem, we need the following:

Proposition 3. (8] Let T and I be compatible self-maps of a metric space (X,d) with I being

continuous. Suppose that there exist real numbers r > 0 and a € (0,1) such that for all z,y € X,

d(Tz,Ty) < rd(Iz, Iy) + amax{d(T'z, Iz),d(Ty, Iy)}.

Then Tw = Iw for some w € X if and only if A = N{CT(K,)) : n € N} # 0, where for each
neN 1
K,={z€ X :d(Tz,I7) < ;}

On the other hand, using this proposition, Jungck [8] proved the following:

Theorem 4. Let I and T be compatible self-maps of a closed convex subset C of a Banach space
X. Suppose that I is continuous and linear with T(C) C I(C). If there exists an a € (0,1) such
that for all z,y € C,

ITz - Ty|l < alllz — Iy|| + (1 — o) max{||Tz — Iz, [Ty — Iyll}, @

then I and T have a unique common fixed point in C.
By using this theorem, we extend Theorem 2 as in the following:
Theorem 5. Let X be a Banach space. Let T, : X — X be operators and C be a subset of X
such that T : 8C — C and zZ € F(T) N F(I). Further, suppose that Tand I satisfy (2) for all z,y
in D), = D,U{Z} UE, where E = {g € X : Iz,,Tz, — q, {z,} C Dy}, 0 < a < 1, I is linear,
continuous on D, and T, I are compatible in D,. If D, is nonempty, compact and convex, and
I(D,) = D,, then D, N F(T)N F(I) # Q.
Proof. Let y € D, and hence Iy is in D, since I(D,) = D,. Further, if y € 8C, then Ty is in C
since T(8C) € C. From (2), it follows that
ITy - zl| = |Ty — TZ|
< allly - I1z|| + (1 — a) max{||Ty - Iy||, |ITz — IZ(]}
<allly -zl + (1 - a)(ITy - z|| + |1y - Z|),
which implies a||Ty — z|| < ||Iy — || and so Ty is in D,. Thus T maps D, into itself.
By hypothesis, we have £ = TZ = IZ. Then Proposition 3 implies that

A=n{CUT(K.,)) :n€ N} #0.

Suppose that w € A. Then for each n € N, there exists y, € T(K,) such that d(w,ys) < 1/n.
Consequently, for such n, we can and do choose z,, € K, such that d(w,Tz,) < 1/nand so Tz, — w.
But since z,, € K,, d(T'z,,Iz,) < 1/n and therefore Iz, — w. Thus we have

lim Iz, = "lin°1° Tz, =w. 3)

n—o0
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Therefore, for a sequence {z,} in D, the existence of (3) is guaranteed whenever D, C K,. Moreover,
w € E. Since I and T are compatible and I is continuous, we have lim,_ . T/z, = Iw and
lim, oo I?z, = Iw. By (2), we have

ITIz, — Z|| = |TIz, — TZ| < a||I*z. — IZ|| + (1 — @) max{||TIz, — I*’z.||,||Tz - IZ|]},
which implies, as n — oo,
[lHw - z|| < o||fw - z||.

Hence Jw = z. By (2) again, we have
ITw - z|| = |Tw - Tz|| < allfw - IZ|| + (1 - o) max{||Tw — Iw||, | Tz - Iz|]},

which gives ||[Tw — || < (1 — a)||Tw — Z||, and so Tw = .
Next, we consider

ITw = Tzl < al[fw —Iza||  + (1 = a) max{[|[Tw — Tuw||, [Tz — Iz},

which gives ||Z — w|| < a||Z — w|| as n — o0, and s0 Z = w, i.e., w = Jw = Tw. By Theorem 4, w
must be unique. Hence E = {w}. Then D] = D, U{w} = D/,

Let {k.} be a monotonically non-decreasing sequence of real numbers such that 0 < k, < 1 and
limn—oo kn = 1. Let {z,} be a sequence in D, satisfying (3). For each n € N, define a mapping
T,: D, — D’ by

Taz, = knTz, + (1 — ko)p. (4)
It is possible to define such a mapping T, for each n € N since D is starshaped with respect to
p € F(I).
Since I is linear, we have

Tz, = k.TIz, + (1 — ko)p, IToz, = koITz, + (1 - k.)p.

By compatibility of I and T, we have for each n € N,
0< ,ILT, | Talz, — IT,x,||
< ku Jim [T 12, = ITz,)| + lim (1 = k)P -
=0
and so
’anexo | Tulz, — IT,z,|| =0
whenever lim,_.o Iz, = lim, .o T»Z; = w since we have
’li_{&T,.z, =k, Jl_i_.I&Tz, +(1 -k )w
=kw+(1-ka)w
=w.
Thus, I and T, are compatible on D, for each n and T,(D.) C D, = I(D.).
On the other hand, by (2), for all z,y € D., we have, for all j > n and n fixed,
ITaz — Tayll = kallTz — Tyll < k;|iTz - Tyll < |Tz - Tyl
< a|lfz - Iyl + (1 - @) max{[|Tz - Iz|}, || Ty — Iy|l}
<alllz - Iyl + (1 — @) max{||Tz — Toz|| + Tz — Iz,
Ty — Toyll + I Tay — Tyll}
<alllz - Iyl + (1 - a) max{(1 — ku)||Tz - p|| + || Tnz - Iz,
(1= k)IITy - pll + |1 Tay — Iyll}-
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Hence for all j > n, we have
| Toz - Toyll < alldz — Iyl + (1 - @) max{(1 - k,)||Tz - p||

®)
+ | Taz — Iz, (1 = k)ITy — pll + | Ty — Tyl}

Thus, since im, .o k; = 1, from (5), for every n € N, we have
| Tnz - Toyll = ’E a||Twz — Tyl
< 111_120[0"11 = Iyl + (1 — a)max{(1 — k,)|| Tz - p||

+ITaz = Izll, 1 = K)ITy - pll + || Ty — Tyll}),
which implies

ITaz — Tayll = alllz - Iy|| + (1 - @) max{||Tnz — I=z||, | Tay — Tyll}

for all z,y € D.,. Therefore, by Theorem 4, for every n € N, T,, and I have a unique common fixed
point z, in D/, i.e., for every n € N, we have

F(T,)nF(I) = {z.}.

Now, the compactness of D, ensures that {z.} has a convergent subsequence {z,, } which converges
to a point z in D,. Since

Ta, = Tn,Zn, = ko, T2n, + (1 = kn,)g (6)

and T is continuous, we have, as i — oo in (6), z = Tz, i.e., z € D, N F(T).
Further, the continuity of I implies that

Iz = I(lim z,,) = lim Iz, = lim z,, =z,
i.e., z € F(I). Therefore, we have z € D, N F(T)N F(I) and so
D,NF(T)NF(I)#0.

This completes the proof.
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