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Abstract. A random system with complete connections associated with a piecewise frac-
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above linear map.

Keywords and phrases. Piecewise fractional linear map, random system with complete
connections, ergodic behaviour, Markov operator, invariant measure, Gauss-Kuzmin type
problem.

2000 Mathematics Subject Classification. Primary 60A10.

1. Introduction. It is known that a map T : [0,1]→ [0,1] is called piecewise frac-
tional linear if there is a partition D = {0 = k0 < k1 < ··· < km = 1} such that for
every j = 1,2, . . . ,m the map is defined by

T(x)= Aj+Bjx
Cj+Djx , x ∈ (kj−1,kj), (1.1)

where AjDj−BjCj ≠ 0 and T[(kj−1,kj)]= (0,1).
According to Schweiger [9, 10] such a map which satisfies the equalities T0= T1= 0

and T ′0< 1 is ergodic and admits an invariant measure. Its densityh can be calculated
explicitly and takes one of the following shapes:

h(x)= 1
x+a −

1
x+β, h(x)= 1

(x+a)2 , h(x)= 1
x+a, h(x)= 1, (1.2)

in the special casem= 2. But this is not true form≥ 3.
In order to verify his idea, Schweiger [11] introduced a map T : [0,1] → [0,1] de-

fined by

T(x)=




x
1−(N+1)x , if 0≤ x ≤ 1

N+2 ,
1−kx
x

, if
1

k+1 <x ≤
1
k
with 1≤ k≤N+1,

(1.3)

where N is a fixed positive integer.
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It is obvious that

Tn(x)=




Tn−1(x)
1−(N+1)Tn−1(x) , if 0≤ Tn−1(x)≤ 1

N+2 ,

1−kTn−1(x)
Tn−1(x)

, if
1

k+1 < T
n−1(x)≤ 1

k
with 1≤ k≤N+1

(1.4)

is the nth iteration of T , n∈ {1,2, . . .}.
As a consequence he proved that T is a piecewise fractional linearmapwithn=N+2

branches which admits an invariant measure with density

h(x)= 1
x

∞∑
j=0

(
1

1+j(N+1)x −
1

1+(j(N+1)+1)x
)
. (1.5)

The present paper arises as an attempt to find the limit

lim
n→∞µ

(
T−n > y

)=α (1.6)

and an estimation of the error µ(T−n > y)−α for a pregiven nonatomic measure
µ on the σ -algebra B[0,1] of all the Borel subsets of [0,1] associated with the above
explicit piecewise fractional linear map T arising in case thatm≥ 3. That is to solve a
variant of the Gauss-Kuzmin type problem for a piecewise fractional linear map with
an explicit invariant measure.
Our approach is given in the context of the theory of dependence with complete

connections (see [4]). For a more detailed study of the applications of dependence
with complete connections to the metrical problems and other interesting aspects of
number theory we refer the reader to [1, 2, 3, 5, 6, 7, 8] and others.
The paper is organized as follows. In Section 2, we define a random system with

complete connections associated with the piecewise fractional linear map (1.3). In
Section 3, we study the ergodic behaviour of the above random system. This gives us
the possibility to obtain the asymptotic behaviour of the fact

{
T−n > y

}
, y ∈ [0,1],

as n→∞, that is the associated Gauss-Kuzmin type problem.
In the next we need the following notation:

ℵ = {0,1,2, . . .},
ℵ∗ = {1,2,3, . . .},
B[0,1] is the σ -algebra of all Borel subsets of [0,1],
P(X) is the power set of X.

2. The random systemwith complete connections. Let µ be a nonatomic measure
on the σ -algebra B[0,1]. Then we may define

V0(y)= µ
(
[0,y]

)
,

Vn(y)= Vn(y,µ)= µ(Tn(x) < y), y ∈ [0,1], x ∈ [0,1], n∈ ℵ∗.
(2.1)

Proposition 2.1 (the Gauss-Kuzmin type equation). The function Vn, n ∈ N , sat-
isfy the equation

Vn+1(y)= Vn
(

y
1+(N+1)y

)
+
N+1∑
k=1

[
1−Vn

(
1

k+y

)]
, y ∈ [0,1]. (2.2)
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Proof. Taking into account the relations (1.3) and (1.4) we obtain that, for every
y ∈ [0,1],

Vn+1(y)= µ
(
Tn+1(x) < y

)

= µ
(

Tn(x)
1−(N+1)Tn(x) < y

)
+
N+1∑
k=1

µ
(
1−kTn(x)
Tn(x)

< y
)

= µ
(
Tn(x) <

y
1+(N+1)y

)
+
N+1∑
k=1

µ
(
Tn(x) >

1
k+y

)

= Vn
(

y
1+(N+1)y

)
+
N+1∑
k=1

[
1−Vn

(
1

k+y

)]
,

(2.3)

and the proof is complete.

Furthermore, suppose that V ′0 exists and it is bounded (µ has bounded density).
Then by induction we have that V ′n exists and it is bounded for any n ∈ ℵ∗. If we
derive the Gauss-Kuzmin type equation (2.2) we arrive at

V ′n+1(y)=
1

[1+(N+1)y]2V
′
n

(
y

1+(N+1)y

)

+
N+1∑
k=1

1

(k+y)2V
′
n

(
1

k+y

)
, y ∈ [0,1].

(2.4)

We denote

ρ(y)= 1
y

∞∑
j=0

(
1

1+j(N+1)y −
1

1+(j(N+1)+1)y
)

(2.5)

and

fn(y)= V ′n(y)
ρ(y)

, y ∈ [0,1], n∈ ℵ. (2.6)

Then the relation (2.4) becomes

fn+1(y)=
∑∞
j=0

[
1

1+(j+1)(N+1)y − 1
1+[(j+1)(N+1)+1]y

]
∑∞
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

] fn
(

y
1+(N+1)y

)

+
N+1∑
k=1

∑∞
j=0

[
y

k+y+j(N+1) − y
k+y+1+j(N+1)

]
∑∞
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

] fn
(

1
k+y

)
, y ∈ [0,1].

(2.7)

We can now prove the following proposition.
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Proposition 2.2. The function

P(y,k)=




∞∑
j=0

[
1

1+(j+1)(N+1)y − 1
1+[(j+1)(N+1)+1]y

]
∞∑
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

] , if k= 0,

N+1∑
k=1

∞∑
j=0

[
y

k+y+j(N+1) − y
k+y+1+j(N+1)

]
∞∑
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

] , if 1≤ k≤N+1,

(2.8)

defines a transition probability function from ([0,1],B[0,1]) to (K,P(K)), where K =
{k∈ ℵ | 0≤ k≤N+1, N fixed positive integer}.

Proof. We must prove that

N+1∑
k=0

P(y,k)= 1, ∀y ∈ [0,1]. (2.9)

Indeed since

N+1∑
k=1

∞∑
j=0

[
y

k+y+j(N+1) −
y

k+y+1+j(N+1)
]
= y
y+1 , (2.10)

we have that

N+1∑
k=0

P(y,k)= P(y,0)+
N+1∑
k=1

P(y,k)

= 1∑∞
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

]

×
( ∞∑
j=0

[
1

1+(j+1)(N+1)y −
1

1+[(j+1)(N+1)+1]y

]
+ y
y+1

)
.

(2.11)

By replacing j+1 withm in the second sum we obtain that

∞∑
j=0

[
1

1+(j+1)(N+1)y −
1

1+[(j+1)(N+1)+1]y

]
+ y
y+1

=
∞∑

m=1

[
1

1+m(N+1)y −
1

1+[m(N+1)+1]y

]
+ y
y+1

=
∞∑

m=0

[
1

1+m(N+1)y −
1

1+[m(N+1)+1]y

]
,

(2.12)

and the proof is complete.

Relation (2.7) and Proposition 2.2 lead to the definition of random system with com-
plete connections (RSCC),

{
(Y ,�),(K,�),u,P

}
, (2.13)
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where

Y = [0,1], �= B[0,1],
K = {k∈ ℵ | 0≤ k≤N+1, N fixed positive integer}, �= P(K),

u(y,k)=




y
1+(N+1)y , if k= 0,

1
k+y , if 1≤ k≤N+1,

P(y,k)=




∑∞
j=0

[
1

1+(j+1)(N+1)y − 1
1+[(j+1)(N+1)+1]y

]
∑∞
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

] , if k= 0,

N+1∑
k=1

∑∞
j=0

[
y

k+y+j(N+1) − y
k+y+1+j(N+1)

]
∑∞
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

] , if 1≤ k≤N+1.

(2.14)

3. The ergodic behaviour of the random system with complete connections. For
any complex-valued function f defined on Y , we put

|f | = sup
y∈Y

|f(y)|, s(f )= sup
y1≠y2∈Y

∣∣f (y1)−f (y2)∣∣∣∣y1−y2∣∣ . (3.1)

If we denote by L(Y) the set of all complex-valued measurable bounded Lipschitz
functions defined on Y for which both |f |<∞ and s(f ) <∞, then it is clear that L(Y)
is a Banach space under the norm ‖f‖L = |f |+s(f ).
Furthermore, let Q denotes the transition probability function of the Markov chain

associated with RSCC (2.13). Then the Markov operator U associated with RSCC (2.13)
is given by

Uf(y)=
∑
k∈K

P(y,k)f
(
u(y,k)

)=
∫ 1
0
Q
(
y,dy ′

)
f
(
y ′
)

=
∑∞
j=0

[
1

1+(j+1)(N+1)y − 1
1+[(j+1)(N+1)+1]y

]
∑∞
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

] f
(

y
1+(N+1)y

)

+
N+1∑
k=1

∑∞
j=0

[
y

k+y+j(N+1) − y
k+y+1+j(N+1)

]
∑∞
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

] f( 1
k+y

)
, y ∈ [0,1]

(3.2)

for all f ∈ L(Y).
In order to study the ergodic behaviour of the RSCC (2.13) we prove the following.

Proposition 3.1. RSCC (2.13) is a RSCC with contraction and its associated Markov
operator given by (3.2) is regular with respect to L(Y).
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Proof. We have to prove that R1 <∞ and r1 < 1, where r1 and R1 are defined in [4].
To this end, we calculate the derivatives of u and P with respect to y . We have that

dP(y,0)
dy

=
∑∞
j=0

[
− (j+1)(N+1)
[1+(j+1)(N+1)y]2 +

(j+1)(N+1)+1
[1+((j+1)(N+1)+1)y]2

]∑∞
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

]
(∑∞

j=0
[

1
1+j(N+1)y − 1

1+(j(N+1)+1)y
])2

−
∑∞
j=0

[
1

1+(j+1)(N+1)y − 1
1+[(j+1)(N+1)+1]y

]∑∞
j=0

[
− j(N+1)
[1+j(N+1)y]2 + j(N+1)+1

[1+(j(N+1)+1)y]2
]

(∑∞
j=0

[
1

1+j(N+1)y − 1
1+(j(N+1)+1)y

])2 ,

dP(y,k)
dy

=
∑∞
j=0

[
k+j(N+1)

[k+y+j(N+1)]2 − k+1+j(N+1)
[k+y+1+j(N+1)]2

]∑∞
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

]
(∑∞

j=0
[

1
1+j(N+1)y − 1

1+(j(N+1)+1)y
])2

−
∑∞
j=0

[
y

k+y+j(N+1) − y
k+y+1+j(N+1)

]∑∞
j=0

[
− j(N+1)
[1+j(N+1)y]2 + j(N+1)+1

[1+(j(N+1)+1)y]2
]

(∑∞
j=0

[
1

1+j(N+1)y − 1
1+(j(N+1)+1)y

])2 ,

(3.3)

where 1≤ k≤N+1 for every y ∈ [0,1].
Also

du(y,k)
dy

=




1
[1+(N+1)y]2 , if k= 0,

− 1

(k+y)2 , if 1≤ k≤N+1
(3.4)

for every y ∈ [0,1].
Therefore

sup
y∈Y

∣∣∣∣dP(y,k)dy

∣∣∣∣<∞, k∈K,

sup
y∈Y

∣∣∣∣du(y,0)dy

∣∣∣∣= 1, if k= 0,

sup
y∈Y

∣∣∣∣du(y,k)dy

∣∣∣∣≤ 1
k2
, if 1≤ k≤N+1.

(3.5)

It follows (cf. [4, pages 177–178]) that R1 <∞ and r1 < 1, that is RSCC (2.13) is a RSCC
with contraction.

Now, in order to prove the regularity of the associated Markov operator U defined
by (3.2) with respect to L(Y) we have, according to Theorem 3.2.13 in [4], to find an
element y∗ in [0,1] such that

lim
n→∞

∣∣σn(y)−y∗∣∣= 0 (3.6)
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for any y ∈ Y . Here σn(y) denotes the support of Qn(y,·), where Qn is the kernel
of Un.
Let y ∈ Y . We define the iterative relation

yn+1 = 1
yn+1 , n∈ ℵ, with y0 =y. (3.7)

It is clear that yn ∈ (0,1), n∈ ℵ∗. Letting n→∞ in (3.7) we have

0<y∗ = lim
n→∞yn =

√
5−1
2

< 1. (3.8)

Now, let A be an open set in [0,1] such that yn+1 ∈A. Then

Q(yn,A)=
∑

{k∈K, u(yn,k)∈A}
P(yn,k) (3.9)

is strictly positive. So yn+1 ∈ σ1(yn) and using [4, Lemma 3.2.14] we obtain by induc-
tion that yn ∈ σn(y), for any n∈ ℵ∗. Since

∣∣σn(y)−y∗∣∣= inf
y′∈σn(y)

∣∣y∗−y ′∣∣≤ ∣∣y∗−yn∣∣ �������������������������������������������������������������������������������→n→∞ 0, (3.10)

we obtain that U is regular, that is the desired result.
By virtue of Proposition 3.1, it follows from [4, Theorem 3.4.5] that RSCC (2.13)

is uniformly ergodic. Moreover, Theorem 3.1.24 [4] implies that Qn(·,·) converges
uniformly to a unique probability measure γ on �, which is stationary for the kernel
Q, that is

γ(B)=
∫ 1
0
Q(y,B)γ(dy), (3.11)

where

Q(y,B)=
∑
k∈By

P(y,k), (3.12)

with

By =
{
k∈K |u(y,k)∈ B}

=


{
k= 0 |u(y,k)∈ B}≡ B(1)y ,{
k∈K\{0} |u(y,k)∈ B}≡ B(2)y ,

∀B ∈�, y ∈ [0,1]. (3.13)

Furthermore, there exist two positive constants q < 1 and c such that
∥∥Unf −U∞f∥∥L ≤ cqn∥∥f∥∥L (3.14)

for all n∈ ℵ∗, f ∈ L(Y), where

U∞f =
∫ 1
0
f(y)γ(dy). (3.15)

In general, the form of γ cannot be determined but this is possible in our case as we
prove in the following proposition.
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Proposition 3.2. The probability measure γ has the density

ρ(y)= 1
y

∞∑
j=0

[
1

1+j(N+1)y −
1

1+(j(N+1)+1)y
]
, y ∈ [0,1]. (3.16)

Proof. By virtue of uniqueness of γ we have to show that it satisfies (3.11). Since
the intervals [0,u], 0 < u ≤ 1/(N + 2) and (v,1/k], 1/(k+ 1) ≤ v < 1/k with k =
1,2, . . . ,N + 1 generate B[0,1] it is sufficient to verify (3.11) only for B = [0,u] and
B = (v,1/k].
Suppose that B = [0,u] with 0<u≤ 1/(N+2). Then for y ∈ [0,1] we have

B(1)y =
{
k= 0

∣∣∣ y
1+(N+1)y ∈ [0,u]

}
=
{
k= 0

∣∣∣0≤y ≤ u
1−(N+1)u

}
, (3.17)

B(2)y =
{
1≤ k≤N+1

∣∣∣ 1
k+y ∈ [0,u]

}
= {1≤ k≤N+1 | k≥u−1−y}=∅. (3.18)

So by (3.12) we have that

Q
(
y,[0,u]

)= P(y,0)=
∑∞
j=0

[
1

1+(j+1)(N+1)y − 1
1+[(j+1)(N+1)+1]y

]
∑∞
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

] . (3.19)

Consequently, we obtain that

∫ 1
0
Q
(
y,[0,u]

)
ρ(y)dy

=
∫ u/(1−(N+1)u)
0

P(y,0)ρ(y)dy

=
∫ u/(1−(N+1)u)
0

∞∑
j=0

[
1

y[1+(j+1)(N+1)y] −
1

y
[
1+((j+1)(N+1)+1)y]

]
dy

=
∞∑
j=0

[
− log

(
1+(j+1)(N+1) u

1−(N+1)u
)

+ log
(
1+((j+1)(N+1)+1) u

1−(N+1)u
)]

=
∞∑
j=0

[
log

1+(j(N+1)+1)u
1+j(N+1)u

]
= ρ([0,u]).

(3.20)

Hence (3.11) is verified for B = [0,u], 0<u≤ 1/(N+2).
The case B = (v,1/k], 1/(k+1) ≤ v < 1/k, k = 1,2, . . . ,N +1 can be treated in a

similar manner. Analogously for y ∈ [0,1] we have that

B(1)y =
{
k= 0

∣∣∣ y
1+(N+1)y ∈

(
v,
1
k

]}
=∅,

B(2)y =
{
1≤ k≤N+1

∣∣∣ 1
k+y ∈

(
v,
1
k

]}
=
{
1≤ k≤N+1 | 0≤y < 1−kv

v

}
.
(3.21)
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By using (3.12) we obtain that

Q
(
y,
(
v,
1
k

])
=

∑
k∈By

P(y,k)=
N+1∑
k=1

P(y,k)

=
N+1∑
k=1

∑∞
j=0

[
y

k+y+j(N+1) − y
k+y+1+j(N+1)

]
∑∞
j=0

[
1

1+j(N+1)y − 1
1+[j(N+1)+1]y

] .
(3.22)

As a consequence we have

∫ (1−kv)/v
0

Q
(
y,
(
v,
1
k

])
ρ(y)dy

=
N+1∑
k=1

∫ (1−kv)/v
0

P(y,k)ρ(y)dy

=
N+1∑
k=1

∫ (1−kv)/v
0

∞∑
j=0

[
1

k+y+j(N+1) −
1

k+y+1+j(N+1)
]
dy

=
N+1∑
k=1

∞∑
j=0

[
log

(
k+ 1−kv

v
+j(N+1)

)
− log(k+j(N+1))

+ log
(
k+ 1−kv

v
+1+j(N+1)

)
− log(k+1+j(N+1))]

=
N+1∑
k=1

∞∑
j=0

[
log

1+j(N+1)v
1+(j(N+1)+1)v + log

k+1+j(N+1)
k+j(N+1)

]

=
N+1∑
k=1

ρ
((
v,
1
k

])
.

(3.23)

Hence (3.11) is also verified for B = (v,1/k], 1/(k+1)≤ v < 1/kwith k= 1,2, . . . ,N+1
and the proof is complete.

4. A version of the Gauss-Kuzmin type theorem. Now, we are able to determine
the limit of µ(T−n > y) as n→∞ and give the rate of this convergence.

Proposition 4.1. If the density V ′0 of µ is a Riemann integrable function, then

lim
n→∞µ

(
T−n(x) > y

)= ∞∑
j=0

[
log

y+1+j(N+1)
y+j(N+1)

]
, y ≥ 1, x ∈ [0,1]. (4.1)

If the density V ′0 of µ is an element of L(Y), then there exist two positive constants c
and q < 1 such that

lim
n→∞µ

(
T−n(x) > y

)= (1+θqn) ∞∑
j=0

[
log

y+1+j(N+1)
y+j(N+1)

]
, x ∈ [0,1] (4.2)

for all y ≥ 1, n∈ ℵ∗, where θ = θ(µ,n,y) with |θ| ≤ c.
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Proof. Let V ′0 ∈ L(Y). Then f0 ∈ L(Y) and by using (3.15) we have

U∞f0 =
∫ 1
0
f0(y)γ(dy)=

∫ 1
0
V ′0(y)dy = 1. (4.3)

According to relation (3.14) there exist two positive constants c and q < 1 such that

Unf0 =U∞f0+Gnf0, n∈N∗, (4.4)

with ‖Gnf0‖L ≤ cqn.
If we consider the Banach space C([0,1]) of all real continuous functions defined

on [0,1] with the norm |·| = sup|·|, then since L([0,1]) is a dense subset of C([0,1])
we have

lim
n→∞

∣∣Gnf0∣∣= 0 ∀f0 ∈ C([0,1]). (4.5)

This means that (4.5) is valid for any measurable function f0 which is γ-almost surely
continuous, that is, for any Riemann integrable function f0. Consequently, we obtain

lim
n→∞µ

(
T−n(x) > y

)= lim
n→∞Vn

(
1
y

)
= lim
n→∞

∫ 1/y
0

Unf0(w)ρ(w)dw

=
∫ 1/y
0

ρ(w)dw =
∞∑
j=0

[
log

y+1+j(N+1)
y+j(N+1)

]
,

(4.6)

that is the solution of the associated Gauss-Kuzmin type theorem.
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