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Abstract. The classical Kramer sampling theorem is, in the subject of self-adjoint bound-
ary value problems, one of the richest sources to obtain sampling expansions. It has be-
come very fruitful in connection with discrete Sturm-Liouville problems. In this paper, a
discrete version of the analytic Kramer sampling theorem is proved. Orthogonal polyno-
mials arising from indeterminate Hamburger moment problems as well as polynomials of
the second kind associated with them provide examples of Kramer analytic kernels.
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1. Introduction. The classical Kramer sampling theorem provides a method for

obtaining orthogonal sampling theorems [9, 11, 14]. The statement of this result is

as follows: let K(ω,λ) be a function, defined for all λ in a suitable subset D of R such

that, as a function of ω, K(·,λ)∈ L2(I) for every number λ∈D, where I is an interval

of the real line. Assume that there exists a sequence of distinct real numbers {λn} ⊂D,

with n belonging to an indexing set I contained in Z, such that {K(ω,λn)} is a complete

orthogonal sequence of functions of L2(I). Then for any F of the form

F(λ)=
∫
I
f (ω)K(ω,λ)dω, (1.1)

where f ∈ L2(I), we have

F(λ)= lim
N→∞

∑
|n|≤N

F
(
λn
)
Sn(λ) (1.2)

with

Sn(λ)=
∫
I K(ω,λ)K

(
ω,λn

)
dω∫

I
∣∣K(ω,λn)∣∣2dω . (1.3)

The series in (1.2) converges absolutely and uniformly wherever ‖K(·,λ)‖L2(I) is bounded.

In [6] the authors proved an extension of the Kramer sampling theorem to the case

when the kernel is analytic in the sampling parameter λ. Assume that the Kramer

kernel K is an entire function for any fixed ω ∈ I, and that the function h(λ) =∫
I |K(ω,λ)|2dω is locally bounded on C. Then any function F defined by (1.1) is an

entire function as well as the sampling (interpolatory) functions (1.3). A kernel K sat-

isfying the above additional conditions is called a Kramer analytic kernel.

A straightforward discrete version of Kramer’s theorem can be obtained [2, 8]. To

this end, let K(n,λ) be a kernel such that, as a function of the discrete variable n ∈
I⊂ Z, the kernel K(·,λ) is in �2(I) for any fixed λ∈D ⊂R. Assume that, for a suitable
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sequence {λn} in D, {K(·,λn)} is an orthogonal basis for �2(I). Then any function of

the form F(λ)=∑n∈If(n)K(n,λ), where f ∈ �2(I), can be expanded by means of the

sampling series

F(λ)=
∑
n
F
(
λn
)
Sn(λ), (1.4)

where the sampling functions are given by

Sn(λ)= 1∥∥K(·,λn)∥∥2
∑
m∈I

K
(
m,λn

)
K(m,λ). (1.5)

The main aim in this paper is to prove the analytic version of the Kramer sampling

theorem for the discrete case. The additional conditions required are in close parallel

with the ones assumed in [6] for the continuous case. In Section 3, we propose discrete

Kramer analytic kernels arising either from orthogonal polynomials associated with

indeterminate Hamburger moment problems, or from the second kind orthogonal

polynomials associated with the former ones.

2. The discrete analytic Kramer sampling theorem. In this section, we state the

discrete version of the analytic Kramer sampling theorem. We use the index set Z both

for the discrete variable and for the sampling sequence {λn}. When the index set is N
or N0 =N∪{0}, the results are essentially the same after some minor changes in the

hypotheses.

Theorem 2.1. Let K : Z×C → C be a mapping satisfying the following properties

and conditions:

(1) K(·,λ)∈ �2(Z) for each λ∈ C.

(2) K(n,·) is an entire function for each n∈ Z.

(3) There exists a sequence of real numbers {λm}m∈Z satisfying

(a) λm < λm+1 for all m∈ Z.

(b) limm→±∞λm =±∞.

(c) The sequence {K(·,λm)}m∈Z is an orthogonal basis in �2(Z).
(4) The function h(λ)= ‖K(·,λ)‖2�2(Z) is locally bounded on C.

Let � be the set of functions F : C→ C determined by

F(λ)=
∞∑

n=−∞
K(n,λ)f(n), λ∈ C, (2.1)

where f ∈ �2(Z). Then for all F ∈�, the following results hold:

(i) F is an entire function.

(ii) The functions Sm : C→ C defined by

Sm(λ)= 1∥∥K(·,λm)∥∥2�2(Z)
〈
K(·,λ),K(·,λm)〉�2(Z) (2.2)

are entire functions.

(iii) Every F ∈� admits the sampling expansion

F(λ)=
∞∑

n=−∞
F
(
λn
)
Sn(λ), (2.3)

where the convergence of the series is absolute and uniform on compact subsets of C.
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Proof. First we prove that any function defined by (2.1) is an entire function.

Consider the function

Fm(λ)=
∞∑

n=−∞
K(n,λ)fm(n), (2.4)

where fm(n) = f(n) if |n| ≤m, and fm(n) = 0 if |n| > m. Clearly, Fm is an entire

function for eachm. Moreover, by using the Cauchy-Schwarz inequality, we obtain

∣∣F(λ)−Fm(λ)∣∣≤
∞∑

n=−∞
|K(n,λ)|∣∣f(n)−fm(n)∣∣≤ ‖K(·,λ)‖�2(Z)∥∥f −fm∥∥�2(Z). (2.5)

Hence, given an arbitrary compact subset Ω of C, we get∣∣F(λ)−Fm(λ)∣∣≤ C ∥∥f −fm∥∥�2(Z) (2.6)

for every λ∈Ω and everym∈N. Then, Fm converges to F uniformly on compact sets

and consequently, F is an entire function. The proof that Sn(λ) is an entire function

for each n goes much in the same manner.

Now, expanding K(·,λ) with respect to the orthonormal basis{
φk(n)= K

(
n,λk

)
∥∥K(·,λk)∥∥�2(Z)

}
k∈Z

, (2.7)

we have K(n,λ)=∑∞
k=−∞ak(λ)φk(n), where

ak(λ)=
〈
K(·,λ),φk

〉
�2(Z) =

∥∥K(·,λk)∥∥�2(Z) Sk(λ), k∈ Z. (2.8)

Therefore, for each λ ∈ C, the series
∑∞
k=−∞Sk(λ)K(n,λk) converges to K(n,λ) in

�2(Z). Now we prove the pointing convergence in (2.3). Indeed, by using the Cauchy-

Schwarz inequality∣∣∣∣∣F(λ)−
M∑

m=−M
F
(
λm
)
Sm(λ)

∣∣∣∣∣≤
∞∑

n=−∞

∣∣∣∣∣K(n,λ)−
M∑

m=−M
K
(
n,λm

)
Sm(λ)

∣∣∣∣∣∣∣f(n)∣∣

≤
∥∥∥∥∥K(n,λ)−

M∑
m=−M

K
(
n,λm

)
Sm(λ)

∥∥∥∥∥
�2(Z)

∥∥f∥∥�2(Z).
(2.9)

Hence, for each λ∈ C, we have F(λ)=∑∞
m=−∞F(λm)Sm(λ).

By expanding f with respect to the orthonormal basis {φn} we obtain, from (2.3),

that {F(λn)/‖K(·,λn)‖�2(Z)}n∈Z belongs to �2(Z). In the same way, from (2.8),

{‖K(·,λn)‖�2(Z)Sn(λ)}n∈Z belongs to �2(Z). As a consequence, by using the Cauchy-

Schwarz inequality in

∞∑
n=−∞

∣∣F(λn)Sn(λ)∣∣=
∞∑

n=−∞

∣∣F(λn)∣∣∥∥K(·,λn)∥∥�2(Z)
(∥∥K(·,λn)∥∥�2(Z)∣∣Sn(λ)∣∣), (2.10)

we obtain that the series in (2.3) converges absolutely for each λ ∈ C. Finally, by
proceeding as in (2.10), we have∣∣∣∣∣F(λ)−

∑
|m|≤M

F
(
λm
)
Sm(λ)

∣∣∣∣∣=
∣∣∣∣∣∣
∑

|m|>M
F
(
λm
)
Sm(λ)

∣∣∣∣∣∣
≤


∑

|m|>M

∣∣∣∣ F
(
λm
)

∥∥K(·,λm)∥∥�2(Z)
∣∣∣∣
2



1/2

‖K(·,λ)‖�2(Z).
(2.11)
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Since ‖K(·,λ)‖�2(Z) is locally bounded on C, we obtain the uniform convergence in

(2.3) on compact subsets of C.

As a straightforward consequence of the above theorem, we derive the following

interpolation result.

Corollary 2.2. Assuming all conditions in Theorem 2.1, let {cn}n∈Z be a sequence

of complex numbers such that

∞∑
n=−∞

∣∣∣∣∣ cn∥∥K(·,λn)∥∥�2(Z)
∣∣∣∣∣
2

<∞. (2.12)

Then there exists a unique f ∈ �2(Z) such that the corresponding F(λ), given by (2.1),

satisfies

F
(
λn
)= cn, for each n∈ Z. (2.13)

Proof. Since {φk}k∈Z is an orthonormal basis for �2(Z), by using (2.12) and the

Riesz-Fischer theorem, there exists a unique sequence h in �2(Z) such that

c̄n =
〈
h,K

(·,λn)〉�2(Z) =
∞∑

k=−∞
h(k)K

(
k,λn

)
. (2.14)

Therefore, cn = 〈h,K(·,λn)〉�2(Z) = 〈h̄,K(·,λn)〉�2(Z). By defining f = h̄, we have the

desired result for the function F(λ)=∑k∈ZK(k,λ)f(k).

3. Orthogonal polynomials as discrete analytic Kramer kernels. We consider an

indeterminate Hamburger moment sequence s = {sn}∞n=0, and we denote by Vs the set

of positive Borel measures satisfying it, that is,

Vs =
{
µ  0 : sn =

∫∞
−∞
xndµ(x), n  0

}
. (3.1)

We consider the associated polynomials of first and second kind, {Pn}∞n=0 and

{Qn}∞n=0. The sequence {Pn}∞n=0 forms an orthonormal system with respect to the in-

ner product given by 〈xn,xm〉 = ∫∞−∞xn+mdµ(x), where µ ∈ Vs . The Pn’s are uniquely

determined by the additional condition that their leading coefficients are positive [1].

The sequence {Qn}∞n=0 is given by

Qn(x)=
∫∞
−∞
Pn(x)−Pn(t)

x−t dµ(t), (3.2)

where µ is any measure in Vs .
In the case of an indeterminate moment problem, the series

∞∑
n=0

∣∣Pn(z)∣∣2,
∞∑
n=0

∣∣Qn(z)∣∣2, (3.3)

converge uniformly on compact subsets of the complex plane.

Moreover, in [3, 7, 8], it is proved that the existence of sequences {λm} of distinct

real numbers, such that{
P0
(
λm
)
,P1
(
λm
)
,P2
(
λm
)
,P3
(
λm
)
, . . .

}∞
m=0, (3.4)
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is an orthogonal basis for �2(N0). The same occurs for the sequence of polynomials

of second kind {Qn} by considering the so-called shifted moment problem [8, 12]. As

a consequence, we can state the following result: let {Pn} and {Qn} be the sequences

of first and second kind polynomials associated with an indeterminate Hamburger mo-

ment problem. Then by defining either K(n,λ)= Pn(λ) or K(n,λ)=Qn(λ), we obtain

discrete Kramer analytic kernels.

The existence of the sequences {λm} can be explained as follows: the set Vs of

solutions to an indeterminate Hamburger moment problem can be parametrized with

the one-point compactification �∪{∞} of the Pick (or Herglotz) functions set � [1, 13].

When the parameter is restricted to constant functions taking values in R∪{∞}, we

obtain the set of N-extremal measures {µt} which satisfy∫∞
−∞
dµt(x)
x−z =−A(z)t−C(z)

B(z)t−D(z) , z ∈ C\R, (3.5)

where A, B, C , and D are the entire functions forming the so-called Nevanlinna ma-

trix associated with the moment problem. See [4, 13] for explicit formulas of the

Nevanlinna matrix. It is known that, for each t ∈ R∪{∞}, µt is the discrete measure

µt =
∑
z∈Zt mzδz, where

Zt =


{
z ∈ C | B(z)t−D(z)= 0

}
if t ∈R,{

z ∈ C | B(z)= 0
}

if t =∞,

mz = A(z)t−C(z)
B′(z)t−D′(z) for z ∈ Zt.

(3.6)

Recall that the zeros of the entire function B(z)t−D(z) or B(z) are real and sim-

ple, and they form, precisely, one of the sequences {λtm} we are looking for. The

N-extremal measures are precisely those measures µ ∈ Vs for which the polynomials

are dense in L2(µ). In the above cases we can identify the set � determined by (2.1)

with the space L2(µt).
Another equivalent formulation can be given either in terms of the self-adjoint

extensions of a semi-infinite Jacobi matrix, or in terms of the discrete Weyl’s limit

point/limit circle theory for the self-adjoint extensions of a discrete Sturm-Liouville

boundary value problem. Given the sequence {sn}∞n=0 of Hamburger moments, we can

find two sequences {bn}∞n=0 and {an}∞n=0 of real and positive numbers, respectively,

namely bn =
∫
xP2

n(x)dµ(x) and an =
∫
xPn(x)Pn+1(x)dµ(x), so that the moment

problem is associated to self-adjoint extensions of the semi-infinite Jacobi matrix

�=




b0 a0 0 0 ···
a0 b1 a1 0 ···
0 a1 b2 a2

. . .

0 0 a2 b3
. . .

...
...

. . .
. . .

. . .




(3.7)

with its domain D(�) being the set of sequences of finite support. The uniqueness of

the Hamburger problem depends on the existence of a unique self-adjoint extension
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of the operator defined by � [13, page 86]. Associated with the Jacobi matrix � is the

three-term recurrence relation

λXn = anXn+1+bnXn+an−1Xn−1, n  0. (3.8)

By taking initial conditions X−1 = 0 and X0 = 1 we obtain the sequence {Pn(λ)}∞n=0,
and for X−1 = −1 and X0 = 0 we obtain the second kind associated polynomials

{Qn(λ)}∞n=0. Following B. Simon [13, page 94], the indeterminacy of the Hamburger

moment problem can be thought as the discrete Weyl’s limit point/limit circle theory

for the self-adjoint extensions of the discrete Sturm-Liouville problem associated with

the former three-term recurrence relation. When the moment problem is indetermi-

nate we are in the limit-circle at infinity, and the Weyl-Titchmarsh functions mt∞(z)
are given precisely by (3.5). Its poles, that is, the zeros of the denominator in (3.5)

are the eigenvalues of the self-adjoint extension, and {P0(λtm),P1(λtm), . . .}∞m=0 is the

corresponding sequence of complete orthogonal eigenvectors in �2(N0).
Furthermore, in [5, 8], it is proved that the sampling (interpolatory) functions, in

this particular case, are nothing more than analytic interpolation functions, that is,

they are of the form

Sm(λ)= G(λ)
G′
(
λm
)(
λ−λm

) , (3.9)

where G is an entire function having its only simple zeros at the sequence {λm}. The
corresponding sampling expansion can be written as a Lagrange-type interpolation

series

F(λ)=
∞∑
m=0

F
(
λm
) G(λ)
G′
(
λm
)(
λ−λm

) , (3.10)

where the convergence of the series is absolute and uniform on compact subsets of

the complex plane.

Finally, in [10] one can find an example, the q-Hermite polynomials, where all the

necessary ingredients for the analytic discrete Kramer sampling theorem are explicity

computed.
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