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ABSTRACT. We give the Riemann-type extensions of Dunford integral and Pettis integral,
Henstock-Dunford integral and Henstock-Pettis integral. We discuss the relationships be-
tween the Henstock-Dunford integral and Dunford integral, Henstock-Pettis integral and
Pettis integral. We prove the Harnack extension theorems and the convergence theorems
for Henstock-Dunford and Henstock-Pettis integrals.
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1. Introduction. During 1957-1958, R. Henstock and J. Kurzweil, independently,
gave a Riemann-type integral called the Henstock-Kurzweil integral (or Henstock inte-
gral) (see [7]). It is a kind of nonabsolute integral and contains the Lebesgue integral.
It has been proved that this integral is equivalent to the special Denjoy integral [7].
The Dunford, Pettis integrals are generalizations of the Lebesgue integral to Banach-
valued functions. In [5], R. A. Gordon gave two Denjoy-type extensions of the Dunford,
Pettis integrals, the Denjoy-Dunford and Denjoy-Pettis integrals, and discussed their
properties.

In this paper, we give the Riemann-type extensions of Dunford, Pettis integrals, the
Henstock-Dunford, Henstock-Pettis integrals, and discuss the relationships between
the Henstock-Dunford integral and Dunford integral, Henstock-Pettis integral and Pet-
tis integral. We prove the Harnack extension theorems and the convergence theorems
for Henstock-Dunford and Henstock-Pettis integrals.

Throughout this paper, X denotes a real Banach space and X* its dual. B(X*) =
{x* e X*:|| x* ||< 1} is the unit ball in X*. Iy = [a,b] is a closed interval in R.

We first give some preliminaries. A partition D of [a,b] is a finite collection of
interval-point pairs (I,t) with the intervals nonoverlapping and their union [a,b].
Here t is the associated point of I. We write D = {(I,t)}, it is said to be §-fine partition
of [a,b] if for each interval-point pair (I,t), we have t eI C (t —6(t),t +6(t)).

DEFINITION 1.1 (see [7]). A function f:[a,b] — R is Henstock integrable if there
exists a function F : [a,b] — R such that for every € > 0 there is a function 6(t) > 0
such that for any é-fine partition D = {[u,v];t} of [a,b], we have

> fOw-w-Fu,v)]| <e, 1.1)

where the sum > is understood to be over D = {([u,v],t)} and F(u,v) = F(v) —F(u).
We write (H)f,of = F(Ip).
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The function f is said to be Henstock integrable on the set E C [a, b] if the function
fxe is Henstock integrable on [a,b]. We write (H) fIO fxe=(H) [z f.

DEFINITION 1.2 (see [1, 5, 7]). A function f:[a,b]—R is Denjoy (or special Denjoy)
integrable if there exists an ACG (or ACG*) function F : [a,b] — R such that D, F(t) =
f(t) (or F'(t) = f(t)) almost everywhere on [a, b]. Where D4, F (t) denotes the approx-
imate derivative of F at t. We write (D) f,of =F(y) (or (D*) f,of =F(Iy)).

The function f is said to be Denjoy (or special Denjoy) integrable on the set E C
[a,b] if the function fxg is Denjoy (or special Denjoy) integrable on [a,b]. We write
(D)flofXE = (D)fEf (or (D*)fIOfXE = (D*)fEf)-

If f is special Denjoy integrable, then f is Denjoy integrable.

LEMMA 1.3 (see [7]). A function f:[a,b] — R is Henstock integrable on [a,b] if and
only if f is the special Denjoy integrable on [a,b].

DEFINITION 1.4 (see Gordon [5]). (a) A function f: [a,b] — X is Denjoy-Dunford
integrable on [a,b] if for each x* in X* the function x* f is Denjoy integrable on
[a,b] and if for every interval I in [a,b] there exists a vector x;* in X** such that
X[ (x*) = [;x* f for all x* in X*. We write x;* = (DD) [}, f = F(Ip) and F is called
the primitive of f on Iy.

(b) A function f : [a,b] — X is Denjoy-Pettis integrable on [a,b] if f is Denjoy-
Dunford integrable on [a,b] and if x;* € X for every interval I in [a,b]. We write
x,";* = (DP) flof = F(Ip) and F is called the primitive of f on Ij.

The function f is said to be integrable in one of the above senses on the set E C [a, b]
if the function fxg is integrable in that sense on [a,b].

LEMMA 1.5 (see [3]). A function f:[a,b] — X is Denjoy-Dunford integrable on [a,b]
if and only if x* f is Denjoy integrable on [a,b] for all x* € X*.

2. Definition and properties. In the following, we give the Riemann-type exten-
sions of Dunford, Pettis integrals, and discuss the relationships between Henstock-
Dunford integral and Dunford integral, Henstock-Pettis integral and Pettis integral.

DEFINITION 2.1. (a) A function f : [a,b] — X is Henstock-Dunford integrable on
[a,b] if for each x* in X* the function x* f is Henstock integrable on [a, b] and if for
every interval I in [a,b] there exists a vector x;** in X** such that x/*(x*) = [[x* f
for all x* in X*. We write x/* = (HD) [}, f = F(Ip) and F is called the primitive of f
on I.

(b) A function f :[a,b] — X is Henstock-Pettis integrable on [a, b] if f is Henstock-
Dunford integrable on [a,b] and if x;* € X for every interval I in [a,b]. We write
xj* = (HP) [, f = F(Ip) and F is called the primitive of f on Io.

The function f is said to be integrable in one of the above senses on the set E C [a, b]
if the function fxg is integrable in that sense on [a,b].

By the above definitions and Definition 1.4, it is easy to see that if f is Henstock-
Dunford (or Henstock-Pettis) integrable on Iy, then f is Denjoy-Dunford (or Denjoy-
Pettis) integrable.
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THEOREM 2.2. A function f :[a,b] — X is Henstock-Dunford integrable on [a,b] if
and only if x* f is Henstock integrable on [a,b] for all x* € X*.

PROOF. If f is Henstock-Dunford integrable on [a,b], for every x* € X*, by
Definition 2.1, x* f is Henstock integrable on [a,b]. Conversely, if x* f is Henstock
integrable on [a, b]. It follows from Lemma 1.3 that x* f is Denjoy integrable on [a, b]
and (D) ff x*f=(H) fuhx*f. It follows from Lemma 1.5 that f is Denjoy-Dunford in-
tegrable on [a,b], and for every interval I in [a,b] there exists a vector x/* in X**
such that x{* (x*) = (D) [;x* f for all x* in X*, that is, x;** (x*) = (H) [; x* f for all
x* in X*. So f is Henstock-Dunford integrable on [a,b]. O

THEOREM 2.3. If the function f : [a,b] — X is Henstock-Dunford integrable on [a,b],
then each perfect set in [a,b] contains a portion on which f is Dunford integrable.

PROOF. Since the function f:[a,b] — X is Henstock-Dunford integrable on [a,b],
then for each x* € X*, x* f is Henstock integrable on [a, b]. It follows from [8] that
each perfect set in [a, b] contains a portion on which x* f is Lebesgue integrable. So
f is Dunford integrable on a portion. O

THEOREM 2.4. Ifthe function f : [a,b] — X is Henstock-Dunford integrable on [a,b],
then there is a sequence { Xy} of closed subsets such that Xy C Xy for allk, uy_; Xg =
[a,b], f is Dunford integrable on each X, and

lim (Dunford) f(tydt = (HD) fo(t)dt weakly @.1)

Xgnla,x
uniformly on [a,b].

PROOF. It follows from Theorem 2.2 that a function f : [a,b] — X is Henstock-
Dunford integrable on [a,b] if and only if x* f is Henstock integrable on [a,b] for
all x* € X*. From [8], x* f is Henstock integrable on [a, b], then there is a sequence
{Xx} of closed subsets such that Xy C Xy forall k, uy_, Xk = [a,b], x* f is Lebesgue
integrable on each X} and

X

lim (L) x*f(t)dt = (H)J x*f(t)dt (2.2)
k—oco Xpnla,x] a

uniformly on [a,b] for each x* € X*. So we obtain that f is Dunford integrable on

each Xy and

Ili_m(Dunford) ]f(t) dt = (HD) fo(t)dt weakly (2.3)

Xyxnla,x
uniformly on [a,b]. O

THEOREM 2.5. Ifthe function f : [a,b] — X is Henstock-Dunford integrable on [a,b],
then there exists a sequence { Xy} of closed sets, Uy_, X = [a,b], f is Dunford integrable
on each Xy.

PROOF. Since f Henstock-Dunford integrable on [a, b], by Definition 2.1, for each
x* € X*, x*f is Henstock integrable on [a,b], and for every interval I C [a,b],



470 Y. GUOJU AND A. TIANQING

fix*f =x*[,f,and F(I) = [} f € X. Since x*f is Henstock integrable, then x*F
is ACG*. So there is a sequence {X;} of closed subsets such that uy_, Xy = [a,b] and
x*F is VB* on each Xj. From [7, Lemma 6.18], x* f is Lebesgue integrable on each
Xk. So we obtain that f is Dunford integrable on each Xj. O

THEOREM 2.6. Suppose that X contains no copy of ¢y and f : [a,b] — X. If the
function f is Henstock-Pettis integrable on [a,b], then each perfect set in[a,b] contains
a portion on which f is Pettis integrable.

PROOF. Since the function f : [a,b] — X is Henstock-Pettis integrable on [a,b],
then f is Denjoy-Pettis integrable on [a, b]. It follows from [5, Theorem 38] that each
perfect set in [a,b] contains a portion on which f is Pettis integrable.

In the fact, from [3, Theorem 10], we have that if each Henstock-Pettis integrable
function defined on [a,b] is Pettis integrable on a portion of every close set, then X
does not contain cy. O

THEOREM 2.7. Suppose that X contains no copy of ¢y and f : [a,b] — X is a mea-
surable. If the function f :[a,b] — X is Henstock-Pettis integrable on [a,b], then there
exists a sequence {Xy} of closed sets with Xy 1 [a,b] such that for each x* € X*, f is
Pettis integrable on each Xy, and

b
lim(Pettis)J f= (HP)J f weakly. (2.4)
k—o Xk a

PROOF. Since f is Henstock-Pettis integrable on [a, b], then f is Henstock-Dunford
integrable on [a, b]. By Theorem 2.4, there is a sequence { Xy} of closed subsets such
that Xy C X4 for all k, uy_, Xx = [a,b], x* f is Lebesgue integrable on each Xj and

lim (L) x*f(t)dt = (H)Jxx*f(t)dt (2.5)

— 00 Xinla,x]

uniformly on [a,b] for each x* € X*. So we obtain that f is Dunford integrable on
each Xi. From [2, Theorem 2.5, page 54], f is Pettis integrable on [a,b] and

X
lim (Pettis) f)dt = (HP)J f(t)dt weakly (2.6)
k— oo Xnla,x] a
uniformly on each Xj, that is,
b
lim (Pettis) f= (HP)J f weakly. (2.7)
k— o Xk a O

In Theorem 2.7, if we remove the condition that f is a measurable, then we have
the following theorem.

THEOREM 2.8. Suppose that X contains no copy of cy. If the function f :[a,b] — X
is Henstock-Pettis integrable on [a,b], then there exists a sequence { Xy} of closed sets,
Up_1 Xk = [a,b], f is Pettis integrable on each Xy.

PROOF. Since f is Henstock-Pettis integrable on [a, b], by Definition 2.1, for each
x* € X*, x*f is Henstock integrable on [a,b], and for every interval I C [a,b],



ON HENSTOCK-DUNFORD AND HENSTOCK-PETTIS INTEGRALS 471

fix*f =x*[f,and F(I) = [, f € X. Since x*f is Henstock integrable, then x*F
is ACG*. So there is a sequence {X;} of closed subsets such that uy_, Xy = [a,b] and
x*F is VB* on each X;. For each k € N, let (a,b) — X} = U5_, (ck,d¥). Then

dk
*
xka
n

C

00

< co. (2.8)

n=1

k
Since X contains no copy of ¢y, by Bessaga-Pelczynski theorem [2, page 22], > ,_; ff,f f
is unconditionally convergent in norm. Also

> sup

n=1 [u’fl,hi‘,] c [cﬁ,dﬁ]

bl
x*l[kf < 00, (2.9)

an

By Harnack extension theorem [7, page 41], we have

ka*f = J:x*f_nil ij*f =x* (J:f_nil Jj f). (2.10)

Hence [y, f = [7 £~ Sy [§ f € X and [y x* f = x* [y, f.

So, for every closed set H C X, we have [;x*f = x* [, f and [, f € X. Since
f‘ffXxk = kaf € X, fffo = [y f € X, then for every closed interval I C [a,b],
Iy Sfxx, = fmxkf € X. By [5, Theorem 23, page 79], fxx, is Pettis integrable on [a,b],
that is, f is Pettis integrable on each Xj. O

3. The extension theorems and convergence theorems. Now we consider the ex-
tension theorems and convergence theorems of the Henstock-Dunford and Henstock-
Pettis integrals.

THEOREM 3.1. LetE be a closed subsetin [a,b] and (a,b) —E the union of {(ax,bx)},
k=1,2,....If f : [a,b] — X is Henstock-Dunford integrable on E and each interval
[ak, by ] with

o t
Zw(f x*f,[ak,lok]> < o0 (3.1
k=1 Ak

for each x* € X*, then f is Henstock-Dunford integrable on [a,b] and

b b s by
<x*,<HD>j f> - <x*,<HD)j fxE> .S <x*,<HD> f> (3.2)
a a k=1 ag

for each x* € X*.

PROOF. From the conditions of Theorem 3.1, we have the function x* f satisfies
the hypothesis of [7, Corollary 7.11]. So we have x* f is Henstock integrable on [a, b]
and

b b © b
) [ xf =[xt xS | Cx (3.3)
4 a k=1

ak
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It follows from Theorem 2.2 that f is Henstock-Dunford integrable on [a,b] and the
above equality means that

b b d by
<x*,<HD>j f> = <x*,<HD>j fxE> £y <x*,<HD> f> (3.4)
a a k=1 ag

for each x* € X*. O

THEOREM 3.2. Let E be a closed subset in [a,b] and {(ax,by)} be an enumeration
of the intervals contiguous to E in (a,b). Suppose that f :[a,b] — X is Henstock-Pettis
integrable on E and each interval [ay,by]. If X5 w( ath*f,[ak,bk]) < oo for each
x* € X* and the series > (HP) f[ak’hk]mjf is unconditionally convergent for every
subinterval J of [a,b], then f is Henstock-Pettis integrable on [a,b] and

b b o by
(HP)J f= (HP)J fxe+ > (HP)| f. (3.5)
a a k=1 ay

PROOF. From Theorem 3.1, we have the function f is Henstock-Dunford integrable
on [a,b] and (H) ffx*f = (H) [P x* fxe+ 35 (H) ff:x*f. To show that f is in fact
Henstock-Pettis integrable on [a, b]. We need to show that (HD) fJ f belongs to X for
each closed interval J in [a,b].

Let Eg = EnJ. Then Ej is a closed set. Since fxg is Henstock-Pettis integrable on J,
then fxg, is Henstock-Pettis integrable on J, that is, f is Henstock-Pettis integrable
on Ey. And {(ax,bx) N J} is an enumeration of the intervals contiguous to Ej in J, so
f is Henstock-Pettis integrable on them and >’} (HP) f[ak’bk]ﬁ 7 f is an unconditionally
convergent series in X. Now, if we apply Theorem 3.1 to Ej in J, we get

* (HD = * (HP * (HP 3.6
<x< )Lf> <x< >foEo>+k§<x< )[uk,hk]n1f> (3.6)

for each x* € X*, that is,

* (HD = * (HP HP 3.7
<x ( )Lf> <X ( )JJfXEO+1§1( )[akrbk]ﬁff> ( )

for each x* € X*. We conclude that

HD = (HP HP . 3.8
( >ij ( >foEo+k§l< ) (3.8)
Hence, f is Henstock-Pettis integrable on [a,b] and
b b o
HP = (HP + HP . 3.9
) [ =P | fxn Y )Lak,hkm]f (3.9)

O

COROLLARY 3.3. Suppose that X contains no copy of co. Let E be a closed subset
in [a,b] and {(ax,bx)} be an enumeration of the intervals contiguous to E in (a,b).
Suppose that f : [a,b] — X is Henstock-Pettis integrable on E and each interval [ay,by].
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If>e w(fatk x*f,lak,br]) < o for each x* € X*, then f is Henstock-Pettis integrable
onla,b] and

b b ol b
(HP>J Sf= (HP)J fxe+ E(HP)J kf. (3.10)
a a k=1 ay

THEOREM 3.4. Suppose that X is weakly sequentially complete and f : [a,b] — X
is Henstock-Dunford integrable on [a,b]. If f is measurable, then f is Henstock-Pettis
integrable on [a,b].

PROOF. It is similar to the proof of [5, Theorem 40]. O

LEMMA 3.5 (see [1, 5]). LetT be a family of open intervals in (a,b) and suppose that
I' has the following properties:

(1) if (e, B) and (B,y) belong toT, then (x,y) belongs toT;

(2) if (e, B) belong to T, then every open interval in (x, 8) belongs toT;

(3) if (&, B) belong toT for every interval in [x,B] C (c,d), then (c,d) belongs toT;

(4) 1if all of the intervals contiguous to the perfect set E C [a,b] belong to T, then

there exists an interval I inT such that INE # &.
ThenT contains the interval (a,b).

LEMMA 3.6. Suppose that f,, :[a,b] — R, f:[a,b] — R, and

(1) fu — f almost everywhere on [a,b] as n — o, where each f, is Henstock (or
D*) integrable on [a,b];

(2) the primitives Fy, of fy are continuous uniformly in n and ACG* uniformly inn.

Then f is Henstock (or D* ) integrable on [a,b] and

im [ = [ 3.11)
DEFINITION 3.7. Let F:[a,b] — X and let E be a subset of [a,b].
(a) F is BV* on E if sup{>; w(F;[c;,d;])} is finite, where the supremum is taken
over all finite collections {[c;,d;]} of nonoverlapping intervals that have endpoints in
E, w denotes the oscillation of F over [c;,d;], that is,

w(F;[ci,di]) =sup {||[F(x) -F)||; x,v € [ci,di]}. (3.12)

(b) F is AC* on E if for each € > 0 there exists 6§ > 0 such that > ; w(F;[c;,d;]) <€
whenever {[c;,d;]} is a finite collection of nonoverlapping intervals that have end-
points in E and satisfy > ;(d; —c¢;) < 6.

(c) F is BVG* on E if E can be expressed as a countable union of sets on each of
which F is BV*.

(d) F is ACG* on E if F is continuous on E and if E can be expressed as a countable
union of sets on each of which F is AC*.

THEOREM 3.8. Suppose that X is weakly sequentially complete and

(1) fu — f weakly almost everywhere on[a,b] asn — o, where each f,, is Henstock-
Pettis integrable on [a,b];

(2) the primitives Fy, of fy are continuous uniformly in n and ACG* uniformly inn.
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Then f is Henstock-Pettis integrable on [a,b] and

b b
lim L Jn= L f weakly. (3.13)

n—oo

PROOF. Let

B B
= {(o(,ﬁ) C [a,b]: f is Henstock-Pettis integrable on [«, ], J fn —»J f weakly}.
[0 (84

(3.14)
We must show that I contains (a,b) and by Lemma 3.5 it is sufficient to verify that T’
satisfies Romanovski’s four conditions.
Conditions (1) and (2) are easily verified.
Suppose that («, 8) belongs to I for every interval [, 8] in (c,d). For each positive
integer n > 2/(d —c), define I, = (c +1/n,d - 1/n) and let x, = x*.
Then we have

d
X (x*) :L x*f:}y_i—l:lgo . x*fzrllizr(}ox*(xn) (3.15)
for each x* in X*. Since X is weakly sequentially complete, the sequence {x,} con-
verges weakly to an element x(y of X and we must have x(*c’fd) = Xy. It follows easily
that (c,d) belongs to I' and this verifies condition (3).

Now let E be a perfect setin [a, b] such that each of the intervalsin [a, b] contiguous
to E belongs to T.

Since {F,} is continuous uniformly in n and ACG* uniformly in n, then for each
x* € X*, {x*F,} is continuous uniformly in n and ACG* uniformly in n, and x* f,, —
x* f almost everywhere in [a, b]. It follows from [1] that x* f is special Denjoy inte-
grable on [a, b]. So there exists an interval [u,v] with u,v € Eand En (u,v) # @ such
that {F,} is AC* uniformly in n on P = En (u,v) and the series > ; w (Fy;[ug, vi]) un-
conditionally converges where (u,v) —E = Uy (ug, Vx). Hence > w(f;kx*fn; [ur,vel)
< oo for each x* € X*. By Corollary 3.3, we have

J:fn=fpfn+% u:fn (3.16)

{Fn} is AC* uniformly in n on P, {x*F,, : x* € B(X*), n € N} is AC* uniformly in n
on P. So {x* f, : x* € B(X*), n € N} is uniformly integrable on P (see [2]), that is, for
ECP,

|}si\mo_[ |x*fn| =0 uniformly in x* € B(X*) and n. (3.17)
—0JE

It follows from [4, Theorem 3] that f is Pettis integrable on P and [, f, — [p.f weakly.
Since {F,} is AC* uniformly in n on P, so for every € > 0 there exists N such that
Senll f,f]’:fn <€ n=1,2,.... For every x* € B(X*), we have >p_y | f;’]’c‘x*fn\ <,
n=12,...5 >yl f;’l’:x*f\ < €. Since X is weakly sequentially complete and X
does not contain cg, hence > f,flf f unconditionally converges. By (3.16),

v Vk
* _ Ak *
X L fan=x Lfn+x % " . (3.18)
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Let n — o, we have
Vk
N PRICO Rl ISR I (3.19)
P & Uk

Hence
Vi
x:uﬂjv) =J f+Z fex, (3.20)
P K Juk

that is, f is Henstock-Pettis integrable on [u,v]. So (u,v) € I. This shows that (u,v)
belongs to T and I satisfies condition (4). This completes the proof. O

THEOREM 3.9. Suppose that X is weakly sequentially complete and f, — f weakly
almost everywhere on [a,b] as n — «, where each f, is Henstock-Pettis integrable on
[a,b]. If there is a scalar function g with || f,(-) |< g(-) almost everywhere for all n
and if [ g < «, then f is Henstock-Pettis integrable on [a,b] and

b b
limI fn =J f weakly. (3.21)
n—o Jg a

PROOF. It is similar to the proof of Theorem 3.8. O

DEFINITION 3.10. Let {f4} be a family of Henstock-Pettis integrable functions de-
fined on [a,b]. The family {x* fy : x* € B(X*)} is uniformly integrable in the gen-
eralized sense on [a,b], if for each perfect set E C [a,b] there exists an interval
[c,d] c [a,b] with ¢,d € E and En (c,d) # @ such that {x*fy : x* € B(X*)} is
uniformly integrable on P = En (c,d) and for every « the series > ji" f« is uncondi-
tionally convergent where (c,d) —E = Ug(ck,dk).

THEOREM 3.11. Suppose that X is weakly sequentially complete and

(1) fn — f weakly almost everywhere on [a,b] asn — oo, where each f, is Henstock-
Pettis integrable on [a,b].

(2) The family {x* f,, : x* € B(X*), n € N} is uniformly integrable in the generalized
sense on [a,b].

(3) For each x* € X*, lim,, . fcdx*fn = fcdx*f uniformly for every [c,d] C [a,D].

Then f is Henstock-Pettis integrable on [a,b] and

b b
limJ fn= J f weakly. (3.22)
n-eJg a

PROOF. It is similar to the proof of Theorem 3.8. The only difference is that the
family {x* f,, : x* € B(X*), n € N} is uniformly integrable in the generalized sense
on [a,b], then there is a portion P = E NI of E such that the family |[x* f,,xg| is
uniformly integrable on P. So f is Pettis integrable on P. O

THEOREM 3.12. Suppose that X is weakly sequentially complete and

(1) fn — f weakly almost everywhere on[a,b] asn — oo, where each f,, is Henstock-
Pettis integrable on [a,b] and f is measurable,

(2) the primitives F,, of f are weakly continuous uniformly in n and weakly ACG*
uniformly in n, that is, for every x* € X*, x*F,, are continuous uniformly inn
and ACG* uniformly in n.
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Then f is Henstock-Pettis integrable on [a,b] and

b b
lim J fn= J f weakly. (3.23)
n—o Jg a

PROOF. For each x* in X*, we have

(1) x*f, —x* f almost everywhere on [a,b] as n — oo, where each x* f,, is Henstock
integrable on [a,b],

(2) the primitives x*F, of x*f, are continuous uniformly in n and ACG* uni-
formly in n. It follows from Lemma 3.6 that x* f is Henstock integrable on
[a,b] and

b b

J x*fn—»J x*f asn— oo, (3.24)

a

a

By Theorem 2.2, f is Henstock-Dunford integrable on [a, b]. Since X is weakly sequen-
tially complete and f is measurable, by Theorem 3.4, f is Henstock-Pettis integrable
on [a,b]. O

THEOREM 3.13. Suppose that the unit ball B(X*) of X* is weak* sequentially com-
pact and
(1) fn — f weakly almost everywherein[a,b] asn — o, where each f,, is Henstock-
Pettis integrable on [a,b],
(2) the primitives Fy, of f,, are continuous uniformly inn and ACG* uniformly in n.
Then f is Henstock-Pettis integrable on [a,b] and

b b
limJ fn= J f weakly. (3.25)
n-oJg a

PROOF. Suppose that I C Iy. Let C be the weak closure of {J; f;, : n € N}. For each
x* in X*, {x*F, : n € N} is continuous uniformly in n and ACG* uniformly in n
in [a, b], and further ff x*fn=x* ff fn. A convergence theorem, namely Lemma 3.6,
guarantees that x* f is Henstock integrable on [a, b] and lim,, .« f:x*fn = ffx*f for
each x* in X*. We observe that C is bounded and that C — {; f, : n € N} contains at
most one point. We will prove that C is weakly compact.

Suppose that C is not weakly compact. An appeal to a theorem of James [6, Theo-
rem 1] produces a bounded sequence (x;') in X*, a sequence (x,) in C,and an € > 0
such that x}f (x;,) = 0 for k > n and x (xy,) > € for n = k. By passing to subsequences
and relabelling, we can find a subsequence (J; g») of ([;f») and a subsequence ( i)
of x; such that

y;‘Ign=Jy,j‘gn=0 for k > n,

I I

y,fjgnzjy,j‘gn>e forn >k, (3.26)
I 1

lim x*gnzjx*f Vx*in X*.

n—o Jg I

Since the unit ball B(X*) of X* is weak* sequentially compact, the sequence (y;)
has a subsequence (y,fi) which weak* converges to v, so limjﬁwy,j‘jf =y¢ f on Iy,
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lim;_« y,ij = y¢ F on Iy, thatis, lim;_« ij,:‘jf = [;v§ f. To force a contradiction, note
that for each k, limy,_« [; i fn = ;7 f- Hence [, y{ f = € for each k, and [; y§ f = €.
On the other hand, notice that since each g, is Henstock-Pettis integrable, (y; j) weak*
converges to y, hence

l,imJ Vi gn = lim yi J gn = y&‘j Gn= J Y5 In- (3.27)
jooo Jr J J—o JJr 1 I

Since this holds for each n, and since limy,_.« [; ¥&gn = [; ¢ f, we see that [; y§ f = 0.
This contradicts the inequality [; y§ f > €, and proves that C is weakly compact. Since
limy,—« [; x* fn = [} x* f, the sequence ([} f) of the Henstock-Pettis integrals is weakly
Cauchy. It follows from the weak compactness of C that lim,,_« [, f exists weakly in
X. Denote F(I) = [, f = limy_.« J; fn weakly, then x*F(I) = x* [, f = [;x* f for each
x*in X*. So f is Henstock-Pettis integrable on [a,b] and

b b
hmJ fn= J f weakly. (3.28)
n-oJg a 0

COROLLARY 3.14. Suppose that X is a reflexive Banach space and

(1) fn — f weakly almost everywhere on[a,b] asn — o, where each f,, is Henstock-
Pettis integrable on [a,b],

(2) the primitives F,, of f,, are weakly continuous uniformly in n and weakly ACG*
uniformly inn on [a,b].

Then f is Henstock-Pettis integrable on [a,b] and

b b
lim L Jn= L f weakly. (3.29)

n—oo

THEOREM 3.15. If the following conditions are satisfied:

(1) limy,—« fn = f weakly almost everywhere on [a,b], where each f, is Henstock-
Dunford integrable on [a,b],

(2) the primitives F,, of f, are weakly continuous uniformly in n and weakly ACG*
uniformly in n.

Then f is Henstock-Dunford integrable on [a,b] and

b b
limJ Jn= J f weakly. (3.30)
n=oJg a

PROOF. Since

(1) limy, - x*f, = x* f almost everywhere on [a,b],

(2) the primitives x*F,, of x* f,, are continuous uniformly in n and ACG* uni-
formly in n.

Then, as in the proof of Theorem 3.12, x* f is Henstock integrable on [a,b] and
b b

lim | x*f, = J x*f. (3.31)
a

n—oo a

By Theorem 2.2, f is Henstock-Dunford integrable on [a,b] and

b b
lim L fn= L f weakly. (3.32)

n—oo
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