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Abstract. We study the order of magnitude of the Fourier transforms of certain Lipschitz
functions on the Heisenberg group Hn. We compare our conclusions with some previous
results in the field.
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1. Introduction. In [2, Theorem 2.3], Inglis proved for Lipschitz functions on the
Heisenberg group an analogue of Bernstein’s theorem on the absolute convergence
of the Fourier series of Lipschitz functions of order α > 1/2 on the circle group T =
[1,2π]. Pini also proved in [3] a similar theorem for Lipschitz functions on SU(2) the
special unitary group of matrices of order 2. In this paper, we prove some results on
the order of magnitude of the Fourier transforms of some Lipschitz classes on Hn,
comparing them with those obtained in [2, 3].

Definitions and notation. We assume that the reader is familiar with the
group-theoretic Fourier transform as can be found in [1] for instance. The Heisenberg
group Hn is the 2n+ 1-dimensional nilpotent Lie group with its underlying mani-
fold R×Cn = R2n+1, R and C being real and complex Euclidean spaces, respectively.
An element g in Hn is written as g = (p,q,t1,p, q ∈ Rn, t ∈ R). The dot product
p·q = p1q1+p2q2+···+pnqn is frequently used. The first difference with step hj in
xj is given by

∆hjf (x)= f(. . . ,xj+hj, . . .)−f(. . . ,xj, . . .), (1.1)

where x = (x1,x2, . . . ,xn), h = (h1,h2, . . . ,h2n+1). The symbol ∆hj hj f (x) stands for
∆hj (∆hif (x)), the nth difference ∆

n
hf(x) is defined inductively. On a locally compact

group G with its dual object Ĝ the Fourier transform f̂ of a function f(g) in L1(G) is
defined by

f̂ (π)=
∫
G
f(g)π

(
g−1

)
dg, g ∈G, (1.2)

where π is the irreducible unitary representation on G. A suitable form of π on Hn is
the following:

π(p,q,t)u(x)= e−iλ(t+q·x+p·q/2)u(x+P), (1.3)
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u ∈ L2(Rn), x, p, q ∈ Rn, λ ∈ R\0 (see [5, page 49]). The Haar measure on Hn is the
Lebesgue measure on R2n+1. An increment in g ∈Hn is given by h= (h1,h2, . . . ,h2n+1)
in the 2n+ 1-variables p, q, and t, where |h| = ∑2n+1

j=1 |hj|2. Since hj = 0(|h|) for
j = 1,2, . . . ,2n+ 1, we take h1,h2, . . . ,h2n+1 to be equal to h. This will simplify the
proof considerably. We introduce the following.

Definition 1.1. Let f ∈ Lp(Hn). Then f is said to belong to the Lipschitz class
Lip (α,p), α> 0 if

∥∥∆2n+1h f
∥∥
p = 0(|h|α), h �→ 0, (1.4)

where ‖·‖p is the usual Lp-norm on Hn.

2. Main theorems. Our main theorem is stated as follows.

Theorem 2.1. Let f ∈ LP(Hn), 1 < P ≤ 2, such that (1.4) is satisfied. Then ‖f̂‖rHS
belongs to L1(0,∞) for

(2n+1)P
αP+(3n+1)P−(3n+1) < r ≤ q =

P
P−1 , (2.1)

where ‖f̂‖HS is the Hilbert-Schmidt norm of f̂ .

Proof. The Fourier transform of f is given by

f̂ (λ,x)=
∫
Hn
f(p,q,t)e−iλ(t+q·x+p·q/2)dpdqdt. (2.2)

We mention that in some definitions of f̂ (cf. [5, page 49]) the exponents in (2.2)
take different signs ±. This has no bearing on our proof, since we are dealing with the
absolute value of the exponential function. Turning now to the transform of ∆2n+1h f ,
we see that the difference in step h with respect to t yields the factor (e−iλh − 1),
the nth difference in q for q ·x gives the factor ∏n

j=1(e
−iλhxj −1). Since this product

depends on x, it will be included in the Hilbert-Schmidt-norm of f̂ without changing
the conclusion of the theorem. Finally, the difference resulting from p·q/2 yields the
product

n∏
j=1

[(
e−iλhqj −1)(e−iλhpj −1)]. (2.3)

This quantity depends on p, q, therefore it is embraced in the integral defining f̂ .
Apart from a bounded multiplicative constant (22n) it has no major role in the proof.
Thus one finally arrives at the following:

∣∣∆2n+1h f
∣∣= 0

∣∣∣∣
[(
e−iλh−1)

n∏
j=1

(
e−iλhxj −1)

]
f̂ (λ,x)

∣∣∣∣. (2.4)

The Housdorfl Young inequality yields
∫∞
0
|sinλh|q

∥∥∥∥∥
n∏
j=1
|sinλhxj|f̂ (λ,x)

∥∥∥∥∥
q

HS

|λ|ndλ=
∫∞
0
|sinλh|q‖f̂ (λ)‖qHS|λ|ndλ

≤A‖f‖qp = 0(|h|αq).
(2.5)
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Since |sinλh| ≥A|λh| for 0< λ< 1/h, A being constant, hence
∫ 1/h
0

|λh|q‖f̂‖qHS|λ|ndλ= 0
(|h|αq),

∫ 1/h
0

|λ|n+q‖f̂‖qHSdλ= 0
(|h|αq−q). (2.6)

For λ≥ 1, we introduce the function

Φ(X)=
∫ X
1
|λ|n+q‖f̂‖qHSdλ. (2.7)

Then ‖f̂‖qHS = 0|λ|−n−q(dΦ/dλ), so that
∫ X
1
‖f̂‖qHSdλ= 0

(
X−n−qΦ(X)

)= 0(X−n−αq) (2.8)

plus terms of the same order. For r ≤ q the Hölder’s inequality applied to the last
quantity yields

∫ X
1
‖f̂‖rHSdλ= 0

(
X(−n−αq)r/q+(2n+1)−(2n+1)r/q

)

= 0(X(2n+1)−αr−(3n+1)r+(3n+1)r/p), (2.9)

giving the required condition for the boundedness of this estimate for large X. This
completes the proof.

In view of the complete symmetry of the L2 theory of the Fourier transform, one can
formulate Theorem 2.1 as follows.

Theorem 2.2. Let f belong to L2(Hn). Then the conditions

‖∆2n+1h f‖2 = 0
(|h|α), α > 0, h �→ 0,∫∞

X
|λ|n‖f̂‖2HSdλ= 0

(
X−2α

)
,

∫∞
X
‖f̂‖2HSdλ= 0

(
X−n−2α

)
,

(2.10)

as X → ∞ are equivalent. The method of the proof is explained in [6, page 117] and
[7, 8], and will not be given here. Of particular interest is the special case P = 2, r = 1
in (2.6) which yields one form of the absolute convergence of the Fourier transform on
Hn. Namely one obtains in this case

∫ X
1
‖f̂‖HSdλ= 0

(
X(n+1)/2−α

)
, (2.11)

which is bounded for large X if α > (n+1)/2. This result is perhaps the nearest ana-
logue for Lipschitz function on Hn to the Bernstein’s theorem.

2.1. Concluding remarks. We point out first in [3] the subscripts 2, 1 are not prop-
erly placed in the definition of the Besov space which is usually written as ∆α2,1 rather
than as ∆α2,2. We also add that the relation between the smoothness exponent α and
the dimension of SU(2) (α > 3/2) in [3] is more indicative than the corresponding



8 M. S. YOUNIS

relation α> 1/2 in [2]. Comparing the present method with that followed in [2, 3] one
can say that inspite of its elegance, the proof there conceals many concrete cases and
important aspects that should be more salient in the issue under discussion. The role
of the Fourier transform (coefficients) as well as the effect of Lipschitz conditions on f̂
are hardly sensed in that proof, had it not been for the inclusion of α in the definition
of ∆α2,1. In contrast, the present method provides a variety of estimates, giving clear
relations between α, n, p, and r . This makes our method more applicable in other ar-
eas such as approximation theory and weighted norm inequalities (for example) which
are vital topics on their own. Another point of interest is that the condition α > 1/2
given in [2] is rather vague. (Nearly all the papers written on this subject relate α to
the group dimension as well as to the space exponent.) We think that this relation is
partly concealed in the metric structure (dt,z)= (t2+1z14)(n+1)/2 of Hn, and that—
partly—it is tacitly included in the condition k = n+2, which together with α = 1/2
provides the smoothness condition for ∆α2,1. It would be quite relevant to mention
here that there are several criteria for the absolute convergence of the Fourier trans-
forms (coefficients) on non-Abelian groups (cf. [4]). This may explains—partially—the
variation in the range of α mentioned earlier.
Our final comment is rather a heurisatic comparison between harmonic analysis on

Hn and R2n+1. Since Hn is nearly Euclidean in its structure, then it is quite natural
that analysis onHn has something in common with that carried on R2n+1 and that the
Fourier transform (in particular) on Hn inherits some properties of the transform on
R2n+1. This must have been felt from the above analysis. For example, Taylor (see [5,
page 52]), views f̂ for f ∈ L2(Hn) as a Fourier transform k̂(λ,y,x) of three parametric
variables (i.e., 2n+1 variables) whereas in view of the structure of the representation
onHnf̂ = k̂ is in fact a function of λ and x only (n+1 variables). Thus in our situation
the effective dimension of Hn (roughly speaking) is n+1 rather than 2n+1 (in that
caseα) should be greater than (2n+1)/2 for the absolute convergence of k̂ if k(p,q,t)
belongs to L2(R2n+1). This explains the occurrence of the weight |λ|n in the Parseval’s
identity forHn (the Plancherel’s measure= |λ|ndλ). Had f̂ been of the form f̂ (λ,y,x),
then this would have definitely influenced both ‖f̂‖2HS and the Plancherel’s measure.
The presence of |λ|n in the Parseval’s identity enhances the rapidity of convergence
of ‖f̂‖2HS and hence affects the order of magnitude of other quantities depending on
it as might have been noticed. In our view, the main reason is that the factor e−iλp·q/2

in π(p,q,t) is ineffective in connection with the smoothness conditions and that it
curtails the dimension of Hn. Taking this into consideration and bearing in mind the
metric structure of Hn one could see why α= 1/2 in Inglis’s theorem is sufficient for
the membership of ∆α2,1 in A(Hn), (the Fourier algebra of Hn).
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