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Abstract. This paper is concerned with periodic traveling wave solutions of the forced
generalized nearly concentric Korteweg-de Vries equation in the form of (uη+u/(2η)+
[f (u)]ξ +uξξξ)ξ +uθθ/η2 = h0. The authors first convert this equation into a forced
generalized Kadomtsev-Petviashvili equation, (ut + [f (u)]x +uxxx)x +uyy = h0, and
then to a nonlinear ordinary differential equation with periodic boundary conditions. An
equivalent relationship between the ordinary differential equation and nonlinear integral
equations with symmetric kernels is established by using the Green’s function method.
The integral representations generate compact operators in a Banach space of real-valued
continuous functions. The Schauder’s fixed point theorem is then used to prove the ex-
istence of nonconstant solutions to the integral equations. Therefore, the existence of
periodic traveling wave solutions to the forced generalized KP equation, and hence the
nearly concentric KdV equation, is proved.

Keywords and phrases. Existence theorem, traveling wave solution, forced generalized
nearly concentric Korteweg-de Vries equation.

2000 Mathematics Subject Classification. Primary 35B10, 35B20, 76B15.

1. Introduction. The purely concentric or cylindrical Korteweg-de Vries equation
(KdV equation for short),

uη+ u
2η
+uuξ+uξξξ = 0, (1.1)

was first derived by Maxon and Viecelli in 1974 from the study of propagation of
radically ingoing acoustic waves in cylindrical geometry [9]. In this equation, u =
u(η,ξ), η= ε3/2ωit, and ξ =−ε1/2(r/λD+ωit), where ε is the expansion parameter,
λD the Debye length, ωi the ion plasma frequency, r the radial distance, and t the
time. In [6], Johnson generalized the purely concentric KdV equation to the following
nearly concentric KdV equation by considering the nearly straight wave propagation
which varies in a very small angular region

(
uη+ u

2η
+uuξ+uξξξ

)
ξ
+ uθθ

η2
= 0, (1.2)

where u = u(η,ξ,θ) and θ is the angular variable which varies in a small region [6,
7]. For the general review of this equation and some subsequent developments, the
authors cite the book by Infeld and Rowland [5].
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In this paper, the authors consider the KdV equation of the form

(
uη+ u

2η
+[f (u)]ξ+uξξξ

)
ξ
+ uθθ

η2
= h0, (1.3)

where f is aC2 function of its argument andh0 is a nonconstant function ofη,ξ, and θ.
This equation is a generalization of Johnson’s equation and also a nearly concentric
version of the forced KdV equation obtained by Akylas [1], Wu [14], and Shen [10, 11].
We call this equation forced generalized nearly concentric KdV equation.
The authors convert the equation into the forced generalized Kadomtsev-Petviashvili

equation (referred to as KP equation henceforth) in the form

(
ut+[f (u)]x+uxxx

)
x+uyy = h0. (1.4)

Following the idea of Liu and Pao [8], Soewono [12], and Chen and He [4], the authors
will use the Green’s function method to derive nonlinear integral equations from (1.4),
which are equivalent to the generalized forced KP equation with periodic boundary
conditions. Imposing suitable conditions, the authors shall establish the existence of
nonconstant solutions to the integral equations. And hence, prove the existence of
periodic traveling wave solutions to (1.3) and (1.4). Furthermore, we note that the
nonconstant periodic traveling wave solutions are infinitely differentiable.
The content of the paper is arranged as follows. In Section 2, the author convert

the forced generalized nearly concentric KdV equation to a forced generalized KP
equation and then to nonlinear integral equations using the Green’s function method.
Section 3 contains the proof of the existence of nonconstant solutions to these integral
equations. Therefore, the existence of periodic traveling wave solutions to the forced
generalized KP equation, and hence the forced generalized nearly concentric KdV
equation, is established.

2. Formulation of the problem. We start from the forced generalized nearly con-
centric KdV equation

(
uη+ u

2η
+[f (u)]ξ+uξξξ

)
ξ
+ uθθ

η2
= h0, (2.1)

where f is aC2 function of its argument andh0 is a nonconstant function of η,ξ, and θ.
Considering that (2.1) is more analogous to the two-dimensional case and motivated
by the results obtained by Chen [2, 3], the authors introduce the transformations η= t,
ξ = x+y/4t, and θ =y/x. One can argue that since tanθ =y/x and θ is the variable
in a very small angular sector, θ can be used to approximate y/x. Thus when x and t
are large and of the same order, it seems to be reasonable to assume θ = y/x. Use
u(x,y,t) to replace u(η,ξ,θ), then we shall have

utx =uηξ− y2

4η2
uξξ, f (u)x = f(u)ξ,

uxxxx =uξξξξ, uyy = y2

4η2
uξξ+ 1

2η
uξ+ 1

η2
uθθ.

(2.2)
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Therefore, equation (2.1) can be converted to the forced generalized KP equation of
the form

(
ut+[f (u)]x+uxxx

)
x+uyy = h0, (2.3)

where f is a C2 function of its argument and h0 is a nonconstant function of x,y,
and t. We are interested in the periodic traveling wave solutions of the form U(z) =
u(x,y,t), where z = ax+by −ωt with a, b, and ω being real constants. Without
loss of generality, we assume a > 0. In this paper, we only consider the case that
h0(x,y,t) = a2h(z) is a 2T -periodic continuous function of z with a preassigned
positive number T . Substitution of the U(z) and a2h(z) into (2.3) leads to the fourth
order nonlinear ordinary differential equation

U(4)(z)= C
a2

U ′′(z)− 1
a2
[
f
(
U(z)

)(
U ′(z)

)2+f ′(U(z))U ′′(z)]+ 1
a2

h(z), (2.4)

where C = (ωa−b2)/a2. We now impose the following periodic boundary conditions

U(n)(0)=U(n)(2T), n= 0,1,2,3. (2.5)

In addition, to rule out nonzero constant solutions, another condition is introduced,

∫ 2T
0

U(z)dz = 0. (2.6)

It can be seen that any solution of the boundary value problem consisting of (2.4),
(2.5), and (2.6) can be extended to a 2T -periodic traveling wave solution to (2.3).
Integrating both sides of (2.4) with respect to z twice and using (2.5) and (2.6) yields

U ′′(z)− C
a2

U(z)= E− 1
a2
[
f
(
U(z)

)−H(z)], (2.7)

U(n)(0)=U(n)(2T), n= 0,1, (2.8)

where

E =
(

1(
2Ta2

)
)∫ 2T

0

[
f
(
U(z)

)−H(z)]dz, (2.9)

and H(z) is a 2T -periodic function of z such that H′′(z)= h(z). Conversely, integrat-
ing both sides of (2.7) from zero to 2T and using (2.8) will lead to (2.6), and direct
differentiations of (2.7) will give us (2.4) and (2.5). Therefore, we have proved the fol-
lowing theorem by noting from (2.7) that U ∈ C2[0,2T] implies U ∈ C4[0,2T] since f
is a C2 function of its argument.

Theorem 2.1. Suppose C ≠ 0, a function U(z) is a solution of the boundary value
problem (2.4), (2.5), and (2.6) if and only if it is a solution of the boundary value problem
(2.7) and (2.8).

From now on we only consider the two cases: (1) C > 0 and (2) C < 0 but −C/a2 ≠
(kπ/T)2 with k being any integer. Denote the function f(U(z))−H(z) on the right-
hand side of (2.7) by F(U(z)). Treating the right-hand side of (2.7) as a forcing term
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and using the Green’s functionmethod [13], the boundary value problem (2.7) and (2.8)
can be converted to two integral equations

U(z)= 1
a2

∫ 2T
0

Ki(z,s)F
(
U(s)

)
ds, (2.10)

where the kernels Ki, i= 1,2, are defined as follows:
(1) When C > 0, let λ1 =

√
C/a2, then

K1(z,s)= coshλ1(T −|z−s|)
2λ1 sinhλ1T

− 1

2λ21T
, ∀z,s ∈ [0,2T]. (2.11)

(2) When C < 0 but −C/a2 ≠ (kπ/T)2 with k being any integer, let λ2 =
√−C/a2,

then

K2(z,s)= cosλ2(T −|z−s|)
2λ2 sinλ2T

− 1

2λ22T
, ∀z,s ∈ [0,2T]. (2.12)

Lemma 2.2. The kernels K1 and K2 have the following properties:

Ki(0,s)=Ki(2T ,s), ∀s ∈ [0,2T], i= 1,2,

Ki(z,2T −s)=Ki(2T −z,s), ∀z,s ∈ [0,2T], i= 1,2.
(2.13)

Proof. Straightforward computations from the definitions of the kernels Ki, i =
1,2, given in (2.11) and (2.12).

Theorem 2.3. A function U(z) is a solution of the boundary value problem (2.7)
and (2.8) if and only if it is a solution of the integral equation (2.10).

Proof. The if part can be proved by direct differentiations of (2.10) and the only if
part is based on the Green’s function method by treating the right-hand side of (2.7)
as a nonhomogeneous term.

3. Existence theorem. To show the existence of 2T -periodic traveling wave solu-
tions to (2.1) it is sufficient to show that solutions to (2.10) exist.
To this end we define C2T as a collection of real-valued continuous functions, v(z),

on [0,2T] such that v(0) = v(2T). Equip C2T with the sup norm ‖ · ‖ as ‖v‖ =
sup0≤z≤2T |v(z)|, for each v ∈ C2T . Then (C2T ,‖·‖) is a Banach space.
We define operators �i, i= 1,2, on C2T as

�iv(z)= 1
a2

∫ 2T
0

Ki(z,s)F
(
v(s)

)
ds, ∀v ∈ C2T , (3.1)

where the kernels Ki, i= 1,2, are given in (2.11) and (2.12). We shall demonstrate that
there exist functions v in C2T such that v =�iv , i= 1,2, and hence, prove that there
exist solutions to (2.10).
Let

Qi ≥ max
0≤z≤2T

∫ 2T
0

∣∣Ki(z,s)
∣∣ds, i= 1,2,

τ1 = 1, τ2 =
∣∣sinλ2T∣∣.

(3.2)

A consequence of Lemma 2.2 can now be stated.
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Lemma 3.1. Let v be an element of C2T . If v(z) = v(2T −z) for z ∈ [0,2T], then
�iv(z)=�iv(2T −z), i= 1,2.

Wenowdefine B(0,r ) to be a closed ball inC2T and letM = sup[‖F(v)‖ : v ∈ B(0,r )].
We have the following existence theorem.

Theorem 3.2. Let �i, i= 1,2, be a compact operator from C2T to C2T . In particular,
if QiM/a2 ≤ r , i = 1,2, then �i maps B(0,r ) into itself. Hence, the integral equation
(2.10) has at least one solution in B(0,r ).

Proof. First we show �i : C2T → C2T , i = 1,2. Since it is obvious from Lemma 2.2
that �iv(0)=�iv(2T) for each v ∈ C2T , i= 1,2, it suffices to show that �iv , i= 1,2,
is continuous on [0,2T].
Let v be an arbitrary function in C2T , we have

d�1v(z)
dz

= −1
2a2 sinhλ1T

∫ z

0
sinhλ1(T −z+s)F

(
v(s)

)
ds

+ 1
2a2 sinhλ1T

∫ 2T
z

sinhλ1(T +z−s)F
(
v(s)

)
ds,

(3.3)

d�2v(z)
dz

= 1
2a2 sinλ2T

∫ z

0
sinλ2(T −z+s)F

(
v(s)

)
ds

+ −1
2a2 sinλ2T

∫ 2T
z

sinλ2(T +z−s)F
(
v(s)

)
ds.

(3.4)

The existence of d�1v/dz and d�2v/dz implies that both �1v and �2v are contin-
uous on [0,2T], and hence, �i : C2T → C2T , i= 1,2.
Let S be a bounded subset of C2T , i.e., there exists an L0 > 0 such that ‖v‖< L0 for

all v ∈ S. Then there must be an M0 > 0 such that

‖F(v)‖ = sup
0≤z≤2T

∣∣F(v(z))∣∣≤ sup
−L0≤w≤L0

|F(w)| ≤M0, ∀v ∈ S. (3.5)

Thus from (3.1), (3.3), and (3.4) we have

‖�iv‖ ≤ 1
a2

QiM0, ∀v ∈ S, i= 1,2,∥∥∥∥d�iv
dz

∥∥∥∥≤ T
a2τi

M0, ∀v ∈ S, i= 1,2.
(3.6)

Therefore, �iS, i = 1,2, is uniformly bounded and equi-continuous, and by the
Ascoli-Arzela theorem both �1 and �2 are compact operators from C2T to C2T .
To show that �i, i= 1,2, has a fixed point in B(0,r ) when QiM/a2 ≤ r , i= 1,2, we

write

|�iv(z)| = 1
a2

∣∣∣∣
∫ 2T
0

Ki(z,s)F
(
v(s)

)
ds
∣∣∣∣

≤ 1
a2

∫ 2T
0

∣∣Ki(z,s)
∣∣∣∣F(v(s))∣∣ds

≤ QiM
a2

≤ r , ∀v ∈ B(0,r ).

(3.7)
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This implies that ‖�iv‖ ≤ r for all v ∈ B(0,r ), i= 1,2, and hence, �i, i= 1,2, maps
B(0,r ) into itself. Therefore, by the Schauder’s fixed point theorem we proved that �i

has a fixed point in B(0,r ) for each i= 1,2. And hence, equation (2.10) has a solution
for each case of C > 0 and C < 0 with −C/(αa2)≠ (kπ/T)2.

It is worth noting that as long as
∫ 2T
0 Ki(z,s)H(s)ds ≠ 0, i = 1,2, by Theorem 3.2,

there exists a nonconstant function v(z) on [0,2T] such that v =�iv , i= 1,2, which
implies that v(z) is infinitely differentiable on [0,2T] since �iv is differentiable on
[0,2T]. The extension of the v(z) to a 2T -periodic function V(z) provides an infin-
itely differentiable 2T -periodic traveling wave solution to the forced generalized KP
equation, and hence, a 2T -periodic traveling wave solution to the forced generalized
nearly concentric KdV equation.
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