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Abstract. In this paper, we establish the relation between the concept of control sub-
groups and the class of graded birational algebras. Actually, we prove that if R =⊕σ∈GRσ
is a strongly G-graded ring and H �G, then the embedding i : R(H) ↩ R, where R(H) =⊕
σ∈H Rσ , is a Zariski extension if and only if H controls the filter �(R− P) for every

prime ideal P in an open set of the Zariski topology on R. This enables us to relate certain
ideals of R and R(H) up to radical.
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1. Introduction. The study of birational extension of rings was, in some sense,
started by F. van Oystaeyen in 1978, [11]. The main motivation in introducing the
class of birational algebras was to generalize the notion of Zariski central rings which
behaves very well with respect to localizations at prime ideals [10]. Birational algebras
received some interest on one hand because all the semiprime PI rings are birational
algebras over their centers and on the other hand because the birationality properties
determine interesting classes within the classes of fully left bounded Noetherian rings,
HNP rings, regular and biregular rings, and Von Neuman rings, cf. [7, 11].
In Passman’s book [8], some use has been made of control subgroups of ideals of

group rings, in particular, in the study of radicals of group rings. The case where a
subgroup H of a group G left controls some basis of a Gabriel filter of left ideals
of a group ring F[G] has been investigated intensively and extensively in [5]. The
notions of control subgroups of submodules of graded modules as well as for other
objects related to graded objects have been introduced in [3] with the aim of studying
localizations and filtrations of strongly graded rings, cf. [3, 4].
All of this has prompted us to establish the relation between the concept of control

subgroups and the class of graded birational algebras. After introducing the basic
notions and definitions in Section 2, we prove, in Section 3, that if R =⊕σ∈GRσ is a
stronglyG-graded ring andH�G, then an extension R(H)↩ R, where R(H) =⊕σ∈H Rσ ,
is a Zariski extension if and only ifH controls the filter �(R−P), for every prime ideal
P in an open set of the Zariski topology. This enables us to relate certain ideals of R
and R(H) up to radical. The main results are contained in Theorem 3.2, Corollary 3.3,
and Theorem 3.8.

2. Preliminaries. All the rings considered are associative with unit. For definitions
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and properties of birational extensions of rings, we refer to [11]. A ring homomor-
phism f : A → B is said to be an extension in the sense of C. Procesi [9] if B =
f(A)CB(f(A)), where CB(f(A))= {b ∈ B, ba= ab for all a∈ f(A)}. In this paper, we
consider only the inclusions A↩ B, so the condition reduces to B =A·CB(A). For any
ring A, the set of prime ideals X = Spec(A)may be equipped with the Zariski topology
given by the open sets X(I)= {P ∈ Spec(A),I 
⊂ P} associated with (two-sided) ideals I
of A. If I is an ideal of A, then, by rad(I), we denote the intersection ∩{P ;P ∈ Spec(A)
and I ⊂ P}. An extension f : A→ B is a birational extension if there exist nonempty
open sets U ⊂ Y = Spec(B) and V ⊂X = Spec(A) such that
(1) if P ∈ Y is such that f−1(P)∈ V , then P ∈U ;
(2) the correspondence P → f−1(P) induces a topological isomorphism U 
 V .

Moreover, this birational extension f :A→ B is called a Zariski extension if, to an ideal
J of B, there corresponds an ideal J′ ⊂ J of A such that X(I′ ·J′)
 Y(I ·J) under f−1.
If P is a prime ideal of a ring A, then, by �(A−P), we denote the symmetric filter

�(A−P)= {I ⊂A,I is a left ideal of A with AsA⊂ I for an s ∈A−P}. (2.1)

The kernel functor induced by �(A−P) is denoted by σ . For details on torsion theory
and localization theory, we refer to [1, 2].
Throughout,G is a finite group with neutral element e,H is a subgroup ofG, and the

ringR =⊕σ∈GRσ is a stronglyG-graded ring. For details on graded rings andmodules,
we refer to [6]. All modules are left modules. If M is a G-graded R-module, then,
by M(H), we denote the Re-module

⊕
h∈HMh. If m = ∑σ∈Gmσ ∈ M , then Supp(m)

denotes the subset {σ ∈ G, mσ 
= 0}. There is a canonical Re-linear map πH : M →
M(H) given by πH(

∑
σ∈Gmσ) =

∑
σ∈Hmσ . It has been proved in [3] that, for any R-

submodule N of M , the following assertions are equivalent
(1) πH(N)⊂N .
(2) πH(N)=N∩M(H).
(3) N = R ·πH(N).

If one of these conditions holds, then we say that H left controls N in M. The control
subgroup of N in M is the smallest subgroup H of G left controlling N in M . Thus,
the control subgroup CM(N) of N in M is the intersection in G of all the subgroups
controlling N in M [3].

3. Control subgoups and birational extensions. Throughout this section, H is a
normal subgroup of G and R is a strongly G-graded ring. By R-mod, we denote the
category of left R-modules.

Definition 2.1. We say that the subgroup H of G (left) control a Gabriel filter �

of left ideals of R if, for every L∈�, there exists (a left ideal) an ideal I ∈� such that
I ⊂ L and I being (left) controlled by H, i.e., I = R ·(I∩R(H)). A Gabriel filter �′ of left
ideals of R(H) is said to be G-invariant if I′ ∈�′ implies RgI′Rg−1 ∈�′ for every g ∈G,
cf. [3].

Theorem 3.2. Suppose that the embedding i : R(H)↩ R is an extension. IfH controls
�(R−P) for all P in a nonempty open set U of Spec(R), then i : R(H)↩ R is a birational
extension.
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Proof. Let X = Spec R(H), Y = Spec R, and U = Y(I) for some ideal I of R. In fact,
the ideal I can be chosen such that I is controlled by H. Indeed, since I ∈ �(R−P),
for every P ∈ Y(I), then there exists an ideal IP ⊂ I such that IP ∈ �(R−P) and IP
is controlled by H. Thus, the ideal J = ∑P∈Y(I) IP ⊂ I is controlled by H. Moreover,
J ∈ �(R− P) and Y(I) = Y(J). If V is the open set X(πH(J)) of Spec(R(H)), then
P∩R(H) ∈ V for every P ∈ Y(J). Hence, we can define a map ψ :U → V as follows:

ψ(P)= i−1(P)= P∩R(H). (3.1)

Since H controls J, then, for every P ∈ Y with i−1(P)= P∩R(H) ∈ V we have J 
⊂ P or,
equivalently, P ∈U = Y(J). Thus, it only remains to prove thatψ is a homeomorphism.
Let P ∈ Y(J) and Q ∈ Y such that Q 
= P and Q∩R(H) = P ∩R(H). We consider the

following two cases
(i) If Q 
⊂ P , then Q ∈ �(R−P). Hence, there exists an ideal Q′ ∈ �(R−P) such

that Q′ ⊂Q and H controls Q′. Thus,

Q′ = R ·
(
Q′ ∩R(H)

)
⊂ R ·

(
Q∩R(H)

)
= R ·

(
P∩R(H)

)
⊂ P. (3.2)

On the other hand, Q′ ∈�(R−P) implies Q′ 
⊂ P and we have a contradiction.
(ii) If Q is a proper subset of P , then Q ∈ U . Thus, H controls �(R−Q) and P ∈

�(R−Q).
Since P 
⊂Q, case (ii) reduces to case (i) and we obtain the same contradiction. There-

fore, ψ is injective.
To prove that ψ is surjective, let P ∈ V . Since R is G-graded, then (R ·P)∩R(H) = P .

Indeed, every x ∈ (R ·P)∩R(H) can be decomposed as

x =
n∑

i=1
a(i)b(i); a(i) ∈ R, b(i) ∈ P, i= 1,2, . . . ,n. (3.3)

Moreover, if S = Suppa(i) and T = Suppb(i), i= 1,2, . . . ,n, then

a(i) =
∑

s∈S
a(i)s , b(i) =

∑

t∈T
b(i)t ; a(i)s ∈ Rs, b(i)t ∈ Rt. (3.4)

Since x ∈ R(H) and T ⊂H, the G-gradation of R implies that S ⊂H. Thus, a(i) ∈ R(H),
i = 1,2, . . . ,n. This entails that x ∈ P . Hence, (R ·P)∩R(H) ⊂ P . Clearly, P ⊂ (R ·P)∩
R(H). Thus, (R ·p)∩R(H) = P . Since i is an extension, then R ·P is an ideal of R. If L
is the maximal ideal of R such that L∩R(H) = P , then it is not hard to prove that L is
a prime ideal of R. Since J is controlled by H, then L ∈ Y(J). It follows that L is the
ψ−preimage of P . Hence, ψ is surjective.
Now, let W be an open set in Y(J). Thus, W = Y(F), where F ⊂ J is an ideal of R. It

follows that there exists an ideal F ′ ⊂ F of R such thatH controls F ′ and Y(F)= Y(F ′).
It is not hard to prove that ψ(W) = X(πH(F ′)). Since πH(F ′) ⊂ πH(F) ⊂ πH(J), then
X(πH(F ′)) is open in X(πH(J)). Therefore, ψ is an open map.
Finally, we show that ψ is continuous. If O is an open set in X(πH(J)), then there

exists an ideal q of R(H) such that q ⊂ πH(J) and O = X(q). Clearly, ψ−1(O) = Y(R ·
q)⊂ Y(J). Thus, ψ−1(O) is open in Y(J). Hence, ψ is continuous.

Corollary 3.3. If i : R(H) ↩ R is an extension and H controls �(R − P) for all
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P ∈ Y(J)⊂ Spec(R), then
(i) If L⊂ J is an ideal of R, then rad(L)= rad(R ·(L∩R(H))).
(ii) For any ideal L of R, rad(J ·L)= rad(J ·(L∩R(H))·R).
(iii) If P ∈ Spec(R) and q = P∩R(H), then rad(J ·P)= rad(J ·q).
Furthermore, i : R(H)↩ R is a Zariski extension.

Proof. The proof is a slight modification of the proof of [5, Cor. 3.3].

Proposition 3.4. Suppose that the embedding i : R(H)↩ R is an extension. If P is a
prime ideal of R such that H left controls the filter �(R−P), then H controls �(R−P).

Proof. Let L ∈ �(R − P). By assumption, there exists a left ideal I ∈ �(R − P)
such that I ⊂ L and H left controls I. It follows that there exists an s ∈ R−P such that
RsR ⊂ I. If Y is a left transversal forH inG, then R =⊕y∈Y RyR(H). Hence, there exists
a finite subset Y ′ of Y such that s =∑y∈Y ′ rysy , where, for every y ∈ Y ′, ry ∈ Ry and
sy ∈ R(H). Since s 
∈ P , then there is y0 ∈ Y ′ with sy0 ∈ R−P . Moreover,

R(H)sy0R
(H) ⊂πH

(
R(H)Ry−10 sR

(H)
)
⊂ I. (3.5)

Since i is an extension, then J = RR(H)sy0R(H) ⊂ I is an ideal of R. Thus, J = Rsy0R ∈
�(R−P) and J ⊂ L. Since H controls J, the result follows.

Proposition 3.5. Suppose that P is a prime ideal ofR. If q = P∩R(H), then �(R(H)−
q) is G-invariant.

Proof. By definition, if I ∈�(R(H)−q), then there exists an s ∈ R(H)−q such that
R(H)sR(H) ⊂ I. It follows from the strong gradation of R that

R(H)RgsRg−1R(H) = RgR(H)sR(H)Rg−1 ⊂ RgIRg−1 . (3.6)

Thus, RgIRg−1 ∈�(R(H)−q) or, equivalently, �(R(H)−q) is G-invariant.
Remark 2.6. With assumptions as those in Proposition 3.4, if q = P ∩R(H) and

L= {I′ ⊂ R(H), there exists an I ∈�(R−P) such that I′ = I∩R(H)}, then one can easily
check that L is nothing but �(R(H)−q).

Proposition 3.7. With assumptions as those in Proposition 3.4, if σ ′ denotes the
Kernel functor associated with �(R(H) − q), then Qσ(R) 
 Qσ ′(R) as R(H)-modules,
where Qσ(−), resp. Qσ ′(−) denote the localization functor in R-mod, resp. R(H)-mod
corresponding to σ , resp. σ ′.

Proof. A direct consequence of the previous remark and [3, Thm. 4.5].

Theorem 3.8. If i : R(H)↩ R is a Zariski extension, then H controls �(R−P) for all
P in a nonempty open set U of Spec(R).

Proof. Let U = Y(J) be an open set of Y = Spec(R) and V = X(J′) be the corre-
sponding open set of X = Spec(R(H)) such that Y(J) 
 X(J′) under i−1. Clearly, P ∈
Y(J) implies the existence of an s ∈ J−P such thatRsR ⊂ J. Hence, J ∈�(R−P). If P ∈
Y(J) and I′ ∈�(R−P), then there exists an ideal I ∈�(R−P) such that I ⊂ I′. Thus,
the primitivity of P implies J ·I ∈�(R−P). Moreover, we obtain, from [11, Prop. 1.2],
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that Y(J · I) = Y(J′ ·(I∩R(H)) ·R) or, equivalently, rad(J · I) = rad(J′ ·(I∩R(H)) ·R).
Since J · I ⊂ rad(J · I) and J · I ∈ �(R−P), then rad(J · I) ∈ �(R−P). Furthermore,
the kernel functor σ induced by �(R− P) is radical (cf. [11, Thm. 2.4]). Therefore,
rad(J′ ·(I∩R(H))·R)∈�(R−P) implies L= J′ ·(I∩R(H))·R ∈�(R−P). Because i is
an extension, L is an ideal of R. Obviously, H controls L and L⊂ (I∩R(H))·R ⊂ I ⊂ I′.
Thus, H controls �(R−P) and the assertion follows.
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