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NUMERICAL SOLUTION OF INTEGRAL EQUATIONS
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SAMIR A. ASHOUR

(Received 22 July 1994 and in revised form 29 March 1994)

Abstract. We obtain convergence rates for several algorithms that solve a class of
Hadamard singular integral equations using the general theory of approximations for un-
bounded operators.
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1. Introduction. In several physical problems in aerodynamics, hydrodynamics,
and elasticity, one encounters integral equations of the form

Ax = 1
π

∫ 1

−1

√
1−τ2x(τ)
(τ−t)2

dτ+ 1
π

∫ 1

−1

√
1−τ2h(t,τ)x(τ)dτ =y, (1.1)

where the first integral in (1.1) is a finite part integral [4]. Under suitable conditions
on the kernel and the right-hand side, the convergence of Galerkin’s method and
several collocation methods, proposed by Ioakimidis [5] and Williams [9], has been
discussed by Golberg [2, 3]. This author, also, used a classical Fredholm theory to
establish the existence of a solution and likewise the basic tools necessary to discuss
convergence. In this paper, we discuss the convergence of the mechanical quadratures
method for solving (1.1) and the convergence of the least squares method for solving
the Hadamard singular integral equation

Kx = 1
π

∫ 1

−1

√
1−τ2x(τ)
(τ−t)2

dτ+T(x,t)=y, (1.2)

where T is the given continuous operator.

2. Least squares method. Let X = L2,ρ denote the space of square integrable func-
tions with respect to ρ =√1−t2. The inner product on L2,ρ is given by

(φ,ψ)ρ = 2
π

∫ 1

−1
ρ(t)φ(t)ψ(t)dt and ‖φ‖ρ =

√
(φ,φ)ρ. (2.1)

Let

Um(t)= sin
[
(m+1)arccos t

]
√

1−t2
, m= 0, 1, 2, . . . (2.2)
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denote the Chebyshev polynomials of the second kind. The solution x is, now, ap-
proximated by

xn(t)=
n∑
k=1

αkUk−1(t), −1≤ t ≤ 1. (2.3)

According to this method, we obtain a system of n linear algebraic equations in n
unknowns

n∑
i=1

αi
(
KUi−1,KUj−1

)
ρ =

(
y,KUj−1

)
ρ, 1≤ j ≤n. (2.4)

It is easy to prove that (2.4) is equivalent to

n∑
k=1

αk
{(
TUk−1,TUj−1

)
ρ−j

(
TUk−1,Uj−1

)
ρ−k

(
TUj−1,Uk−1

)
ρ

}
+j2αj

= (y,KUj−1
)
ρ, 1≤ j ≤n. (2.5)

Theorem 2.1. If the following conditions hold
(i) y ∈ L2,ρ, T is a continuous operator in L2,ρ ;

(ii) kerK = {0};
(iii) equation (1.2) has a solution x∗ ∈ L2,ρ for a given y ∈ L2,ρ , then for all n ∈ N

equation (2.5) has a unique solution
{
α∗k
}n

1 ; and if
(iv)

{
KUi−1

}
is closed in L2,ρ ,

then

‖rn‖ρ =
∥∥y−Kx∗n∥∥ρ �→ 0 as n �→∞, x∗n =

n∑
k=1

α∗kUk−1(t). (2.6)

    

Proof. Since {Uk−1} are linearly independent, then, from (ii), it follows that{KUk−1}
are, also, linearly independent. Therefore, the system of equations (2.5) is non-singular
and so, it has a unique solution for all n. Also, for βk ∈R, we get

‖rn‖ρ =
∥∥y−Kx∗n∥∥≤

∥∥∥y− n∑
i=1

βiKUi−1

∥∥∥
ρ
. (2.7)

If condition (iv) is satisfied, then ‖rn‖ �→ 0 as n �→∞.

Now, we replace condition (ii) by the following condition:
(ii)′ K : L2,ρ �→ L2,ρ has a left bounded inverse operator K−1

l .

Theorem 2.2. Assume that (i), (ii)′, (iii), and (iv) are satisfied, then ‖x∗n −x∗‖ρ =
O
(‖rn‖ρ) �→ 0 as n �→∞.

Proof. From (ii)′ and (iii), we have x∗ −x∗n = K−1
l K

(
x∗ −x∗n

) = K−1
l
(
y −Kx∗n

)
,

then ‖x∗n−x∗‖ρ �→ 0 as n �→∞.

3. Mechanical quadratures methods. We introduce the following method for solv-
ing (1.1): Consider the approximation xn of x given by (2.3). Due to this method, we
get the following
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n∑
i=1

αi
{
−iUi−1

(
tj
)+ 1

n+1

n∑
r=1

(
1−t2

r
)
h
(
tj,tr

)
Ui−1

(
tr
)}=y(tj), 1≤ j ≤n, (3.1)

where tj = cos(jπ/n+1).

Theorem 3.1. If the following conditions
(i) y ∈ C[−1,1], h∈ C[−1,1;−1,1]

(ii) equation (1.1) has a unique solution x∗ ∈X for all y ∈X
are satisfied, then, for n sufficiently large, equation (3.1) has a unique solution α∗k ,

∥∥x∗−x∗n∥∥ρ =O{En(y)C+Etn(h)C+Eτn(h)C}, (3.2)

where Etn(f )C = inf
{‖f −Pn‖C, Pn is a polynomial of degree ≤n}.

Proof. Define the projection operator Ptn : C �→X by

Ptn(x)=
n∑
k=1

x
(
tk
) Un(t)(
t−tk

)
U ′n
(
tk
) . (3.3)

Thus, equation (3.1) can be written in the equivalent form

Anxn =Gxn+PtnHPτn
(
hxn

)= Ptny, xn, Pny ∈Xn, (3.4)

where Xn =
{
xn : xn =

∑n
k=1αkUk−1(t), t ∈ [−1,1]

}
,

Gx = 1
π

∫ 1

−1

√
1−τ2x(τ)
(τ−t)2

dτ, x ∈X,

Hhx = 1
π

∫ 1

−1

√
1−τ2h(t,τ)x(τ)dτ.

(3.5)

Since PtnHPτn
(
hxn

)= PtnH((Pτnh)xn), then, for all xn ∈Xn, we get∥∥Axn−Anxn∥∥ρ = ∥∥Hhxn−PtnHPτn(hxn)∥∥ρ
≤ ∥∥(Hh−PtnHh)xn∥∥ρ+∥∥PtnH(h−Pτnh)xn∥∥ρ. (3.6)

According to [8], ‖Pn‖ ≤ C1, ‖x−Pnx‖ρ ≤ C2En(x)C, x ∈ C[−1,1], we get∥∥Axn−Anxn∥∥ρ ≤ C2En
(
Hhxn

)+C1
∥∥H(h−Pτn)xn∥∥C

=O{Etn(h)C+Eτn(h)C}∥∥xn∥∥ρ, (3.7)

so that

∥∥A−An∥∥Xn �→X =O{Etn(h)C+Eτn(h)C}= εn. (3.8)

According to [1], for all n such that ‖A−1‖εn < 1, An has a bounded inverse and
‖A−1

n ‖ =O(1), An :Xn �→Xn. Since ‖y−Pny‖ρ =O{En(y)C} = δn. Finally, we have
∥∥x∗−x∗n∥∥ρ = ∥∥A−1y−A−1

n Pny
∥∥
ρ

=O(εn+δn)
=O{Etn(h)C+Eτn(h)C+En(y)C}.

(3.9)
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Lemma 3.1. If Qn is an algebraic polynomial of degree n−1, then

∥∥Qn(t)
∥∥
C ≤n

√
n
2

∥∥Qn
∥∥
ρ, n≥ 2. (3.10)

Proof. One may write Qn as Qn(t)=
∑n
k=1Ck−1(Qn)Uk−1(t), n∈N, whereCj(Qn)

= (Qn,Uj)ρ . Since |Uk−1| ≤ k it follows that

∥∥Qn(t)
∥∥
C ≤




n∑
k=1

Ck−1
∣∣(Qn)2

∣∣



1/2


n∑
k=1

k2




1/2

= ∥∥Qn
∥∥
ρ

√
n(n+1)(2n+1)/6

≤n√n/2∥∥Qn
∥∥
ρ

= ∥∥Qn
∥∥
ρO
(
n3/2).

(3.11)

Define WrHα =
{
x : x(r−1) is absolutely continuous, x(r) ∈Hα

}
.

Theorem 3.2. Assume that conditions (i) and (ii) of Theorem 3.1 are satisfied,

y(t)∈WrHα, h(t,τ)∈WrHα, r ≥ 0, 0<α≤ 1, (3.12)

then ∥∥x∗−x∗n∥∥ρ =O(n−r−α), (3.13)∥∥x∗−x∗n∥∥C =O(n3/2−r−α). (3.14)

Proof. Since y(t)∈WrHα, h(t,τ)∈WrHα, then, according to [7], one has En(y)
=O(n−r−α), Etn(h)=O(n−r−α), Eτn(h)=O(n−r−α), r +α> 0. This proves (3.13). It is
easy to show that

∥∥x∗−x∗n∥∥C =
∞∑
k=1

∥∥x∗2kn−x∗2k−1n

∥∥
C

≤
∞∑
k=1

(
2kn

)(3/2)[∥∥x∗−x∗2kn∥∥ρ+∥∥x∗−x∗2k−1n

∥∥
ρ

]

≤ C3

∞∑
k=1

(
2kn

)(3/2)(
2kn

)−r−α = C4n−r−α+3/2,

(3.15)

where C3, C4 are constants. This proves (3.14).

Define Cρ[−1,1]= {x :
√

1−t2x ∈ C[−1,1]
}

and ‖x‖Cρ =max
{√

1−t2|x(t)|}.
Lemma 3.2. If Qn is a polynomial of degree n−1, then∥∥Qn(t)

∥∥
Cρ ≤

√
n
∥∥Qn

∥∥
X. (3.16)

Proof. Since |Um(t)| ≤
(
1−t2

)−1/2,−1≤ t ≤ 1, m= 0, 1, . . . , then

√
1−t2

∣∣Qn(t)
∣∣≤ n∑

k=1

∣∣Ck−1
(
Qn
)∣∣

≤
{ n∑
k=1

∣∣Ck−1
(
Qn
)∣∣2

}1/2√
n=√n∥∥Qn

∥∥
ρ.

(3.17)
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Theorem 3.3. If ‖x∗−x∗n‖X =O(n−m),m∈R, then

∥∥x∗−x∗n∥∥Cρ =O(n1/2−m), m >
1
2
, (3.18)

Proof. Using Lemma 3.2 and the same technique as in Theorem 3.2, one ob-
tains (3.18).

Conclusion. For the Mechanical Quadratures methods, the rate of convergence
in space Cρ[−1,1] is better than that given in space C[−1,1].

4. Approximation by degenerate kernels. We approximate h(t,τ) by

hn(t,τ)=
n∑
k=1

ak(t)bk(τ), −1≤ t, τ ≤ 1, (4.1)

where 
{
ak
}
,
{
bk
}

are two sets of linearly independent functions. By substituting back
into (1.1), we obtain

Anx =Gx+
∫ 1

−1

√
1−τ2hn(t,τ)x(τ)dτ =y. (4.2)

(4.2) can be written as

Gx+
n∑
k=1

αkak =y, (4.3)

where αk =
∫ 1
−1

√
1−τ2x(τ)bk(τ)dτ . Then the solution of (4.3) is given by

x =G−1y−
n∑
k=1

αkG−1ak,

G−1y =−
∞∑
k=1

(
y,Uk−1

)
ρ

k
Uk−1(t).

(4.4)

Multiplying (4.4) by 
√

1−t2bj(t) and integrating, we get the linear system of equations

αj+
n∑
k=1

γjkαk =yj, 1≤ j ≤n, (4.5)

where γjk =
∫ 1
−1

√
1−t2bjG−1(ak)dt, yj =

∫ 1
−1

√
1−t2bjG−1(y)dt. Define q = √1−t2√

1−τ2.

Theorem 4.1. Suppose that
(i) y ∈ L2,ρ

(ii) h∈ L2,q[−1,1;−1,1]
(iii) ε2

n =
∫ 1
−1

∫ 1
−1q(t,τ)

∣∣h(t,τ)−hn(t,τ)∣∣2dtdτ �→ 0, n �→∞
(iv) equation (1.1) has a unique solution.

Then for all n such that qn = εn‖A−1‖ < 1, A : X �→ X, the linear system of equa-
tions (4.5) has a unique solution 

{
α∗k
}n

1 and the approximate solution x∗n = G−1(y)−∑n
k=1α

∗
kG−1(ak) converges to the exact solution x∗, ‖x∗−x∗n‖ρ =O(εn).
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Proof. For x ∈X, we have

‖Ax−Anx‖ρ =
∥∥∥∥
∫ 1

−1

√
1−τ2

[
h(t,τ)−hn(t,τ)

]
x(τ)dτ

∥∥∥∥
ρ

≤ ‖x‖ρ‖h−hn‖L2,q = εn‖x‖ρ.
(4.6)

Then ‖A − An‖X �→X ≤ εn, according to [6] (4.5) has a unique solution
{
α∗k
}n

1 ,
‖x∗−x∗n‖ =O(εn).
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