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Abstract. Some discrete analogue of Poincaré-type integral inequalities involving many
functions of many independent variables are established. These in turn can serve as gen-
erators of further interesting discrete inequalities.
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1. Introduction. It is well known that differential and integral equations appear in
virtually every area of analysis, and among all tools available for the study of quan-
titative as well as qualitative properties of their solutions, integral inequalities are
essential and in fact indispensable. Analogously, as discrete phenomena prevail in
nature, difference equations are of fundamental importance in finite element analy-
sis and the discrete analogues of integral inequalities naturally serve the subject as a
handy effective tool (cf. [1]).
One of the most inspiring integral inequalities is the Poincaré’s inequality. It says

that for any bounded region Ω in R2 or R3 and any continuously differentiable real-
valued function f on Ω which vanishes on the boundary ∂Ω of Ω, one has

λ0
∫
Ω
f 2dx ≤

∫
Ω
|�f |2dx, (1.1)

where λ0 is the smallest eigenvalue of the problem
�f +λf = 0 in Ω

f = 0 on ∂Ω .
(1.2)

Exhibiting an effective estimate of the average of f 2 on Ω by that of |� f |2 on Ω,
Poincaré inequality is one of the few most important multi-dimensional integral in-
equalities. Because of its fundamental importance, a vast stock of investigations and
generalizations of it has been established in these years. Such generalizations and im-
provements of the inequality are in general known as Poincaré-type integral inequali-
ties. A brief account of such inequalities can be found in, say, Beckenbach-Bellman [2],
Hardy-Littlewood-Pólya [8], Milovanovíc-Mitrinovíc-Rassias [12], Mitrinovíc [13], and
Nirenberg [14]. More recent results include those in Horgan et al. [9, 10, 11], Pachpatte
[15, 16], Rassias [17, 18], Cheung [3, 4, 6], and Cheung-Rassias [7]. It is the purpose
of this paper to establish some new discrete analogues of Poincaré-type inequalities
which improve and generalize some existing results in [5]. The importance of the re-
sults here does not confine to their neatness and intrinsic beauty, but also lies on the
fact that they can be used in turn to serve as generators of other interesting discrete
inequalities.
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2. Notations and Preliminaries. In this paper, m ≥ 2 and n ≥ 1 will denote two
fixed integers. For consistency we will use exclusively the Greek alphabet α,β,γ, . . .
as indices from 1 to m and the English letters i,j,k, . . . as indices from 1 to n. Let
Ω =∏n

i=1[0,bi]∩Zn ⊂Rn, where bi ∈N∪{0} for each i, be a fixed rectangular lattice
of integral points. As customary, a general point inΩ will be denoted as t = (t1, . . . , tn).
�(Ω) will denote the space of all real-valued functions on Ω and �0(Ω) the subspace
of �(Ω) consisting of all those functions in �(Ω) which vanish on the boundary ∂Ω
of Ω. For the sake of convenience, we shall extend the domain of definition of each
function in �(Ω), hence also those in �0(Ω), trivially to the entire Zn and think of
�(Ω) as the collection of real-valued functions on Zn with support in Ω, and �0(Ω)
as those with support in Ω \ ∂Ω. Furthermore, for the sake of simplicity, since the
indices i,j,k will always be running from 1 to n and α,β,γ from 1 tom, summations
and products over i,j,k and α,β,γ will be abbreviated as

∑
α,
∏
i, and so forth, unless

possible confusion may arise.
For any f ∈�(Ω), define

fj : Zn �→R (2.1)

by

fj(t) :=�jf (t)= f
(
t1, . . . , tj, . . . , tn

)−f (t1, . . . , tj−1, . . . , tn). (2.2)

Observe that if f ∈�0(Ω), fj ∈�(Ω) for all j. However, in general fj ∉�0(Ω).
As usual, we define the gradient of f as

�f := (
f1, . . . ,fn

)
(2.3)

and its norm as

|�f | :=
(∑

j
|fj|2

)1/2
. (2.4)

For any p > 0 and f ∈�(Ω), the �p-norm of f is defined as

‖f‖p :=
( ∑
t∈Ω

∣∣f(t)∣∣p
)1/p

. (2.5)

If f ∈�0(Ω), fj ∈�(Ω) for all j and in this case the �p-norm of �f is defined as

‖�f‖p :=
( ∑
t∈Ω

∣∣�f(t)∣∣p
)1/p

=

 ∑
t∈Ω

(∑
j
|fj|2

)p/2
1/p

. (2.6)

3. Discrete Poincaré-type inequalities. Let B =max{bj : 1≤ j ≤n}.
Theorem 3.1. For any fα ∈ �0(Ω), any real numbers pα ≥ 2, qα ≥ 0 with∑
αqα/pα = 1, and any Cα > 0,∥∥∥∥∥

∏
α

(
fα

)qα∥∥∥∥∥
1

≤ C
n

∑
α

qα
pα

(
BCα
2

)pα∥∥�fα∥∥pαpα , (3.1)

where C :=∏
βC

−qβ
β .
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Theorem 3.1 generalizes and improves some existing results of discrete Poincaré-
type inequalities in the literature [5]. For example, the following consequences are
easily derivable from Theorem 3.1.

Corollary 3.2. For any fα ∈ �0(Ω) and any real numbers pα ≥ 2, qα ≥ 0 with∑
αqα/pα = 1, ∥∥∥∥∥

∏
α

(
fα

)qα∥∥∥∥∥
1

≤ 1
n

∑
α

qα
pα

(
B
2

)pα∥∥�fα∥∥pαpα . (3.2)

Proof. This follows immediately from Theorem 3.1 by letting Cα = 1 for all α.

Corollary 3.3. For any fα ∈ �0(Ω) and any real numbers pα ≥ 2, qα > 0 with∑
αqα/pα = 1, ∥∥∥∥∥

∏
α

(
fα

)qα∥∥∥∥∥
1

≤ C
n

∑
α

∥∥�fα∥∥pαpα , (3.3)

where

C :=
∏
α

[(
B
2

)qα(qα
pα

)qα/pα]
. (3.4)

Proof. This follows immediately from Theorem 3.1 by letting

Cα = 2
B

(
pα
qα

)1/pα
∀α. (3.5)

Corollary 3.4 [5]. For any fα ∈ �0(Ω) and any real numbers pα ≥ 2 with∑
α1/pα = 1, ∥∥∥∥∥

∏
α
fα

∥∥∥∥∥
1

≤ 1
n

∑
α

1
pα

(
B
2

)pα∥∥�fα∥∥pαpα . (3.6)

Proof. It is immediate from Corollary 3.2 by putting qα = 1 for all α.
Corollary 3.5 [5]. For any fα ∈ �0(Ω) and any real numbers qα ≥ 0 with q :=∑
αqα ≥ 2, ∥∥∥∥∥

∏
α

(
fα

)qα∥∥∥∥∥
1

≤ 1
n

(
B
2

)q∑
α

qα
q

∥∥�fα∥∥qq . (3.7)

Proof. It is immediate from Corollary 3.2 by putting pα = q for all α.
Corollary 3.6 [5]. For any fα ∈�0(Ω),∥∥∥∥∥

∏
α

(
fα

)∥∥∥∥∥
1

≤ 1
nm

(
B
2

)m∑
α

∥∥�fα∥∥mm. (3.8)

Proof. This follows from Corollary 3.4 by setting pα = m for all α or from
Corollary 3.5 by setting qα = 1 for all α.
To establish Theorem 3.1, we need the following basic lemmas.

Lemma 3.7 [8, 13]. For any pα,qα,cα > 0 with
∑
qα/pα = 1,∏

α
cqαα ≤

∑
α

qα
pα
cpαα , (3.9)

where the equality holds if and only if c1 = ··· = cm.
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Lemma 3.8 [8, 13]. For any ri ≥ 0 and s > 0,(∑
i
ri

)s
≤ c(s,n)

∑
i
r si , (3.10)

where

c(s,n)=

n

s−1 if s > 1

1 if 0≤ s ≤ 1. (3.11)

Lemmas 3.7 and 3.8 are fundamental inequalities easily derivable from the
arithmetic-geometric mean inequality. For their proofs, one is referred to, for example,
[8, 13].

Lemma 3.9. For any f ∈�0(Ω) and any t ∈Ω,
∣∣f(t)∣∣≤ 1

2n

∑
i

bi∑
ui=1

∣∣fi(t1, . . . , ti−1,ui,ti+1, . . . , tn)∣∣. (3.12)

Proof. Since f = 0 on ∂Ω, for each i= 1, . . . ,n, we have

f(t)=
ti∑

ui=1
fi
(
t1, . . . , ti−1,ui,ti+1, . . . , tn

)
,

f (t)=−
bi∑

ui=ti+1
fi
(
t1, . . . , ti−1,ui,ti+1, . . . , tn

)
.

(3.13)

Taking absolute value of each of these equations and adding them up with respect
to i, we have

2n
∣∣f(t)∣∣≤∑

i

bi∑
ui=1

∣∣fi(t1, . . . , ti−1,ui,ti+1, . . . , tn)∣∣, (3.14)

hence the lemma is proved.

Proof of Theorem 3.1. By Lemmas 3.7, 3.8, and 3.9, we have

∏
α

∣∣fα(t)∣∣qα =
(∏

β
C
−qβ
β

)∏
α

∣∣Cαfα(t)∣∣qα

≤ C
∑
α

qα
pα
Cpαα

∣∣fα(t)∣∣pα

≤ C
∑
α

qα
pα
Cpαα

[
1
2n

∑
i

bi∑
ui=1

∣∣fαi (t1, . . . ,ui, . . . , tn)∣∣
]pα

≤ C
∑
α

qα
pα
Cpαα

(
1
2n

)pα
c
(
pα,n

)·∑
i


 bi∑
ui=1

∣∣fαi (t1, . . . ,ui, . . . , tn)∣∣


pα

(3.15)

for all t ∈Ω. Since pα ≥ 2, we have c(pα,n)=npα−1 and so
∏
α

∣∣fα(t)∣∣qα ≤ C
n

∑
α

qα
pα

(
Cα
2

)pα∑
i


 bi∑
ui=1

∣∣fαi (t1, . . . ,ui, . . . , tn)∣∣


pα

. (3.16)
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By Hölder’s inequality, this gives∏
α

∣∣fα(t)∣∣qα

≤ C
n

∑
α

qα
pα

(
Cα
2

)pα
·
∑
i




 bi∑
ui=1

1



(pα−1)/pα

·

 bi∑
ui=1

∣∣fαi (t1, . . . ,ui, . . . , tn)∣∣pα


1/pα

pα

= C
n

∑
α

qα
pα

(
Cα
2

)pα∑
i


bpα−1i

bi∑
ui=1

∣∣fαi (t1, . . . ,ui, . . . , tn)∣∣pα



≤ C
n

∑
α

qα
pα

(
Cα
2

)pα
Bpα−1

∑
i

bi∑
ui=1

∣∣fαi (t1, . . . ,ui, . . . , tn)∣∣pα.
(3.17)

Now by a change of the dummy variables, it is easy to see that

∑
i

∑
t∈Ω

bi∑
ui=1

∣∣fαi (t1, . . . ,ui, . . . , tn)∣∣pα =∑
i

bi∑
ui=1

∑
t∈Ω

∣∣fαi (t1, . . . ,ui, . . . , tn)∣∣pα

=
∑
i

bi∑
ui=1

∑
t∈Ω

∣∣fαi (t1, . . . , ti, . . . , tn)∣∣pα

=
∑
i
bi

∑
t∈Ω

∣∣fαi (t1, . . . , ti, . . . , tn)∣∣pα

≤ B
∑
i

∑
t∈Ω

∣∣fαi (t)∣∣pα ,

(3.18)

thus we have

∑
t∈Ω

∏
α

∣∣fα(t)∣∣qα ≤ ∑
t∈Ω

C
n

∑
α

qα
pα

(
Cα
2

)pα
Bpα−1

∑
i

bi∑
ui=1

∣∣fαi (t1, . . . ,ui, . . . , tn)∣∣pα

≤ C
n

∑
α

qα
pα

(
Cα
2

)pα
Bpα

∑
i

∑
t∈Ω

∣∣fαi (t)∣∣pα

= C
n

∑
α

qα
pα

(
BCα
2

)pα ∑
t∈Ω

[(∑
i

∣∣fαi (t)∣∣pα
)2/pα]pα/2

≤ C
n

∑
α

qα
pα

(
BCα
2

)pα ∑
t∈Ω

[
c
(
2
pα
,n

)∑
i

(∣∣fαi (t)∣∣pα)2/pα
]pα/2

(3.19)

by Lemma 3.8. Since pα ≥ 2, c(2/pα,n
)= 1 and so

∑
t∈Ω

∏
α

∣∣fα(t)∣∣qα ≤ C
n

∑
α

qα
pα

(
BCα
2

)pα ∑
t∈Ω

(∑
i

∣∣fαi (t)∣∣2
)pα/2

= C
n

∑
α

qα
pα

(
BCα
2

)pα∥∥�fα∥∥pαpα .
(3.20)

Note that from the preceding results, discrete Poincaré-type inequalities involving
only one function (the case m = 1) can be easily obtained. For instance, we have the
following corollary.
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Corollary 3.10 [5]. For any f ∈�0(Ω) and any real number q ≥ 2,

∥∥fq∥∥1 = ‖f‖qq ≤ 1
n

(
B
2

)q
‖�f‖qq. (3.21)

Proof. This follows from Corollary 3.5 by letting fα = f for all α.

4. Applications

Theorem 4.1. For any fα ∈ �0(Ω), any real numbers pα ≥ 2, qα ≥ 0 with∑
αqα/qα = 1, and any Cα > 0,

∥∥∥∥∥
∑
β

( ∏
α�=β

|fα|qα
)∣∣�fβ∣∣qβ

∥∥∥∥∥
1

≤ CK(p,q)
∑
α

qα
pα
Cpαα

∥∥�fα∥∥pαpα , (4.1)

where

C :=
∏
β
C
−qβ
β (4.2)

and

K(p,q)=K(pα,qα) :=∑
β

(
1
n

)1−qβ/pβ(B
2

)∑
α�=β qα

. (4.3)

Proof. By a generalization of Hölder’s inequality for the case of many functions
and by Corollary 3.10, we have

∑
t∈Ω

[∑
β

( ∏
α�=β

∣∣fα(t)∣∣qα
)∣∣�fβ(t)∣∣qβ

]

=
∑
β

∑
t∈Ω

[
C
( ∏
α�=β

∣∣Cαfα(t)∣∣qα
)∣∣Cβ�fβ(t)∣∣qβ

]

≤ C
∑
β

{[ ∏
α�=β

( ∑
t∈Ω

∣∣Cαfα(t)∣∣pα
)qα/pα]( ∑

t∈Ω

∣∣Cβ�fβ(t)∣∣pβ
)qβ/pβ}

≤ C
∑
β

{[ ∏
α�=β

(
1
n

(
B
2

)pα∥∥Cα�fα∥∥pαpα
)qα/pα](∥∥Cβ�fβ∥∥pβpβ

)qβ/pβ}

= C
∑
β

(
1
n

)∑
α�=β qα/pα(B

2

)∑
α�=β qα∏

α

∥∥Cα�fα∥∥qαpα
= CK(p,q)

∏
α

∥∥Cα�fα∥∥qαpα ,

(4.4)

thus by Lemma 3.7, we conclude that

∥∥∥∥∥
∑
β

( ∏
α�=β

∣∣fα∣∣qα
)∣∣�fβ∣∣qβ

∥∥∥∥∥
1

≤ CK(p,q)
∑
α

qα
pα

∥∥Cα�fα∥∥pαpα
= CK(p,q)

∑
α

qα
pα
Cpαα ‖�f‖pαpα .

(4.5)
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Corollary 4.2. For any fα ∈ �0(Ω) and any real numbers pα ≥ 2, qα ≥ 0 with∑
αqα/pα = 1,

∥∥∥∥∥
∑
β

( ∏
α�=β

∣∣fα∣∣qα
)∣∣�fβ∣∣qβ

∥∥∥∥∥
1

≤K(p,q)
∑
α

qα
pα

∥∥�fα∥∥pαpα , (4.6)

where K(p,q)=K(pα,qα) is as defined in Theorem 4.1.

Proof. It is immediate from Theorem 4.1 by letting Cα = 1 for all α.
Corollary 4.3. For any fα ∈ �0(Ω) and any real numbers pα ≥ 2, qα > 0 with∑
qα/pα = 1,

∥∥∥∥∥
∑
β

( ∏
α�=β

∣∣fα∣∣qα
)∣∣�fβ∣∣qβ

∥∥∥∥∥
1

≤ CK(p,q)
∑
α

∥∥�fα∥∥pαpα , (4.7)

where K(p,q)=K(pα,qα) is as defined in Theorem 4.1, and

C :=
∏
β

(qβ
pβ

)qβ/pβ
. (4.8)

Proof. It is immediate from Theorem 4.1 by putting

Cα =
(
pα
qα

)1/pα
∀α. (4.9)

Corollary 4.4 [5]. For any fα ∈ �0(Ω) and any real numbers pα ≥ 2 with∑
α1/pα = 1,

∥∥∥∥∥
∑
β

( ∏
α�=β

∣∣fα∣∣qα
)∣∣�fβ∣∣qβ

∥∥∥∥∥
1

≤K(p)
∑
α

1
pα

∥∥�fα∥∥pαpα , (4.10)

where

K(p)=K(pα) :=∑
β

(
1
n

)1−1/pβ(B
2

)m−1
. (4.11)

Proof. It follows immediately from Corollary 4.2 by setting qα = 1 for all α.
Corollary 4.5. For any fα ∈ �0(Ω) and any real numbers qα ≥ 0 with q :=∑
qα ≥ 2, ∥∥∥∥∥

∑
β

( ∏
α�=β

∣∣fα∣∣qα
)∣∣�fβ∣∣qβ

∥∥∥∥∥
1

≤ K(q)
q

∑
α
qα

∥∥�fα∥∥qq, (4.12)

where

K(q)=K(qα) :=∑
β

(
1
n

)1−qβ/q(B
2

)q−qβ
. (4.13)

Proof. It follows immediately from Corollary 4.2 by setting pα = q ≥ 2 for
all α.
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Corollary 4.6 [5]. For any fα ∈�0(Ω),
∥∥∥∥∥
∑
β

( ∏
α�=β

fα
)∣∣�fβ∣∣

∥∥∥∥∥
1

≤
(
B
2

)m−1( 1
n

)1−1/m∑
α

∥∥�fα∥∥mm. (4.14)

Proof. It is immediate from Corollary 4.4 by letting pα =m for all α.

Again the above results also give discrete inequalities for the case of one dependent
function for free. For instance, we have the following corollary.

Corollary 4.7. For any f ∈ �0(Ω) and any real numbers qα ≥ 0 with q :=∑
αqα ≥ 2, ∥∥∥∥∥

∑
β
|f |q−qβ |�f |qβ

∥∥∥∥∥
1

≤K(q)‖�f‖qq, (4.15)

where K(q)=K(qα) is defined as in Corollary 4.5. In particular,

∥∥|f |m−1|�f |∥∥1 ≤
(
1
n

)1−1/m(
B
2

)m−1
‖�f‖mm. (4.16)

Proof. These follow from Corollary 4.5 by letting fα = f for all α and subse-
quently qα = 1 for all α.

Remark 4.8. Further interesting discrete type inequalities can be easily gener-
ated from the results in the preceding sections. For instance, by taking m = 3 in
Corollary 4.6, we have

∥∥fg|�h|+gh|�f |+hf |�g|∥∥1 ≤ B2

4n2/3
[∥∥�f∥∥33+∥∥�g∥∥33+∥∥�h∥∥33

]
; (4.17)

takingm= 2 in Corollary 4.6, we have
∥∥f |�g|+g|�f |∥∥1 ≤ B√

2n

[∥∥�f∥∥22+∥∥�g∥∥22
]
, (4.18)

and by putting f = g = h in these inequalities (or using Corollary 4.7 directly), we
obtain ∥∥f 2|�f |∥∥1 ≤ B2

4n2/3
‖�f‖33 (4.19)

and ∥∥f |�f |∥∥1 ≤ B√
2n
‖�f‖22. (4.20)

On the other hand, using Hölder’s inequality, we have

∥∥f |�g|∥∥1 ≤ ‖f‖2‖�g‖2, (4.21)

and so by Corollary 3.10,

∥∥f |�g|∥∥1 ≤ B
2
√
n
‖�f‖2‖�g‖2 . (4.22)
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Similarly, other interesting discrete type inequalities involving the gradient of�0(Ω)
functions can be easily obtained. Inequalities of such form are in general of great inter-
est and are important in the study of properties of solutions of difference equations.
The importance of our result here also lie in that by choosing different combinations
of the parameters m,n,pα,qα,Cα, etc., one can obtain as many as we wish new dis-
crete type inequalities involving the gradient of �0(Ω) functions. Furthermore, the
techniques used here are rather algorithmic and easy to apply. It is expected that dis-
crete inequalities of other types like the Wirtinger type and Sobolev type could also
be established by similar techniques.
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