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ABSTRACT. In this paper, we introduce a new class of generalized strongly set-valued non-
linear complementarity problems and construct new iterative algorithms. We show the
existence of solutions for this kind of nonlinear complementarity problems and the con-
vergence of iterative sequences generated by the algorithm. Our results extend some recent
results in this field.
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1. Introduction. The complementarity theory, which was introduced by Lemke [11],
Cottle, and Dantzig [6] in the early 1960s and later developed by others, plays an im-
portant and fundamental role in the study of a wide class of problems arising in
mechanics, physics, control and optimization, economics and transportation equilib-
rium, contact problems in elasticity, fluid flow through porous media, and many other
branches of mathematical and engineering sciences [1, 2, 3,4, 5, 7, 8,9, 10, 13, 14, 15].
In particular, the set-valued quasi-(implicit)complementarity problems, considered
and studied by Chang and Huang [2, 3], are important among the generalizations
of the complementarity problems. In [14], Noor introduced and studied some new
classes of nonlinear complementarity problems for single-valued mappings in R" and,
in [4], Chang and Huang introduced and studied some new nonlinear complementarity
problems for compact-valued fuzzy mappings and set-valued mappings which include
many kinds of complementarity problems, considered by Chang [1], Cottle et al. [7],
Isac [9], and Noor [13, 14], as special cases.

In this paper, we introduce and study a new class of generalized strongly set-valued
nonlinear complementarity problems and construct new iterative algorithms. We also
discuss the existence of solutions for this kind of nonlinear complementarity prob-
lems and the convergence of iterative sequences generated by the algorithm. Our
results improve and develop some results in [4, 13, 14].

2. Preliminaries. Let R" be the Euclidean space endowed with norm || - || and inner
product (-, -), respectively. In the sequel, we use the following notations:

2R" = {A: A Cc R" and A is nonempty}, (2.1)
CB(R"™) = {A: A cC R" and A is nonempty, bounded, and closed}, 2.2)
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Ix] = (Ix11,[x21,...,1xn]) for all x € R™. (2.3)

Let F, G, Q : R" — 2R" be three set-valued mappings and f, g : R" — R" be two
single-valued mappings. Now, we consider the following problem.
Find u e R", x € F(u), ¥y € G(u), and z € Q(y) such that

u =0, f(x)+g(z)=0, (u,f(x)+g(x)) =0. (2.4)

This problem is called the generalized strongly set-valued nonlinear complementar-
ity problem.

If Q is the identity mapping on R", then problem (2.4) is equivalent to the following.

Find u € R", x € F(u) and y € G(u) such that

u =0, fx)+g(y) =0, (u, f(x)+g(y)) =0. (2.5)

This problem is called the generalized set-valued nonlinear complementarity problem.
If F is the identity mapping on R", then problem (2.5) is equivalent to the following.
Find u € R"™ and v € G(u) such that

u=0, fu)y+g(y) =0, (u, fu)+g(y)) =0, (2.6)

which was considered by Chang and Huang in [4].

If F = G is the identity mapping on R", then problem (2.5) is equivalent to the
following.

Find u € R" such that

u=0, f(u)+gu) =0, (w, f(w)+gu)) =0, (2.7)

which was considered by Noor [14].

If F = G is the identity mapping on R" and f = 0, then problem (2.5) is equivalent
to the following.

Find u € R™ such that

u =0, gu) =0, (u,g(u)) =0, (2.8)

which was considered by Karamardian [10], Fang [8], and Noor [13].
Obviously, problem (2.4) can be written as follows:
Find u € R", x € F(u), ¥ € G(u) and z € Q(y) such that

u=0, v=f(x)+g(z) =0, (u,v) =0. (2.9)

We now consider the following equalities:
u=j(wl+w), v=@Ap) " (lwl-w), (2.10)
where A, p > 0 are constants. Clearly, u > 0 and v > 0. From (2.5) and (2.9), it follows

that problem (2.9) is equivalent to the following.
Find w e R*, x e F(1/2(lw|+w)), ¥y € G(1/2(lw|+w)), and z € Q(y) such that

w =3 (lwl+w)-3Ap(f(x)+g(2)), (2.11)

where A, p > 0 are constants.
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3. Algorithms. Based on the formulations in Section 2, we now construct the new
algorithms for the generalized strongly set-valued nonlinear complementarity prob-
lem (2.4).

Let F, G, Q : R" — CB(R") be three set-valued mappings and let f, g : R" — R" be
two single-valued mappings. For any w, € R", let

xo € F(3(lwol+wo)), 0 eG(5(Iwol+wo)), 20€Q(0) B
and
wy = 3 (1=A) (Iwol +wo) + 3A(I1wol +wo — p (f (x0) +9(20))), (3.2)

where A, p > 0 are constants.

Since xo € F(1/2(lwolswo)), Yo € G(1/2(lwol +wo)) and zo € Q(y0), by Nadler
[12], there exist x; € F(1/2(|lwy|+wy)), ¥1 € G(1/2(Jwy|+w;)) and z; € Q () such
that

Ixo—x11l < (1+ D H (F(3 (1wl +wo) ), F(3 (lwi ] +w1))), (3.3)
lyo =11l < (1+ DH(G (3 (lwol +wo) ), G (3 (lwil +w1))), (3.4)
121 - zoll < 1+ DH(Q(31),Q(7)), (3.5)

where H(-,-) denotes the Hausdorff metric on CB (R").
Thus, by induction, we can obtain the following algorithm:

ALGORITHM 3.1. Let F, G, Q : R™ — CB(R") be three set-valued mappings and let
f, g :R" - R" be two single-valued mappings. For any wy, € R", we can construct
sequences {wy}, {xn}, {¥n}, and {z,} in R™ as follows:

Xn€F(3(lwal+wn)),  yn€G(3(wnl+wn)),  zn€Q(yn),

It =ntll < (14— (E(3 (wnl+wa)) E (w1 + w0)) ),

1=yl = (14 VH(G (3wl +w0),. 6 (S waa 1+ w)), 36

lzn=znetll < (14— JH(QOM) Qm)),

Wit = 3(1=A) (Iwal+wn) + 3A(Iwnl +wn = p(f(xn) +g(20) )

forn=0,1,2,..., where A, p > 0 are constants.
From Algorithm 3.1, we can obtain the following algorithms.

ALGORITHM 3.2. Let F, G:R™ — CB(R") be two set-valued mappings and let f, g :
R" — R" be two single-valued mappings. For any wy € R", we can construct sequences
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{wn}, {xn}, and {y,} in R" as follows:

Xn €F(3(1wnl+wn)), v G(5(Iwnl+wn)),
It =ntll = (14— (E(3 (wnl +wa)) E (w1 + w0)) ),

3.7)
1=yl = (142 H(G (3 (wal +w0), 6 (2 wnii | +wn)),

W1 = 3 (1= ) ([wal +wn) + A (1wl +wn —p(f (xn) +g(zn)) )
for n=0,1,2,..., where A, p > 0 are constants.

ALGORITHM 3.3 [4]. Let G : R" — CB(R") be a set-valued mapping and let f, g :
R"™ — R™ be two single-valued mappings. For any wy € R™, we can construct sequences
{wy} and {y,} in R" as follows:

Vn € G(3 (Iwal+wy)), (3.8)
n=ymall = (1+ ==V H(G (1wl +wa)).G (S (wnl +wni)) ), (3.9)

Wn+1 = %(I*A)(‘wn‘ +wy) + %/\(|wn| +wn*p<f<%(‘wn‘ +u’n)) +-g(yn))) (3.10)
forn=0,1,2,..., where A, p > 0 are constants.

ALGORITHM 3.4. [14] Let f, g: R" — R™ be two single-valued mappings. For any
wp € R™, we can construct sequences {w,} and {y,} in R™ as follows.

Yn =3 (lwnl+why), (3.11)

W1 = 11 2) (Jwn +10) 12
+ 3 (1wnl +wa —p (£ (2 (wnl +wn)) +a (7)) '

for n=0,1,2,..., where A, p > 0 are constants.

ALGORITHM 3.5. [15]Letg:R™ — R™ be a single-valued mapping. For any wy € R",
we can construct sequences {w,} and {y,} in R™ as follows.

(lwnl +wn), (3.13)

1
Vn=3
é(l_)\)(|wn|+wn)+;)\Own“”wn_ﬁ’(g(yn))) (3.14)

Wn+1 =

forn=0,1,2,..., where A, p > 0 are constants.

4. Existence and convergence. In this section, we show the existence of solutions
for the generalized strongly set-valued nonlinear complementarity problem (2.4) and
the convergence of the iterative sequences constructed by Algorithm 3.1. We first give
some definitions.

DEFINITIONS 4.1.
(1) A mapping f: R™ — R" is said to be strongly monotone if there exists a constant
o« > 0 such that

(fw) - f),u-v) = «llu-v|? (4.1)
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for all u, v € R™.
(2) Amapping f: R" — R™is said to be Lipschitz continuousif there exists a constant
B > 0 such that

IIf (w) = f ()| < Bllu-vl| (4.2)

for all u, v € R™. The number B in (2) is called Lipschitz constant.
It is easy to see that & < .

DEFINITIONS 4.2.
(1) A set-valued mapping F : R" — CB(R") is said to be strongly monotone with
respect to the mapping f : R"™ — R" if there exists a constant « > 0 such that

(fx)=f(¥)u-v) = a«llu-v|? (4.3)

forallu,v e R", x € F(u) and y € F(v).
(2) A set-valued mapping F : R™ — CB(R") is said to be H-Lipschitz continuous if
there exists a constant § > 0 such that

H(F(u),F(v)) <Bllu-vll (4.4)

for all u, v € R™. The number B in (2) is called the H-Lipschitz constant.
Now, we give our main theorems in this paper.

THEOREM 4.1. Suppose that f, g : R"™ — R™ are Lipschitz continuous with Lipschitz
constants 6 and &, respectively, and F, G, Q : R™ — CB(R") are H-Lipschitz continuous
with H-Lipschitz constants B, n, v, respectively, and F is strongly monotone with respect
to f with strongly monotone constant «. If

4(x-&vn)

0<P<ispr—(evn?’

p&vn <2, Evn <min{«x, B}, 4.5)

then there exist u, x, v, z € R™ which solve problem (2.4). Furthermore, it follows that
s(wal+wn) —u,  xp—Xx, Yn—Y, Zn—2z asN— o, (4.6)

where {wy}, {xn}, {yn}, and {z,} in R™ are the sequences generated by Algorithm 3.1.

PROOF. By Algorithm 3.1, we have

lwns1 —wnll
= ||3 Q= 2) (1wl +wn) + FA (1wl +wn = p(f (xn) +9(2n)))
~ A=) (w1l +wn1) = SA (1wt |+ wnoy = p(F (xn1) + 9 (2n-1))|
< (1=D[|lwn—wnl[+ 32019 (20) —g(2n1) ]

FA|| 3 (wal +wn) = (Wt |+ wao1) = 2p(f (n) = f ()|
4.7)
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Since F, G, and Q are H-Lipschitz continuous and f and g are Lipschitz continuous,
from (3.6), it follows that

I1f (xn) = f (xcn-1)|| < 6l]xn = xn]

< 5(1+%)H(F(%(Iwnl +wn)),F(%(|wn_1l+wn_1)))

< 5(1+ ) Blwn—wnni]
and
ll9(zn) =g (zn-1)l
<gllzn-z01ll <E(1+ ) HQM), Q1))
sEV(H%)Ilynfyn-lll 4.9)

<2y (1 1) B(G((2 0wl +0)). 6 (3 (w1 +w)))
1 2
< §V<1+E> nllwn —wn-1]|.

Further, from the strong monotonicity of F with respect to f and (4.8), we have

2

|5 tnl+wa) = 3 (11w 1) = 20(F () —f Gen-1)
(4.10)

1
2
< <1 —ap+ lp262<1 + l>2ﬁ2)||w —wn|]?
- 4 n neoone
Thus, it follows, from (4.7), (4.8), (4.9), and (4.10), that

[[wni1 —wnl|

1 1 1 1)\2
< (1—A+2Ap§n(1+n) +A\/1—0(p+4p262,82(1+n> )||wn—wn_1||

= en”wn_wnflny

(4.11)
where
On = 1—A+1ApEy (1+1)2+A\/l—(x +1 25232<1+1)2 (4.12)
n = SApEvn(1+ p+gp ) :
Letting
1 1
9—1—2\+2/\p§vn+/\\/1—0(p+4p26232, (4.13)

0, — 0 as n — o. In view of (4.5), we know that 0 < 60 <1 and so 0,, <1 for n
sufficiently large. It follows from (4.11) that {w,} is a Cauchy sequence in R"™ and so
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we can suppose that w, — w as n — . (4.8) and (4.9) imply that {x,}, {yx}, and {z,}
are also Cauchy sequences in R". Let x,, — x, ¥, — ¥, and z,, — z as n — . Letting
u= %(le +w), we get

F(lwnl+wy) —u,  Xn—X, IYn—Y, Zn—2z asn—oco. (4.14)

Now, we prove that x € F(u), v € G(u), and z € Q(y). In fact, we have

d(x,F(u)) =inf{||x—-z||:ze F(u)}

< ||x —xn||+d(xn, F(u))

< |l = xnll+ H(F (3 (Jwa | +wn)),F)) (4.15)

= Hx_xn||+5H%(|wn| +Wn)—U

’

and hence d(x, F(u)) = 0. This implies that x € F(u). Similarly, we have y € G(u)
and z € Q(y). This completes the proof. O

From Theorem 4.1, we get the following theorem.

THEOREM 4.2. Suppose that f, g : R" — R" are Lipschitz continuous with Lipschitz
constants 6 and &, respectively, and F, G : R" — CB (R™) are H-Lipschitz continuous with
H-Lipschitz constants B and n, respectively, and F is strongly monotone with respect to
f with strongly monotone constant . If

4(x—&n) )
0<p<7(6ﬁ)2—(§n)2' p&n <2, En <min{«x, 68}, (4.16)

then there exist u, x, y € R™ which solve problem (2.5). Furthermore, it follows that
s(Jwn| +wn) —u,  xn—x, Yn—y asn— w, 4.17)

where {wy,}, {xn}, and {yy} in R™ are the sequences generated by Algorithm 3.2.

THEOREM 4.3 [4]. Let f, g, and G be the same as in Theorem 4.2. Further, suppose
that f is strongly monotone with strongly monotone constant o. If

4(x—8n)
0<p<m, p&n <2, En<a, (4.18)

then there exist u, y € R™ which solve problem (2.6), and
sUwnl+wn) —u,  yn—y, asn— o, (4.19)

where {w,} and {yy,} are two sequences generated by Algorithm 3.3.
THEOREM 4.4 [14]. Let f and g be the same as in Theorem 4.3. If

4(x—-8&)

O<p<f§2,

pE <2, £ <q, (4.20)

then there exists u € R™ which is a solution of problem (2.7), and %(Iwnl +wy) — U as
n — oo, where {w,} is the sequence generated by Algorithm 3.4.
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THEOREM 4.5 [15]. Suppose that g : R" — R" is strongly monotone and Lipschitz
continuous with strongly monotone constant « and Lipschitz constant 6. If 0 < p <
40t/ 52, then there existsu € R™ which is a solution of problem (2.8), and % (lwnl+wy) —
u asn — oo, where {w,} is the sequence generated by Algorithm 3.5.
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