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and a nonmonotone discontinuous nonlinear multi-valued term is studied, and the exis-
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1. Introduction. In the present paper, the following initial boundary value problem
of a degenerate multi-valued hyperbolic-parabolic inequality will be considered:

w(t) +A(t) () (t) + B(u) (t) + p(u(x,t)) o f(t), ae. te[0,T],
u(x,t)=0, ae. (x,t)ex=0Qx[0,T], (1.1)

u(0) = uo, u(0) = us,

where A is a weakly continuous operator; B is a linear, continuous, and symmetric
operator; @ is a nonmonotonous, discontinuous, and nonlinear set-valued mapping.

Physical motivations for studying inequality (1.1) come partly from problems of con-
tinuum mechanics and optimal control problems, where nonmonotone, nonlinear, dis-
continuous, and multi-valued constitutive laws and boundary or external constraints
lead to various typed hemivariational inequalities, the mixed hyperbolic-parabolic
hemivariational inequality is one of those [11, 12, 14].

For inequality (1.1), its stationary problems have been studied by many researchers
(see [1, 2, 4, 13, 14, 15] and references therein). When @ degenerates into a class
of single-valued mappings, inequality (1.1) becomes an equation, and when A and B
were some special linear mappings and satisfy some conditions, equation (2.1) and
some of its evolution equations have been investigated and applied intensively (see
[5, 3,6,7,8,9, 10] and the references therein).

In this paper, we investigate the existence and decay of weak solution of the mixed
hyperbolic-parabolic inequality (1.1) with @, A, and B satisfying some conditions. We
apply the Faedo-Galerkin method for the proof of existence of solutions.

2. Preliminaries. Let Q) be a bounded open set of R" with regular boundary I'. Let
T denote a positive real number, Q = QX [0, T]. Suppose that b € Lj;.(R), for every
p >0, set

b, (%) = essinf b(&1), b,(%) =esssupb(&), (2.1)
[E1-El<p [E1-El<p
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they are all monotone for p > 0. Set

bp(®) = im by (¥),  b(E)=lmby(®), @& =[bE.bE] @2

Let J(§) = fogb(t) dt, then 9€J(§) < @ (&), where 0€J (%) denotes the Clarke-
subdifferential of J (see [2]). If b(E.) exists for every £ € R, then (&) = 9<J(¥).
If b is continuous at the point &, then @ (&) is single-valued at &, if J is convex, (&)
is maximal monotone (see [2]).

LetV = H(% (Q), (+,-) denotes the inner product of L%(Q), (-, -) denotes the dual pair
between V and V' = H~! (Q) which is compatible with the inner product of L?(Q). Let
|x|x denote the norm of the element x of the Banach space X.

Considering the following initial boundary value problem of a hyperbolic-parabolic
hemivariational inequality:

wt)+A)ut)+Bu(t)+g(t) = f(t), ae. tel0,T],

ulx,t) =0, ae.(x,t)eX=0Qx[0,T],
2.3
u(0) = uo, u(0) = uy, =3

gx,t) € p(ulx,t)), ae. (x,t)eQr=Qx[0,T],

where f, 1y, and u, are given.

First we list some assumptions:

(1)3c >0, |b(E)| =c(1+]E&]),ae. EER.

(2) A: L2(0,T;L?(Q)) — L?(0,T;L?(Q)) is weakly continuous, and A(t) is nonnega-
tive, that is, (A(t)v,v) = 0, for a.e. t = 0 and every v € L2(Q).

(3) The function t — (A(t)u,v) is measurable on [0, T] for all u,v € L2(Q).

4)B: Hé (Q) = H~1(Q) is linear, continuous, symmetric, and semicoercive, that is,
dc; >0,¢c2>0,c3>0

1BUlg-110) < €11V o), (Bu,v) = (Bv,u), Vu,v € H)(Q),
(2.4)

2 2 1
(Bv,v) +C3|U|L2(Q) > czlleé(m, Vv € Hy(Q).

Let B be any mollifier satisfying 8 € C*(R), B = 0, suppB C (—1,1), and [ B(E)
dg =1. Set

bs(8) = %JRB(§;Z>b(z)dZ = J\zlsl B(z)b(E—€ez)dz, foreverye>0. (2.5)

It is easy to see that b, is a smooth function, and also satisfies assumption (1) with
possible different constant c if b is agreeable with assumption (1). For convenience,
we denote by, by b, for any positive integer n.
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3. Existence of solution

THEOREM 3.1. Assume that f € L?(0,T;L*(Q)), ug € H} (Q) NLPYH(Q), u; € L2(Q).
Then, under assumptions (1), (2), (3), and (4), there exists a function u defined in Q X
[0, T] such that

ue L*(0,T;H(Q)) [\ C([0, T;L2(Q)),
e L”(0,T;L%(Q)) [ C([0,T;H 1 (Q)), (3.1)
e L?(0,T;H1(Q)),

and

W)+ A ) +Bu(t) +gt) = f(t), inL?*(0,T;H1(Q)),
git) e p(ulx,t)), ae. (x,t)eQx[0,T], (3.2)

u(0) = uo, u(0) = u;.

PROOF. Let {e,};-; be a subset of V = H&(Q) satisfying span{e,} =V, (e;,ej) =
8ij. Let xy = X wile; — ug strongly in V and LP*1(Q), v, = X} w?e; — u; strongly
in L2(Q).

Considering the following regularized equation of inequality (1.1)

E"=M"+N"+h, E"|,_o=w"™, = E"|,._,=w", (3.3)

where £" = {Eln}lxna w!in= {w%}lxn, W= {w?}lxn; h={(f,ei)}1xn, M" = {Ml‘n}lxn,
M{'=—(A(t) (X1 E]ej),ei), N™ = {N{"}1n, Ni' =—(B(Z1 E]'ej),ei)—(bn (21 E]ej), 1),
where “-” denotes time derivate.

Equation (3.3) is a vector-valued ordinary differential equation and its local solution
E" exists on I, = [0,Ty], 0 < T, < T. Set uy(t) = X7 E}‘ej (t € I,). Equation (3.3) is
equal to

<un:ei> = _(A(t)un:ei) - (Bun:ei> - (bn(un)!ei> + (fvei>1 i= 1,2,...,n. (3.4)

Multiplying (3.4) by E}“, summing over from i = 1 to i = n and integrating over [0, t]
(t < I), we get

t t
[ n (£) | 720y + (Btn (), Un (£)) +2 JO (Atn, Ty) AT +2 JO (D (un), 1ty dT

- ZJ: (f,un) dT + (Y, ¥n) + (Bxn,Xn), (3.5)
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but
t t
J (by(up), ) dt = J J(un(x,1))|odx
0 Q

Un (x,t) Un(x,0)
:J {J b (A)dA— bn(i\)di\}dx,
a(Jo 0
t Un (x,t)
UO (b (Up), 0y dT stﬁ{|un(x,t)|+|un(x,0)|+ Jo )\Id)\’

un (x,0)
j IAldA ‘ }dx,
0

2

+

un(x,t) 1
“ IALdA| = 2 [ (x, 1)
0 2

Un (x,0) 1 5
J IAlAA| = = |un(x,0)]%,
0 2

t
‘ JO (bn(un),un)dT < %(1+ \QI){|un(t) |%2(Q) + |Xn~i2(9)}v

where |Q| denotes the Lebesgue measure of the domain Q.
From (3.5), it follows that there exists c4 > 0 such that

t
. Cc .
|un(t) \iZ(Q)'f‘ |un(t) |?—Ié(Q) 5C4+{C3+§(1+|Q|)} |un(t) ~i2(9)+2J0 (f:un>dT'

We note that
t
Uy (t) = un(0) +J UpdT,
0
> t
| un(t) 720y < [un(0) |L2(Q)+JO [ttn | 120 dT,
using Holder’s inequality, we get that there exists cs,cg > 0 such that
2 ! 2
[n®) F2@y = es+ | im0 dT,
t
Jo (frin)dt < |fl2o ez - 1 nl 2002 )
1 R
= E(lfl}Z_Z(O,T;LZ(Q)) +in |2 012000
From (3.7), (3.9), and (3.10), we obtain that there exists c7,cg > 0 such that
t
. 2 2 . 2
|00 (£) | 12y + C2 [ un (1) |H(1)(Q) <c7+cg Jo |1 (T) | [2(ydT  (t € 1),
this implies that
2 t 2
|10y (£) | [2(q) < C7+C8 JO [0 (T) | [2(ydT  (t €1n).
Using Gronwall’s inequality it follows that

| 1Ly (1) |i2(9) <crexp(cst) (te€ly).

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Therefore, from (3.9), (3.11), and (3.13), we get that there exists cg > 0,
|un(t)|L2(Q> SCQ, |un(t)|L2(Q) SCQ, |un(t)|Hé(Q) ch, (tEIn), (3.14)

where c4, cs, cg, 7, Cg, Co are positive constants independent of n and T;,, from which
we can assert that I, = [0, T] (Vn).
For every n € spanf{e,eo,...,e,}, from (3.4)

| (i, n) | < |A@) (W) |2y - 102+ [ F @) 200 - 0] 1200)

(3.15)
+ |bn(un) |L2(Q) : |'"I|L2(Q)+ |B| ' |un’Hé(Q)' ~n|H01(Q)a
where |B| is the norm of linear continuous operator B
’un(t) |H—l(Q)
= sup [(in(@),n)| = sup  [(iln(t),n)]
Inly=1 nespaniey,....en}
Inlv=1
< C10<|A(t)(un) Iz + [ F ()| 120q) + [ Pn(un) |L2(Q)) + Bl |un(t) |H5(Q)-
(3.16)
where ¢y is the imbedding constant which H§ (Q) imbeds in L?(Q)
| by (1) (1) |i2(9) = J | by (uy) (1) |2dx < J c?(1+ |un(x,t)|)2dx
o o (3.17)

< ZCZJQ (1+ |un(x,t)|2>dx= 2c2(|Q| + \un(t)|fz(9)),

this shows that {b,, (1)} is also abounded subset of L* (0, T;L2(Q)). Since A is weakly
continuous, it must be a bounded operator from L?(0,T;L2(Q)) to L2(0,T;L?(Q)).
But {11,} is a bounded subset of L?(0,T;L%(Q)), {A(t)(11,,)} must be a bounded
subset of L2(0,T;L%(Q)). Inequality (3.16) implies that {ii,} is a bounded subset of
L2(0, T;H 1(Q)).

Therefore, there exist a subsequence of {u,}, still denoted by itself, and a function
u such that u € L (0, T; H} (Q)), 1t € L* (0, T;L?(Q)), it € L?(0, T; H1(Q)) satisfying

Uy — u  weakly-star in L (0, T; HA (Q)),

Ny — 1 weakly-star in L= (0, T;L2(Q)),

iy, — it weakly in L2 (0, T;L~(Q)),

bn(uy) — g weakly-star in L*(0,T;L(Q)).

(3.18)

Since, the space W (V) defined by W (V) = {u € L2(0,T;V), 1t € L2(0,T;V’)} forms
areal Hilbert space with the norm |ulw = [ul.2(o 1.v) + |1 12(0,1:v) and is continuously
imbedded in C ([0, T1;L2(Q), it is obvious that u € C(0,T;L2(Q)), 1€ CO, T;H 1 (Q)).
Hence, 1(0), 12(0) make sense.

For A € L2(0,T), from (3.4) we have

JT (iim,Aey) dit = — jT (A (1), Aey) di — jT (B(wn),Aes) dt
0 0 0 (3.19)

T T
—JO (bn(un),Aei)dt+JO (F()Ae)dt, i=1,2,...m.
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For every given positive integer i, let n — o in (3.19), it follows that

T T T
J (u,Aei)dt=—J (A(t)(u),Aei)dt—J (B(w),Aes) dt
0 0 0

T T (3.20)
_J (g,/\ei)dt+J (F()Aedt, i=1,2,...m.
0 0
Therefore, we have from (3.20)
W) +AM) (W) +Bu) +g(t) = £(t), in L*(0, T;H1(Q)). (3.21)
Next, we demonstrate that
g(x,t) € (u(x,t)) ae. (x,t) €eQr=Qx[0,T]. (3.22)

Since, u,(x,t) — u(x,t) a.e. (x,t) € Qr, by EropoR’s theorem [9], for every § > O,
there exists a subset Qs € Q7 =Qx[0,T], |Qs| <9,

Up(x,t) — u(x,t) uniformly in Q1\Qs (3.23)
that is, for every € > 0, there exists a positive integer N, when n = N,
[un(x,t) —ulx,t)| <€ Vix,t) € Qr\Qs. (3.24)
It is obvious that, when 1/n < € and n = N, for almost everywhere (x,t) € Q7\Qs
b (un(x,t)) = by (un(x,t)) = by (un(x,1)) < be(uy(x,t)) < bae(u(x,t)). (3.25)

For every p € L1 (0, T;L%(Q)), u=0

J glx,u(x,t)dxdt = lim by (un (x, ) u(x,t)dxdt
QT\Q5s n=°JQr\Qs

<[ heuxn)utxtdxdr,
Qr\Qs ) (3.26)
J g(x,Hux,t)dxdt <limsup Doe(u(x,t))u(x,t)dx dt
Qr\Qs £—0* Qr\Qs

SJ b(u(x,t))u(x,t)dxdt.
Qr\Qs
Analogously, we can obtain

J g(x,t)u(x,t)dxdtzj b(u(x,t))u(x,t)dxdt. (3.27)
Qr\Qs

Qr\Qs

Hence, (3.26) and (3.27) imply that
g(x,t) e p(ul(x,t)) ae. (x,t) €Qr\Qs. (3.28)
Finally, let 6 — 0", we get

glx,t) e (u(x,t)) ae.(x,t) €Qr=Qx[0,T]. (3.29)
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Let A € C1[0,T], A(T) = 0, integrating by parts the left-hand side of equations (3.19)
and (3.20) gives

T _ T t
(in (0),A(0)es) L (i Aey) di :—L (A (1), Aey) dt—L (B(wn),Aei) dt

T T (3.30)
- | atun) et | (rw,aenar,
0 0
T ) T t
—(1(0),A(0)e;) —J (1, Ae;) dt = —J (A(t)(u),Aei)dt—J (B(w),Ae;) dt
0 0 0
T - (3.31)
—j (g,Aei)dt—J (f(1),Aer) dt,
0 0
making comparison between (3.30) and (3.31) we get that
711111010(L’Ln(O)—u(O),ei):0, i=1,2,...,n (3.32)
therefore, this implies that
1, (0) — 1(0) weakly in H~'(Q) (3.33)

uniqueness of limit implies that 1(0) = u; (in H™1(Q)).

LetA € C2[0,T], A(T) =0, A(T) = 0. Analogously, integrating by parts the left-hand
side of equations (3.30) and (3.31), and making comparison with the obtained results
again gives: u(0) = ug (in L2(Q)). O

THEOREM 3.2. Let f € L2(0,T;L%(Q)), ug € HY(Q) N L®(Q), u; € L%(Q). Assume
that b satisfies
(1") b(E)E = O for almost everywhere € € R, and 3¢ > 0,
2n
n-2
Then, under assumptions (2), (3), and (4), there exists a function v defined in Q x [0, T]
satisfying

[b(E)| <c(1+1&EI7), ae. E€R,ifn>2,0<p< ;ifn<2, 0<p<o. (3.34)

veL®(0,T;H{(Q), v eL™(0,T;L3(Q)),
V+AM) (D) +BW)+g(t) = f£(t) inLY(0,T;H Q) + L (Q)),
gx,t) e p(vix,t)) ae (x,t)€Qr=0Qx[0,T], (3.35)
v(0) =up, V() =u.

PROOF. Itisalso easy to see that b, satisfies assumption (1)" with possible different
constant ¢. Analogously to Theorem 3.1, we still may get (3.5), where {en}:le is a basis
of Hj (Q) N L (Q) satisfying (e;,e;) = §;j. Set

£
In(® = | batyat, (3.36)
0
then J,(£) >0, VE € R, and

t
J (bn(un),un)dT:J Jn(un(x,t))dx—J ]n(un(x,O))dxz—J Jn(uy(x,t))dx
Q Q Q

0
ba(8)| < le‘glﬁ(z)‘b@—%)’pdz

<di+d|EF,

(3.37)
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where d; and d» are positive constants independent of 7.

nxa)| = | [ Ba0rde| < (sgnxa) - [ [bato) |t

Xn d2|Xn|p+1
. P - a2iXn|
< (sgnxn) L (dr+dzlt|?)dt = dylxnl + piD 0 38
d2<xn|p++11
‘ JQJn(Xn)dt‘ = JQ | Jn(xn) | dx < dy |xn|L1(Q) + (p+Li’) ©

Since LP*1(Q) c LY(Q) and u,(0) = x, — uo strongly in LP*1(Q), and |xn|11(q) are
bounded, and so is [, Jn(xn(x)) dx. From (3.5) we have

t
|tn (8) |20y + €2 [Un(0) | 130y < €+ €3 Un (D) |20 +2J0 (fun)dt.  (3.39)

It is easy to see that (3.9), (3.10), (3.11), (3.13), and (3.14) are still true and the solution
of (3.3) can be extended to interval [0, T]. By Sobolev imbedding theorem, we have,
for a.e. t € [0,T], if n > 2, then H(%(Q) C LPY(Q) C LP(Q), p* =2n/(n-2), and
[un (E)1r (@) < Clolun(t”Hé(Q) < C10Co; if m =2, then H(Q) Cc L1(Q), when 1 < q < o,
SO |un(t)lr) < clolun(t)lHé(Q) < c10C9; if n =1, then Hé(Q) c C(Q)) and ditto,
[un (t) o) = MaxXycq lun(x,t)| < ciocy, where Q denotes the closure of Q and c;j is
the imbedding constant which H(} (Q) imbeds in L? (Q) or C(2). Note that, we always
have that b, (uy,) € L*(0,T;LF0(Q)), where po = (n+1)/(n—2) and {b,(uy,)} is a
bounded subset of L* (0, T;LP0(Q))). Therefore, there exist a subsequence of {u,}, still
denoted by itself, and a function v such that v € L= (0, T; H} (Q)), v € L*(0,T;L?(Q))
satisfying

uy — v weakly-star in L* (0, T; H} (Q)),
1, — ¥ weakly-star in L* (0, T;L*(Q)), (3.40)
by(uyn) — g weakly-star in L® (0, T;LF0(Q)).

Since, the dual of the space H} (Q) nL®(Q) is the space L' (0, T;H-1(Q) + L1 (Q)), it is
easy to obtain from (3.4) that

V() +AMB)V+B)+G(t) = £(t) inL'Y(0,T;H Q) +L'(Q)). (3.41)
Analogous to Theorem 3.1, we can complete the proof of this theorem. O

REMARK 3.3. If A(f) = A and A is linear, then the uniqueness of such solution will
be obtained in the same way as in [3].

4. Decay of the solution

THEOREM 4.1. Let T = +, f = 0. Suppose that for every t = 0, the operator A(t)
satisfies

(Aw,w) = 8olwl?, g, YweL*(Q). 4.1)

Moreover, if (Bw,w) = 0, Vw € H} (Q) orcsciy < c2, here c1g is an imbedding constant

which Hé(Q) imbeds in L?(Q). Then, under conditions of Theorem 3.2, the solution in
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Theorem 3.2 obtained from the regularized equation (3.3) satisfies
. 2
|1(t) |72y < p1exp(—pat), ae t=0, (4.2)

where &y, U1, Uz are positive constants.

PROOF. Let u, be a solution of (3.3), that is, satisfies (3.4) and (3.5). Since
Jn(uy(x,t)) =0, by (3.5) we have

t
|u(t)|§2(m+(Bun(t),un(mscufzéojo\un(T)ﬁz(mdr, te[0,+), (4.3)

where ¢y is a positive constant independent of n. If (Bw,w) = 0, for every w € H& (Q),
(Bu, (t),u,(t)) = 0. Analogously to [7, Theorem 4], we obtain:

|in (t) | 200y < C11€XP (—280t), ae.t=0. (4.4)

If c3¢2, < ¢, we get from (4.3) that

- - - t
|t (8) | 20y €2 [ n (D) [ 1. < €11+€3 | Un ()] £2(0) =280 L |10 (T) | 12 AT
(4.5)

t
2 . 2
< C11+C3C%0|un(t) | Hi@) —2089 JO |un(T) | LZ(Q)dTv

from which it is permitted to get inequality (4.4).
Since [ty () |12(q) < €9, U — 1 weakly-star in L~ (0,00;L2(Q)), it is easy to obtain
that 1 (t) — u(t) weak in L2(Q) for a.e. t = 0. But L2(Q) is a real Hilbert space,

therefore, |1 (f)[2q) < lim,, ., [1n(t)|[2(q), a.e. t = 0. Finally, we get |u(t)|§2<m <

ci1exp(—26ot), (a.e. t = 0). O
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