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Abstract. We defined the �p,q-summability property and study the relations between
the �p,q-summability property, the Banach-Mackey spaces and the locally complete
spaces.
We prove that, for c0-quasibarrelled spaces, Banach-Mackey and locally complete are

equivalent. Last section is devoted to the study of CS-closed sets introduced by Jameson
and Kakol.
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1. Introduction. Let (E,τ) be a locally convex space. If A is absolutely convex its
linear span EA may be endowed with the seminorm topology given by the Minkowski
functional of A, we denote it by (EA,ρA). If A is bounded then (EA,ρA) is a normed
space. If every bounded set B is contained in an absolutely convex, closed, bounded
set, called a diskA such that (EA,ρA) is complete (barrelled) then E is said to be locally
complete (barrelled).
A locally convex space is a Banach-Mackey space if σ(E,E′)-bounded sets are

β(E,E′)-bounded sets.
Finally, let us define the �p,q-summability property. For 1≤ p ≤∞ let q be such that

(1/p)+(1/q)= 1. A sequence (xn)n ⊂ E is p-absolutely summable if for every ρ con-
tinuous seminorm in (E,τ) the sequence (ρ(xn))n is in �p . A p-absolutely summable
sequence is �p,q-summable if for every (λn)n ∈ �q, the series Σ∞n=1λnxn converges to
x for some x ∈ E. A locally convex space E has the �p,q-summability property if each
p-absolutely summable sequence is �p,q-summable.

2. �p,q-summability. Let (E,τ) = (c0,σ(c0,�1)). (E,τ) is a locally complete space.
Take α = (αn)n ∈ �1 and (en)n the canonical unit vectors in c0. Then ρα(en) = |αn|
so Σ∞n=1ρα(en) = Σ∞n=1|αn| < ∞ which means that (en)n is absolutely summable for
every continuous seminorm in σ(c0,�1). Now, since Σ∞n=1(en) ∉ c0 we have here an
example of a space that has the �∞,1-summability property and does not have the
�1,∞-summability property.
Now let us establish some properties of the spaces with the �p,q-summability

property.
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Theorem 2.1. Let (E,τ) be a locally convex space. If E satisfies the �p,q-summability
property for 1≤ p, q ≤∞ with (1/p)+(1/q)= 1, then E is locally complete.

Proof. Let A be a bounded set and B = abconvA; B is a disk. Take (xn)n ⊂ EB
a sequence such that (ρB(xn))n ∈ �p . Since i : (EB,ρB) ↩ (E,τ) is continuous, for
every continuous seminorm ρ in E, we have (ρ(xn))n ∈ �p . So for every (an)n ∈ �q,
we have Σ∞n=1anxn→ x with respect to τ since E has the �p,q-summability property.
Now the sequence of partial sums Σkn=1anxn is ρB-bounded since it is a ρB-Cauchy

sequence as we can see
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which is small for k big enough, (a′n)n = (0, . . . ,0,ak+1, . . . ,ak+r ,0, . . .) and (x′n)n =
(0, . . . ,0,xk+1, . . . ,xk+r ,0, . . .).
So {ΣKn=1anxn :K ∈N} is a ρB bounded set in (EB,ρB).
By [5, Theorem 3.2.4] we have that (ΣKn=1anxn)K converges to x in (EB,ρB). So

(EB,ρB) has also the �p,q-summability property.
Now, we will prove the space (EB,ρB) is complete. Let (xn)n ⊂ EB be an absolutely

summable sequence with xn ≠ 0 for every n∈N, so (ρB(xn))n ∈ �1 then

(
αn
)
n =

(
ρ1/pB

(
xn
))
n
∈ �p,

(
βn
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n =

(
ρ1/qB

(
xn
))
n
∈ �q. (2.2)

Let yn = xn/ρB(xn) then (yn)n is ρB-bounded. So (αnyn)n ⊂ EB , (ρB(αnyn)n)∈ �p
and Σ∞n=1xn = Σ∞n=1αnβnyn converges in (EB,ρB) since (EB,ρB) has the �p,q-
summability property so (EB,ρB) is a Banach disk.

Corollary 2.2. Let (E,τ) be a locally convex space. (E,τ) is locally complete if and
only if (E,τ) has the �∞,1-summability property.

Proof. Let (E,τ) be a locally complete space and (xn)n ⊂ (E,τ) be a bounded
sequence, so there exists a Banach disk B ⊂ E such that {xn}n ⊂ B and {xn}n is
bounded in (EB,ρB).
Let (αn)n ∈ �1, then (αnxn)n is ρB-absolutely summable, that is Σ∞n=1ρB(αnxn) <∞.

Hence Σ∞n=1αnxn converges in (EB,ρB) so it also converges in (E,τ) since i : (EB,ρB)↩
(E,τ) is continuous. So E has the �∞,1-summability property.

Corollary 2.3. E is a Banach space if and only if E is normed and has the �p,q-
summability property.

Proof. We can reproduce the last part of the proof of Theorem 2.1 to show that
E normed and with the �p,q-summability property is a locally complete normed space
and so a Banach space.
Now suppose E is a Banach space and denote the norm by ‖‖. Let (xn)n ⊂ E be a

sequence such that (‖xn‖)n ∈ �p and let (βn)n ∈ �q then the sequence (βnxn)n is
absolutely summable that is
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hence summable, since E is a Banach space so E has the �p,q-summability property.

3. Banach-Mackey space

Definition 3.1. E is a c0-barrelled (c0-quasibarrelled) space if each null sequence
in (E′,σ(E′,E)) ((E′,β(E′,E))) is E-equicontinuous.

Note that a c0-barrelled space is a c0-quasibarrelled space.

Lemma 3.2. If (E,µ(E,E′)) is a Banach-Mackey space, where µ(E,E′) denotes the
Mackey topology, and c0-quasibarrelled space then it is a c0-barrelled space.

Proof. Let A⊂ (E′,σ(E′,E)) be a bounded set, since E is a Banach-Mackey space,
E′ is also a Banach-Mackey space (cf. [9, Theorem 5, page 158]), and then A is β(E′,E)-
bounded so it is contained in a bounded Banach disk by [2, Observation 8.2.23],
since the space is c0-quasibarrelled. Then by the same observation we have that
(E′,σ(E′,E)) is locally complete.

Corollary 3.3. (E,µ(E,E′)) is c0-quasibarrelled and Banach-Mackey if and only if
(E′,σ(E′,E)) is locally complete.

Proof. Necessity follows from previous lemma and [2, Observation 8.2.23]. The
other implication follows from the same observation, the note following Definition 3.1
and the fact that by [7, Corollary 3, Theorem 1] we have that (E′,σ(E′,E)) locally
complete implies (E,µ(E,E′)) is a Banach-Mackey space.

Following Saxon and Sánchez [8], a space E is dual locally complete if (E,σ(E′,E))
is locally complete; then we can extend the result shown in [8, Theorem 2.6].

Corollary 3.4. (E,µ(E,E′)) is dual locally complete if and only if it is Banach-
Mackey and c0-quasibarrelled.

A locally convex space E is quasibarrelled if each barrel that absorbs bounded sets
is a neighborhood of zero in E. It is clear that a barrelled space is quasibarrelled, in
certain cases they are equivalent.
Note that using [7, Theorem 1] we can easily prove that: a locally convex space E is

quasibarrelled and Banach-Mackey if and only if it is a barrelled space. Next proposi-
tion summarizes what we know about Banach-Mackey spaces in the case of quasibar-
relled spaces.

Proposition 3.5. Let (E,τ) be a locally convex quasibarrelled space, then the fol-
lowing properties are equivalent:
(a) E′ is a Banach-Mackey space.
(b) E is a Banach-Mackey space.
(c) E is barrelled.
(d) E′ is semireflexive.
(e) In E′, abconvK is compact for each K ⊂ E′ compact.
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(f) For every xn→ 0 in E′ and every (αn)n ∈ �1, Σ∞n=1αnxn→ x for some x ∈ E′.
(g) E′ is locally complete.
(h) E′ is locally barrelled.

Proof. (a) �⇒(b) using [9, Theorem 5, page 158]. (b) �⇒(c) from the previous note.
(c) �⇒(d) by [9, Theorem 4, page 153]. (d) �⇒(e) is obtained using the same theorem and
the fact that a convex hull of a compact set is totally bounded together with [9, Exer-
cise 5, page 122]. (e) �⇒(f) by [7, Theorems 2 and 3]. (f) �⇒(g) using [3, Proposition III.1.4]
and [2, Theorem 5.1.11]. (g) �⇒(h) is trivial. (h) �⇒(a) using [1, Theorem 1].

Note that (f) and (g) are equivalent in general, [3, Proposition III.1.4] and [2, The-
orem 5.1.11] prove (f) �⇒(g) and do not assume E is quasibarrelled, and the other
implication can be obtained using an argument similar to the one in Corollary 2.2.

4. CS-closed sets. In this section, we give a more precise definition of the convex
series and their properties, first studied by Jameson [4] and Käkol [6].

Definition 4.1. Let (E,τ) be a locally convex space.
(a) Let A ⊂ E, (an)n ⊂ A and (cn) ⊂ [0,1] such that Σ∞n=1cn = 1 if Σ∞n=1cnan is

convergent we say that it is a convex convergent series of elements of A.
(b) A ⊂ E is CS-closed if each convex convergent series of elements of A belongs

to A.
(c) A ⊂ E is CS-compact if each convex series of elements of A converges to an

element of A.
(d) A⊂ E is ultrabounded if each convex series of elements of A is convergent in E.
(e) The CS-closure of A is the intersection of all CS-closed sets that contain A.

Observation. (i) An ultrabounded set is bounded.
(ii) The intersection of CS-closed sets is a CS-closed set.

For convenience let us introduce another definition.

Definition 4.2. (a) B ⊂ E is called a CS-barrel if it is absolutely convex, absorbent
and CS-closed.
(b) E is a locally CS-barrelled (barrelled) space if for each bounded set A ⊂ E there

exists a disk B such that A ⊂ B and EB is a CS-barrelled (barrelled) space, that is that
each CS-barrel (barrel) is a neighborhood of zero.

Now several properties of barrels also hold for CS-barrels although the last sets are
somehow “smaller” than the first sets.
It is clear that if E is a CS-barrelled space then it is a barrelled space.
Now if (E,τ) is locally barrelled, then for each bounded set A ⊂ E there exists a

closed bounded disk B such that A ⊂ B ⊂ E and (EB,ρB) is barrelled, so for each CS-
barrel U in EB , U is a barrel so it is a zero neighborhood with respect to ρB , since
(EB,ρB) is metrizable by [4, Theorem 1], U is also a zero neighborhood with respect
to ρB . So we have proved the following.

Proposition 4.3. (E,τ) is a locally barrelled space if and only if it is locally CS-
barrelled space.
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The CS-compact hull of a set A is the set of convex convergent series of its elements.
A is CS-compact if each convex series of elements of A converges to an element

of A, so we have that the CS-compact hull of a set is not necessarily a CS-compact set.
This is the moment to bring in the ultrabounded sets, since the CS-compact hull of an
ultrabounded set is a CS-compact set.

Proposition 4.4. In a locally convex space (E,τ), CS-barrels absorb ultrabounded
sets.

Proof. LetW be a CS-barrel and A an ultrabounded set in E. LetD be the balanced
CS-compact hull of A, by [6, Corollaries 2–4] D is a Banach disk so ED is barrelled,
and the identity map i : ED → E is continuous so Wτ ∩ ED is a barrel in (ED,ρD),
furthermore it is a neighborhood of zero in ED , so A⊂D ⊂ λWτ∩ED for some λ > 0.
Now for (xn)n ⊂W ∩ED and (an)n ∈ [0,1], with Σnan = 1 such that Σnanxn → x in
(ED,ρD), since W is a CS-barrel in (E,τ), we have Σnanxn → x in (E,τ) and x ∈ W ,
then x ∈W∩ED and it is a CS-barrel in (ED,ρD). By [4, Theorem 1],W∩ED andWτ∩ED
have the same interior with respect to ρB , so A⊂D ⊂ λ(W ∩ED)⊂ λW .

Remark 4.5. Since every Banach disk is ultrabounded (cf. [6, Proposition 2.2]) then
each CS-barrel absorbs Banach disks.

To close this section let us mention that if E is locally barrelled then each CS-barrel
is a bornivorous (see [7, proof of Theorem 2(1)]).
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