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Abstract. In this paper, we introduce a new class of generalized strongly set-valued non-
linear complementarity problems and construct new iterative algorithms. We show the
existence of solutions for this kind of nonlinear complementarity problems and the con-
vergence of iterative sequences generated by the algorithm. Our results extend some recent
results in this field.
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1. Introduction. The complementarity theory, which was introduced by Lemke [11],
Cottle, and Dantzig [6] in the early 1960s and later developed by others, plays an im-
portant and fundamental role in the study of a wide class of problems arising in
mechanics, physics, control and optimization, economics and transportation equilib-
rium, contact problems in elasticity, fluid flow through porous media, and many other
branches of mathematical and engineering sciences [1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15].
In particular, the set-valued quasi-(implicit)complementarity problems, considered
and studied by Chang and Huang [2, 3], are important among the generalizations
of the complementarity problems. In [14], Noor introduced and studied some new
classes of nonlinear complementarity problems for single-valued mappings inRn and,
in [4], Chang and Huang introduced and studied some new nonlinear complementarity
problems for compact-valued fuzzy mappings and set-valued mappings which include
many kinds of complementarity problems, considered by Chang [1], Cottle et al. [7],
Isac [9], and Noor [13, 14], as special cases.

In this paper, we introduce and study a new class of generalized strongly set-valued
nonlinear complementarity problems and construct new iterative algorithms. We also
discuss the existence of solutions for this kind of nonlinear complementarity prob-
lems and the convergence of iterative sequences generated by the algorithm. Our
results improve and develop some results in [4, 13, 14].

2. Preliminaries. Let Rn be the Euclidean space endowed with norm ‖·‖ and inner
product (·,·), respectively. In the sequel, we use the following notations:

2R
n = {A :A⊂Rn and A is nonempty}, (2.1)

CB(Rn)= {A :A⊂Rn and A is nonempty, bounded, and closed}, (2.2)
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|x| = (|x1|,|x2|, . . . ,|xn|
)

for all x ∈Rn. (2.3)

Let F , G, Q : Rn → 2R
n

be three set-valued mappings and f , g : Rn → Rn be two
single-valued mappings. Now, we consider the following problem.

Find u∈Rn, x ∈ F(u), y ∈G(u), and z ∈Q(y) such that

u≥ 0, f (x)+g(z)≥ 0,
(
u,f(x)+g(x))= 0. (2.4)

This problem is called the generalized strongly set-valued nonlinear complementar-
ity problem.

IfQ is the identity mapping on Rn, then problem (2.4) is equivalent to the following.
Find u∈Rn, x ∈ F(u) and y ∈G(u) such that

u≥ 0, f (x)+g(y)≥ 0,
(
u,f(x)+g(y))= 0. (2.5)

This problem is called the generalized set-valued nonlinear complementarity problem.
If F is the identity mapping on Rn, then problem (2.5) is equivalent to the following.
Find u∈Rn and y ∈G(u) such that

u≥ 0, f (u)+g(y)≥ 0,
(
u,f(u)+g(y))= 0, (2.6)

which was considered by Chang and Huang in [4].
If F = G is the identity mapping on Rn, then problem (2.5) is equivalent to the

following.
Find u∈Rn such that

u≥ 0, f (u)+g(u)≥ 0,
(
u,f(u)+g(u))= 0, (2.7)

which was considered by Noor [14].
If F = G is the identity mapping on Rn and f ≡ 0, then problem (2.5) is equivalent

to the following.
Find u∈Rn such that

u≥ 0, g(u)≥ 0,
(
u,g(u)

)= 0, (2.8)

which was considered by Karamardian [10], Fang [8], and Noor [13].
Obviously, problem (2.4) can be written as follows:
Find u∈Rn, x ∈ F(u), y ∈G(u) and z ∈Q(y) such that

u≥ 0, v = f(x)+g(z)≥ 0, (u,v)= 0. (2.9)

We now consider the following equalities:

u= 1
2

(|w|+w), v = (λρ)−1(|w|−w), (2.10)

where λ, ρ > 0 are constants. Clearly, u≥ 0 and v ≥ 0. From (2.5) and (2.9), it follows
that problem (2.9) is equivalent to the following.

Find w ∈Rn, x ∈ F(1/2(|w|+w)), y ∈G(1/2(|w|+w)), and z ∈Q(y) such that

w = 1
2

(|w|+w)− 1
2λρ

(
f(x)+g(z)), (2.11)

where λ, ρ > 0 are constants.
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3. Algorithms. Based on the formulations in Section 2, we now construct the new
algorithms for the generalized strongly set-valued nonlinear complementarity prob-
lem (2.4).

Let F , G, Q : Rn → CB(Rn) be three set-valued mappings and let f , g : Rn → Rn be
two single-valued mappings. For any wo ∈Rn, let

x0 ∈ F
(

1
2

(|w0|+w0
))
, y0 ∈G

(
1
2

(|w0|+w0
))
, z0 ∈Q

(
y0
)

(3.1)

and

w1 = 1
2 (1−λ)

(|w0|+w0
)+ 1

2λ
(|w0|+w0−ρ

(
f(x0)+g(z0)

))
, (3.2)

where λ, ρ > 0 are constants.
Since x0 ∈ F(1/2(|w0|+w0)), y0 ∈ G(1/2(|w0| +w0)) and z0 ∈ Q(y0), by Nadler

[12], there exist x1 ∈ F(1/2(|w1|+w1)), y1 ∈G(1/2(|w1|+w1)) and z1 ∈Q(y1) such
that

‖x0−x1‖ ≤ (1+1)H
(
F
(

1
2

(|w0|+w0
))
,F
(

1
2

(|w1|+w1
)))

, (3.3)

‖y0−y1‖ ≤ (1+1)H
(
G
(

1
2

(|w0|+w0
))
,G
(

1
2

(|w1|+w1
)))

, (3.4)

‖z1−z0‖ ≤ (1+1)H
(
Q
(
y1
)
,Q
(
y0
))
, (3.5)

where H(·,·) denotes the Hausdorff metric on CB(Rn).

Thus, by induction, we can obtain the following algorithm:

Algorithm 3.1. Let F , G, Q : Rn → CB(Rn) be three set-valued mappings and let
f , g : Rn → Rn be two single-valued mappings. For any w0 ∈ Rn, we can construct
sequences {wn}, {xn}, {yn}, and {zn} in Rn as follows:

xn ∈ F
(

1
2

(|wn|+wn
))
, yn ∈G

(
1
2

(|wn|+wn
))
, zn ∈Q

(
yn
)
,

‖xn−xn+1‖ ≤
(

1+ 1
n+1

)
H
(
F
(

1
2

(|wn|+wn
))
,F
(

1
2

(|wn+1|+wn+1
)))

,

‖yn−yn+1‖ ≤
(

1+ 1
n+1

)
H
(
G
(

1
2

(|wn|+wn
))
,G
(

1
2

(|wn+1|+wn+1
)))

, (3.6)

‖zn−zn+1‖ ≤
(

1+ 1
n+1

)
H
(
Q
(
yn
)
,Q
(
yn+1

))
,

wn+1 = 1
2 (1−λ)

(|wn|+wn
)+ 1

2λ
(
|wn|+wn−ρ

(
f(xn)+g(zn)

))

for n= 0,1,2, . . . , where λ, ρ > 0 are constants.

From Algorithm 3.1, we can obtain the following algorithms.

Algorithm 3.2. Let F , G :Rn→ CB(Rn) be two set-valued mappings and let f , g :
Rn→Rn be two single-valued mappings. For anyw0 ∈Rn, we can construct sequences
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{wn}, {xn}, and {yn} in Rn as follows:

xn ∈ F
(

1
2

(|wn|+wn
))
, yn ∈G

(
1
2

(|wn|+wn
))
,

‖xn−xn+1‖ ≤
(

1+ 1
n+1

)
H
(
F
(

1
2

(|wn|+wn
))
,F
(

1
2

(|wn+1|+wn+1
)))

,

‖yn−yn+1‖ ≤
(

1+ 1
n+1

)
H
(
G
(

1
2

(|wn|+wn
))
,G
(

1
2

(|wn+1|+wn+1
)))

,

wn+1 = 1
2 (1−λ)

(|wn|+wn
)+ 1

2λ
(
|wn|+wn−ρ

(
f(xn)+g(zn)

))
(3.7)

for n= 0,1,2, . . . , where λ, ρ > 0 are constants.

Algorithm 3.3 [4]. Let G : Rn → CB(Rn) be a set-valued mapping and let f , g :
Rn→Rn be two single-valued mappings. For anyw0 ∈Rn, we can construct sequences
{wn} and {yn} in Rn as follows:

yn ∈G
(

1
2

(|wn|+wn
))
, (3.8)

∥∥yn−yn+1
∥∥≤ (1+ 1

n+1

)
H
(
G
(

1
2

(|wn|+wn
))
,G
(

1
2

(|wn+1|+wn+1
)))

, (3.9)

wn+1 = 1
2 (1−λ)

(|wn|+wn
)+ 1

2λ
(
|wn|+wn−ρ

(
f
(

1
2

(|wn|+wn
))+g(yn))) (3.10)

for n= 0,1,2, . . . , where λ, ρ > 0 are constants.

Algorithm 3.4. [14] Let f , g : Rn → Rn be two single-valued mappings. For any
w0 ∈Rn, we can construct sequences {wn} and {yn} in Rn as follows.

yn = 1
2

(|wn|+wn
)
, (3.11)

wn+1 = 1
2 (1−λ)

(|wn|+wn
)

+ 1
2λ
(
|wn|+wn−ρ

(
f
(

1
2

(|wn|+wn
))+g(yn))) (3.12)

for n= 0,1,2, . . . , where λ, ρ > 0 are constants.

Algorithm 3.5. [15] Let g :Rn→Rn be a single-valued mapping. For anyw0 ∈Rn,
we can construct sequences {wn} and {yn} in Rn as follows.

yn = 1
2

(|wn|+wn
)
, (3.13)

wn+1 = 1
2 (1−λ)

(|wn|+wn
)+ 1

2λ
(
|wn|+wn−ρ

(
g
(
yn
)))

(3.14)

for n= 0,1,2, . . . , where λ, ρ > 0 are constants.

4. Existence and convergence. In this section, we show the existence of solutions
for the generalized strongly set-valued nonlinear complementarity problem (2.4) and
the convergence of the iterative sequences constructed by Algorithm 3.1. We first give
some definitions.

Definitions 4.1.

(1) A mapping f :Rn→Rn is said to be strongly monotone if there exists a constant
α> 0 such that (

f(u)−f(v),u−v)≥α‖u−v‖2 (4.1)



GENERALIZED STRONGLY SET-VALUED NONLINEAR COMPLEMENTARITY 601

for all u, v ∈Rn.
(2) A mapping f :Rn→Rn is said to be Lipschitz continuous if there exists a constant

β > 0 such that

∥∥f(u)−f(v)∥∥≤ β‖u−v‖ (4.2)

for all u, v ∈Rn. The number β in (2) is called Lipschitz constant.
It is easy to see that α≤ β.
Definitions 4.2.

(1) A set-valued mapping F : Rn → CB(Rn) is said to be strongly monotone with
respect to the mapping f :Rn→Rn if there exists a constant α> 0 such that

(
f(x)−f (y),u−v)≥α‖u−v‖2 (4.3)

for all u, v ∈Rn, x ∈ F(u) and y ∈ F(v).
(2) A set-valued mapping F : Rn → CB(Rn) is said to be H-Lipschitz continuous if

there exists a constant β > 0 such that

H
(
F(u),F(v)

)≤ β‖u−v‖ (4.4)

for all u, v ∈Rn. The number β in (2) is called the H-Lipschitz constant.

Now, we give our main theorems in this paper.

Theorem 4.1. Suppose that f , g : Rn → Rn are Lipschitz continuous with Lipschitz
constants δ and ξ, respectively, and F , G, Q :Rn→ CB(Rn) are H-Lipschitz continuous
withH-Lipschitz constants β, η, ν , respectively, and F is strongly monotone with respect
to f with strongly monotone constant α. If

0< ρ <
4(α−ξνη)

(δβ)2−(ξνη)2 , ρξνη < 2, ξνη <min{α,δβ}, (4.5)

then there exist u, x, y , z ∈Rn which solve problem (2.4). Furthermore, it follows that

1
2

(|wn|+wn
)
�→u, xn �→ x, yn �→y, zn �→ z as n �→∞, (4.6)

where {wn}, {xn}, {yn}, and {zn} in Rn are the sequences generated by Algorithm 3.1.

Proof. By Algorithm 3.1, we have

‖wn+1−wn‖
=
∥∥∥ 1

2 (1−λ)
(|wn|+wn

)+ 1
2λ
(|wn|+wn−ρ

(
f
(
xn
)+g(zn)))

− 1
2 (1−λ)

(|wn−1|+wn−1
)− 1

2λ
(|wn−1|+wn−1−ρ

(
f
(
xn−1

)+g(zn−1
)))∥∥∥

≤ (1−λ)∥∥wn−wn−1
∥∥+ 1

2λρ
∥∥g(zn)−g(zn−1

)∥∥
+λ

∥∥∥ 1
2

(|wn|+wn
)− 1

2

(|wn−1|+wn−1
)− 1

2ρ
(
f
(
xn
)−f (xn−1

))∥∥∥.
(4.7)
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Since F , G, and Q are H-Lipschitz continuous and f and g are Lipschitz continuous,
from (3.6), it follows that∥∥f (xn)−f (xn−1

)∥∥≤ δ∥∥xn−xn−1
∥∥

≤ δ
(

1+ 1
n

)
H
(
F
(

1
2

(|wn|+wn
))
,F
(

1
2

(|wn−1|+wn−1
)))

≤ δ
(

1+ 1
n

)
β
∥∥∥∥ |wn|+wn

2
− |wn−1|+wn−1

2

∥∥∥∥
≤ δ

(
1+ 1

n

)
β
∥∥wn−wn−1

∥∥
(4.8)

and ∥∥g(zn)−g(zn−1
)∥∥

≤ ξ∥∥zn−zn−1
∥∥≤ ξ(1+ 1

n

)
H
(
Q
(
yn
)
,Q
(
yn−1

))

≤ ξν
(

1+ 1
n

)∥∥yn−yn−1
∥∥

≤ ξν
(

1+ 1
n

)2

H
(
G
((

1
2

(|wn|+wn
))
,G
(

1
2

(|wn−1|+wn−1
))))

≤ ξν
(

1+ 1
n

)2

η
∥∥wn−wn−1

∥∥.

(4.9)

Further, from the strong monotonicity of F with respect to f and (4.8), we have

∥∥∥∥1
2

(|wn|+wn
)− 1

2

(|wn−1|+wn−1
)− 1

2
ρ
(
f
(
xn
)−f (xn−1

))∥∥∥∥
2

≤
(

1−αρ+ 1
4
ρ2δ2

(
1+ 1

n

)2

β2
)∥∥wn−wn−1

∥∥2.
(4.10)

Thus, it follows, from (4.7), (4.8), (4.9), and (4.10), that∥∥wn+1−wn
∥∥

≤
(

1−λ+ 1
2
λρξη

(
1+ 1

n

)
+λ

√
1−αρ+ 1

4
ρ2δ2β2

(
1+ 1

n

)2
)∥∥wn−wn−1

∥∥
= θn

∥∥wn−wn−1
∥∥,

(4.11)

where

θn = 1−λ+ 1
2
λρξνη

(
1+ 1

n

)2

+λ
√

1−αρ+ 1
4
ρ2δ2β2

(
1+ 1

n

)2

. (4.12)

Letting

θ = 1−λ+ 1
2
λρξνη+λ

√
1−αρ+ 1

4
ρ2δ2β2, (4.13)

θn → θ as n → ∞. In view of (4.5), we know that 0 < θ < 1 and so θn < 1 for n
sufficiently large. It follows from (4.11) that {wn} is a Cauchy sequence in Rn and so
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we can suppose thatwn→w as n→∞. (4.8) and (4.9) imply that {xn}, {yn}, and {zn}
are also Cauchy sequences in Rn. Let xn → x, yn → y , and zn → z as n→∞. Letting
u= 1

2 (|w|+w), we get

1
2

(|wn|+wn
)
�→u, xn �→ x, yn �→y, zn �→ z as n �→∞. (4.14)

Now, we prove that x ∈ F(u), y ∈G(u), and z ∈Q(y). In fact, we have

d(x,F(u))= inf{‖x−z‖ : z ∈ F(u)}
≤ ∥∥x−xn∥∥+d(xn,F(u))
≤ ∥∥x−xn∥∥+H(F( 1

2

(∣∣wn
∣∣+wn

))
,F(u)

)
≤ ∥∥x−xn∥∥+β∥∥∥ 1

2

(∣∣wn
∣∣+wn

)−u∥∥∥,
(4.15)

and hence d(x, F(u)) = 0. This implies that x ∈ F(u). Similarly, we have y ∈ G(u)
and z ∈Q(y). This completes the proof.

From Theorem 4.1, we get the following theorem.

Theorem 4.2. Suppose that f , g : Rn → Rn are Lipschitz continuous with Lipschitz
constants δ and ξ, respectively, and F ,G :Rn→ CB(Rn) areH-Lipschitz continuous with
H-Lipschitz constants β and η, respectively, and F is strongly monotone with respect to
f with strongly monotone constant α. If

0< ρ <
4(α−ξη)

(δβ)2−(ξη)2 , ρξη < 2, ξη <min{α,δβ}, (4.16)

then there exist u, x, y ∈Rn which solve problem (2.5). Furthermore, it follows that

1
2

(∣∣wn
∣∣+wn

)
�→u, xn �→ x, yn �→y as n �→∞, (4.17)

where {wn}, {xn}, and {yn} in Rn are the sequences generated by Algorithm 3.2.

Theorem 4.3 [4]. Let f , g, and G be the same as in Theorem 4.2. Further, suppose
that f is strongly monotone with strongly monotone constant α. If

0< ρ <
4(α−ξη)
δ2−(ξη)2 , ρξη < 2, ξη < α, (4.18)

then there exist u, y ∈Rn which solve problem (2.6), and

1
2 (|wn|+wn) �→u, yn �→y, as n �→∞, (4.19)

where {wn} and {yn} are two sequences generated by Algorithm 3.3.

Theorem 4.4 [14]. Let f and g be the same as in Theorem 4.3. If

0< ρ <
4(α−ξ)
δ2−ξ2

, ρξ < 2, ξ < α, (4.20)

then there exists u∈Rn which is a solution of problem (2.7), and 1
2 (|wn|+wn)→u as

n→∞, where {wn} is the sequence generated by Algorithm 3.4.
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Theorem 4.5 [15]. Suppose that g : Rn → Rn is strongly monotone and Lipschitz
continuous with strongly monotone constant α and Lipschitz constant δ. If 0 < ρ <
4α/δ2, then there existsu∈Rn which is a solution of problem (2.8), and 1

2 (|wn|+wn)→
u as n→∞, where {wn} is the sequence generated by Algorithm 3.5.
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