Internat. J. Math. & Math. Sci.
Vol. 23,No. 10 (2000) 675-679
S0161171200002209
© Hindawi Publishing Corp.

BANACH-MACKEY, LOCALLY COMPLETE SPACES,
AND ¥, ;-SUMMARBILITY

CARLOS BOSCH and ARMANDO GARCIA

(Received 7 December 1998)

ABSTRACT. We defined the ¥p ;-summability property and study the relations between
the £j ;-summability property, the Banach-Mackey spaces and the locally complete
spaces.

We prove that, for cg-quasibarrelled spaces, Banach-Mackey and locally complete are
equivalent. Last section is devoted to the study of CS-closed sets introduced by Jameson
and Kakol.
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1. Introduction. Let (E,T) be a locally convex space. If A is absolutely convex its
linear span E4 may be endowed with the seminorm topology given by the Minkowski
functional of A, we denote it by (E4,pa). If A is bounded then (E4,p4) is a normed
space. If every bounded set B is contained in an absolutely convex, closed, bounded
set, called a disk A such that (E4, p4) is complete (barrelled) then E is said to be locally
complete (barrelled).

A locally convex space is a Banach-Mackey space if o(E,E’)-bounded sets are
B(E,E")-bounded sets.

Finally, let us define the £, ;-summability property. For 1 < p < o let g be such that
(1/p)+(1/q) = 1. A sequence (x,), C E is p-absolutely summable if for every p con-
tinuous seminorm in (E, T) the sequence (p(x;))y isin Bp. A p-absolutely summable
sequence is Ep,q—summable if for every (A,)n € ¥,, the series =_; A, x,, converges to
x for some x € E. A locally convex space E has the £, ;-summability property if each
p-absolutely summable sequence is ¥, ;-summable.

2. ¥, g-summability. Let (E,T) = (co,0 (co,¥1)). (E,T) is a locally complete space.
Take & = (&y)n € £1 and (ey,)y, the canonical unit vectors in ¢g. Then py(en) = |0ty |
S0 3y 1 pxlen) = Z5_;1anl| < oo which means that (e,), is absolutely summable for
every continuous seminorm in o (co,f1). Now, since X%_, (e,) ¢ cop we have here an
example of a space that has the £ ;-summability property and does not have the
{1 »-summability property.

Now let us establish some properties of the spaces with the ¥, ,-summability
property.
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THEOREM 2.1. Let (E,T) be alocally convex space. If E satisfies the £, ;-summability
property for 1 < p, q < o with (1/p) +(1/q) =1, then E is locally complete.

PROOF. Let A be a bounded set and B = abconvA; B is a disk. Take (xy,)» C Ep
a sequence such that (pg(xp))n € ¥p. Since i : (Ep, pg) — (E,T) is continuous, for
every continuous seminorm p in E, we have (p(xy))n € ﬁp. So for every (an)n € €q,
we have =_, anxy, — x with respect to T since E has the ¥, 4-summability property.

Now the sequence of partial sums Z’,‘L:lanxn is pp-bounded since it is a pp-Cauchy
sequence as we can see

k+r k k+r
PB (Z AnXn— . anxn) =ps (Z anxn) < [(@)nl,- | (pB(X;))n\p, (2.1)
n=1 n=1

k+1

which is small for k big enough, (a,,)n = (0,...,0,dk+1,.-.,Ak+r,0,...) and (x})n =
(O,...,O,xkﬂ,...,ka,O,...).

So {Zﬁ:lanxn:K € N} is a pp bounded set in (Eg, pp).

By [5, Theorem 3.2.4] we have that (Zﬁzlanxn)K converges to x in (Eg,pp). So
(Eg, pp) has also the £, ;-summability property.

Now, we will prove the space (Eg, pp) is complete. Let (x5 ), C Eg be an absolutely
summable sequence with x, # 0 for every n € N, so (pg(xn))n € €1 then

(0n)n = (5" (xn)), €ps  (Bu)w = (05" (xn)), € ta- (2.2)

Let ¥ = xn/pp(xn) then (¥n)n is pp-bounded. So (xn¥n)n C Ep, (P(nYn)n) € ¥p
and =5_xnp = 25 &nBnyn converges in (Ep,pp) since (Eg,pp) has the ¥, 4-
summability property so (Eg, pp) is a Banach disk. O

COROLLARY 2.2. Let (E,T) be a locally convex space. (E,T) is locally complete if and
only if (E,T) has the {1 -summability property.

PROOF. Let (E,T) be a locally complete space and (xy), C (E,T) be a bounded
sequence, so there exists a Banach disk B C E such that {x,}, C B and {x,}, is
bounded in (Eg, pp).

Let (&tn)n € €1, then (otn Xy )y is pp-absolutely summable, thatis 357_; pp( 0ty xn) < oo.
Hence X_; otn Xy, converges in (Eg, pg) so it also converges in (E, T) since i: (Eg, pg) <
(E,T) is continuous. So E has the £, ;-summability property. O

COROLLARY 2.3. E is a Banach space if and only if E is normed and has the ¥ 4-
summability property.

PROOF. We can reproduce the last part of the proof of Theorem 2.1 to show that
E normed and with the £, ;-summability property is a locally complete normed space
and so a Banach space.

Now suppose E is a Banach space and denote the norm by | ||. Let (x,), C E be a
sequence such that (|x,[)n € £, and let (By)n € ¥4 then the sequence (BnXxn)n is
absolutely summable that is
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o © Up /o 1/q
D IBnxall < (Z Ixnllp) (Z |Bn||q) < o0 (2.3)
n=1 n=1 n=1

hence summable, since E is a Banach space so E has the £, ;-summability property.
O

3. Banach-Mackey space

DEFINITION 3.1. E is a ¢cp-barrelled (co-quasibarrelled) space if each null sequence
in (E',o(E',E)) ((E',B(E',E))) is E-equicontinuous.

Note that a co-barrelled space is a co-quasibarrelled space.

LEMMA 3.2. If (E,u(E,E")) is a Banach-Mackey space, where U(E,E’) denotes the
Mackey topology, and cy-quasibarrelled space then it is a co-barrelled space.

PROOF. let AC (E',o(E',E)) be a bounded set, since E is a Banach-Mackey space,
E’ is also a Banach-Mackey space (cf. [9, Theorem 5, page 158]), and then A is S(E’,E)-
bounded so it is contained in a bounded Banach disk by [2, Observation 8.2.23],
since the space is cg-quasibarrelled. Then by the same observation we have that
(E’',o(E',E)) is locally complete. O

COROLLARY 3.3. (E,u(E,E")) is co-quasibarrelled and Banach-Mackey if and only if
(E’',o(E',E)) is locally complete.

PROOF. Necessity follows from previous lemma and [2, Observation 8.2.23]. The
other implication follows from the same observation, the note following Definition 3.1
and the fact that by [7, Corollary 3, Theorem 1] we have that (E’,o (E',E)) locally
complete implies (E,u(E,E’)) is a Banach-Mackey space. O

Following Saxon and Sanchez [8], a space E is dual locally complete if (E,o (E',E))
is locally complete; then we can extend the result shown in [8, Theorem 2.6].

COROLLARY 3.4. (E,u(E,E")) is dual locally complete if and only if it is Banach-
Mackey and cy-quasibarrelled.

A locally convex space E is quasibarrelled if each barrel that absorbs bounded sets
is a neighborhood of zero in E. It is clear that a barrelled space is quasibarrelled, in
certain cases they are equivalent.

Note that using [7, Theorem 1] we can easily prove that: a locally convex space E is
quasibarrelled and Banach-Mackey if and only if it is a barrelled space. Next proposi-
tion summarizes what we know about Banach-Mackey spaces in the case of quasibar-
relled spaces.

PROPOSITION 3.5. Let (E,T) be a locally convex quasibarrelled space, then the fol-
lowing properties are equivalent:
(a) E’ is a Banach-Mackey space.
(b) E is a Banach-Mackey space.
(c) E is barrelled.
(d) E’ is semireflexive.
(e) InE', abconvK is compact for each K C E' compact.
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(f) For every x, — 0 in E' and every (&tn)n € €1, Z5_1 0nXn — X for some x € E'.
(g) E’ is locally complete.
(h) E’ is locally barrelled.

PROOF. (a)=(b) using [9, Theorem 5, page 158]. (b)=>(c) from the previous note.
(c)=(d) by [9, Theorem 4, page 153]. (d)=(e) is obtained using the same theorem and
the fact that a convex hull of a compact set is totally bounded together with [9, Exer-
cise 5, page 122]. (e)=(f) by [7, Theorems 2 and 3]. (f)=(g) using [3, Proposition III.1.4]
and [2, Theorem 5.1.11]. (g)=>(h) is trivial. (h)=(a) using [1, Theorem 1]. O

Note that (f) and (g) are equivalent in general, [3, Proposition III.1.4] and [2, The-
orem 5.1.11] prove (f)=(g) and do not assume E is quasibarrelled, and the other
implication can be obtained using an argument similar to the one in Corollary 2.2.

4. CS-closed sets. In this section, we give a more precise definition of the convex
series and their properties, first studied by Jameson [4] and Kékol [6].

DEFINITION 4.1. Let (E,T) be alocally convex space.

(@) Let A C E, (an)n C A and (cy) C [0,1] such that 2_,c, = 1 if =_,cnan is
convergent we say that it is a convex convergent series of elements of A.

(b) A C E is CS-closed if each convex convergent series of elements of A belongs
to A.

(c) A C E is CS-compact if each convex series of elements of A converges to an
element of A.

(d) A C E is ultrabounded if each convex series of elements of A is convergent in E.

(e) The CS-closure of A is the intersection of all CS-closed sets that contain A.

OBSERVATION. (i) An ultrabounded set is bounded.
(ii) The intersection of CS-closed sets is a CS-closed set.

For convenience let us introduce another definition.

DEFINITION 4.2. (a) B C E is called a CS-barrel if it is absolutely convex, absorbent
and CS-closed.

(b) E is a locally CS-barrelled (barrelled) space if for each bounded set A C E there
exists a disk B such that A C B and Ejp is a CS-barrelled (barrelled) space, that is that
each CS-barrel (barrel) is a neighborhood of zero.

Now several properties of barrels also hold for CS-barrels although the last sets are
somehow “smaller” than the first sets.

It is clear that if E is a CS-barrelled space then it is a barrelled space.

Now if (E,T) is locally barrelled, then for each bounded set A C E there exists a
closed bounded disk B such that A C B C E and (Eg, pp) is barrelled, so for each CS-
barrel U in E, U is a barrel so it is a zero neighborhood with respect to pg, since
(Eg, pp) is metrizable by [4, Theorem 1], U is also a zero neighborhood with respect
to pg. So we have proved the following.

PROPOSITION 4.3. (E,T) is a locally barrelled space if and only if it is locally CS-
barrelled space.
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The CS-compact hull of a set A is the set of convex convergent series of its elements.

A is CS-compact if each convex series of elements of A converges to an element
of A, so we have that the CS-compact hull of a set is not necessarily a CS-compact set.
This is the moment to bring in the ultrabounded sets, since the CS-compact hull of an
ultrabounded set is a CS-compact set.

PROPOSITION 4.4. In a locally convex space (E,T), CS-barrels absorb ultrabounded
sets.

PROOF. Let W be a CS-barrel and A an ultrabounded set in E. Let D be the balanced
CS-compact hull of A, by [6, Corollaries 2-4] D is a Banach disk so Ep is barrelled,
and the identity map i : Ep — E is continuous so W' N Ep is a barrel in (Ep, pp),
furthermore it is a neighborhood of zero in Ep,so AC D C AW" NEp for some A > 0.
Now for (xn)n C WNEp and (an), € [0,1], with 3,a, = 1 such that 3, a,x, — x in
(Ep,pp), since W is a CS-barrel in (E,T), we have X,,a,x, — x in (E,T) and x € W,
then x € WnEp and itis a CS-barrelin (Ep, pp). By [4, Theorem 1], WNEp and W' NEp
have the same interior with respect to pg, S0 ACD C A(WNEp) C AW. O

REMARK 4.5. Since every Banach disk is ultrabounded (cf. [6, Proposition 2.2]) then
each CS-barrel absorbs Banach disks.

To close this section let us mention that if E is locally barrelled then each CS-barrel
is a bornivorous (see [7, proof of Theorem 2(1)]).
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