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COVERING PROPERTIES FOR LQ�s WITH NESTED BASES
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Abstract. This paper deals with problems on LQ� spaces which have a nested base;
among others we give conditions so that a space (X,τ1,τ2) admits an LQ� � which
generates τ1 and �−1 τ2, and give necessary and sufficient conditions for a space to
be quasi-metrizable, related to concrete covering properties. We also give a Stone’s type
characterization of pairwise paracompactness for some categories of LQ� spaces with
nested bases.
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1. Introduction. J. Williams [12] associated a local uniformity with a nested base,
to a certain class of regular spaces which fulfil some covering properties. Some years
earlier E. Lane [9, Theorem 3.1] gave some similar covering conditions for a pairwise
regular bitopological space to define a quasi-metric on the space, but he left in pending
a number of relative questions starting with the one referring to the necessity of the
conditions. It is our main purpose to reform the Lane’s conditions and establish a
local quasi-uniformity with a nested base which gives answers to the questions raised
by Lane’s paper and for which Williams has responded in the uniform case.

The first problem we confront here can be stated as follows: given a bitopological
space (X,τ1,τ2), find conditions such that there is a local quasi-uniformity with a
nested base which generates the topology τ1 and its dual generates τ2. Theorem 2.5
solves that problem under conditions which may be considered as generalizations of
the ones cited in [12, Theorem 2.9] and [9, Theorem 3.1]. The suggestion of necessary
and sufficient conditions for a space to be quasi-metrizable of such a form as those
which Lane asks for in his paper, is our second point and Theorem 3.1 gives an an-
swer. The assumptions we put there, easily satisfy the Kopperman-Fox’s demands [7,
Theorem 1.1], an alternative approach to the subject (see Remark 3.2).

Stone’s type theorem for the pairwise paracompactness works well for some defini-
tions like, for instance, those introduced in [4, 11] whilst it does not for some others,
as in [1, 2, 6, 10]. The local quasi-uniformity with a nested base which is constructed
in Theorem 2.5 assures the pairwise paracompactness.

2. A generalization ofWilliam’s and Lane’s conditions formetrizability and quasi-
metrizability. Consider a bitopological space (X,τ1,τ2) and a filter of neighbornets
on X; we call the filter generalized quasi-uniformity (GQ� in brief). We also write
LQ� for a locally quasi-uniform space and, as always, we symbolize by τ(�) the
topology generated by a quasi-uniformity �. The basic result in relation with the quasi-
metrizability of an LQ� space remains the theorem of P. Fletcher and W. F. Lindgren
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[3, Theorem 7.3] and H. P. A. Künzi [8, Theorem 5] which is stated as follows: a space
admits a quasi-metric if it admits an LQ� � with a countable base such that �−1 is
as well an LQ�.

The following preliminary results are essential.

Lemma 2.1. Let (X,τ1,τ2) be a bitopological space and consider the class �1 (re-
spectively, �2) of τ2×τ1-open (respectively, τ1×τ2-open) entourages such that for any
τ1-neighborhood (respectively, τ2-neighborhood) M1 of x (respectively, M2), there are
τ1-neighborhood (respectively, τ2-neighborhood)N1 of x (respectively,N2) and V1 ∈�1

(respectively, V2 ∈ �2) such that V1(N1) ⊆ M1 (respectively, V2(N2) ⊆ M2). Then �1

(respectively, �2) is a subbase for an LQ� which generates τ1 (respectively, τ2).

Proof. We prove the τ1-case only. From the assumptions, �1 is itself a subbase for
aGQ��1; in fact it is τ(�1)= τ1. Moreover, for any τ1-neighborhood U[x] of x, there
is another τ1-neighborhood B of x and V , W elements of �1 such that V[B] ⊆ U[x]
and W[x] ⊆ B. Thus (W ∩V) ◦ (W ∩V)[x] ⊆ V[W[x]] ⊆ V[B] ⊆ U[x] and �1 is an
LQ�.

Lemma 2.2. A GQ� finer than an LQ� and generating the same topology with it, is
an LQ� as well.

Proof. If � is the LQ� and � the GQ�, then given x and V ∈ � there is U ∈ �

such that U[x] ⊆ V[x], whilst there is another U∗ ∈ �, such that U∗2[x] ⊆ U[x].
Since V is finer than U , there is V∗ ∈ � such that V∗ ⊆ U∗, hence V∗2[x] ⊆ V[x].

After J. Williams [12, Definition 2.3], we give the following definition.

Definition 2.3. We call cofinality of a GQ� the least cardinal κ for which the given
GQ� has a base of cardinality κ.

Lemma 2.4. If two families {�α | α∈ κ} and {�β | β∈ κ} of subsets have the same
cardinality κ and are nested, then the family {(Aα×Bα) | α∈ κ} is nested and cofinal
to the family {Aα×Bβ | α ∈ κ, β ∈ κ}. (Evidently, given i ∈ κ and j ∈ κ, there is an
α∈ κ such that Aα×Bα ⊆Ai×Bj .)

We now come to one of our basic results. The conditions we have put may be con-
sidered as generalizations of the J. William’s and E. P. Lane’s respective assumptions
in [12, Theorem 2.9] and [9, Theorem 3.1].

Theorem 2.5. Let (X,τ1,τ2) be a bitopological pairwise regular space and {�α |
α ∈ I},{�β | β ∈ I} be nested classes of families of subsets of X. For any α and β in I
and any �⊆�α and �⊆�β, we put

◦
�=

{ ◦
A= intτ1A |A∈�

}
,

◦
�=

{ ◦
B = intτ2 B | B ∈�

}
. (2.1)

We assume that (1)∪α
◦

� and∪β
◦
� are bases for the topologies τ1 and τ2, respectively.

(2) ∩α
◦

� is τ1-open and ∩{X \clτ2A | A ∈�} is τ2-open. (3) ∩β
◦
� is τ2-open and ∩{X \

clτ1A | B ∈�} is τ1-open.
Then there is an LQ� � with a nested base such that τ(�)= τ1 and τ(�−1)= τ2.
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Proof. Suppose that the collections (�α)α and (�β)β contain X and ∅.

For any α ∈ I, β ∈ I, and x ∈ X, put �α
x = ∩{

◦
A | x ∈ ◦

A and A ∈ �α}, Λαx =
∩{X \ clτ2A | x ∈ X \ clτ2A, A ∈ �α}. �

β
x = ∩{

◦
B | x ∈ ◦

B and B ∈ �β} and �
β
x =

∩{X \clτ1 B | x ∈X \clτ1 B, B ∈�β}.
We form �α = ∪x(Λαx ×�α

x) and �β = ∪x
(
�
β
x ×�

β
x
)
and show that each of the

families (�α)α and (�β)β forms a nested base for an LQ� compatible with τ1 and τ2,
respectively. We prove it for the first family.

The family {�α |α∈ I} is nested. In fact, if α≤ β, then Λβx ⊆Λαx and Kβ
x ⊆Kα

x , hence
�α ⊆ �β. Next, if x ∈ X and A ∈ ∪α�α, we can choose β ∈ I and B ∈ �β, such that
x ∈ B ⊆ clτ2 B ⊆ A. Moreover, if γ ∈ I, B ∈ �γ , and A ∈ �γ , then �γ[B] = ∪y{�γ

y |
Λγy ∩B �= ∅, y ∈ X}. If now y ∈ A, then Λγy ⊆ A, hence ∪y∈AΛγy ⊆ A. If y ∉ A, then
y ∉ clτ2 B or y ∈X \clτ2 B and since Λγy ⊆X \clτ2 B, it follows that Λγy∩B =∅. Hence
�γ[B] ⊆ A in any case and from Lemma 2.1 the family Γ = {�α | α ∈ I} is a base for
an LQ� such that τ(Γ)= τ1.

It also follows that �−1α [x]=∪y{Λαy : x ∈ kαy}, hence it is τ2-open and τ(Γ−1)⊆ τ2.
We also have E = {�β | β∈ �} is an LQ� such that τ(E)= τ2 and τ(E−1)⊆ τ1.

Let F = Γ ∨E−1. Then τ(F) = τ1, hence by Lemma 2.2, F is an LQ�. We now pick
up (after Lemma 2.4) a nested family � of entourages of the form �α∩�−1α , where
�α and �α belongs to Γ and E, respectively. This family induces the topology τ1

as well, thus τ(�) = τ1. It also follows that τ(�−1) = τ2, and the proof is complete.

As always, if we say that bitopological space (X,τ1,τ2) is quasi-metric we mean that
there is a quasi-metric d such that the topology induced by d coincides with τ1 and
that induced by d−1 coincides with τ2.

The following corollaries are directly concluded from Theorem 2.5.

Corollary 2.6. If a bitopological pairwise regular space satisfies the assumptions
of Theorem 2.5 with the only exception that the given families are countable, then the
space is quasi-pseudo-metrizable.

Corollary 2.7 (see [9, Theorem 3.1]). Let (X,τ1,τ2) be a bitopological space and
(preserving the notation of Theorem 2.5) we suppose that the two classes of the fam-

ilies {�α}α and {�β}β are countable, that ∪{ ◦�α | α ∈ I} and ∪{ ◦�β | β ∈ I} are
bases for the topologies τ1 and τ2, respectively, and that { ◦�α | α ∈ I} and { ◦�β |
β ∈ I} are, both of them, τ1 and τ2-locally finite. Then the space is quasi-pseudo-
metrizable.

An immediate consequence of Theorem 2.5 is the following theorem of J. G. Kelly
[5, Theorem 2.5].

Theorem 2.8. A bitopological pairwise regular space which fulfils the second axiom
of countability is quasi-pseudo-metrizable.
In fact, if	n and 
n are the countable bases of τ1 and τ2, then the families�n =∪	n

and �n = ∪
n satisfy the assumptions of Theorem 2.5 and the space is quasi-pseudo-
metrizable.
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The last theorem of this section may be considered as a generalization of the E. P.
Lane’s theorem [9, Theorem 3.1] with respect to the number of the elements which
every family has, in other words, with respect to the cofinality of these families.

Theorem 2.9. Let (X,τ1,τ2) be a pairwise regular bitopological space, {�α |α∈ I}
and {�β | β ∈ I} be nested collections of τ1 and τ2-open, respectively, families of sub-

sets, each family being τ1 and at the same time τ2 locally finite and
⋃{ ◦�α | α ∈ I}

and ∪{ ◦�β | β ∈ I} be τ1, τ2-open bases, respectively. Then the space is quasi-pseudo-
metrizable.

Proof (cf. [12, Proposition 2.10]). From Theorem 2.5 the space admits an LQ� �

with a nested base such that �−1 is also an LQ� with a nested base. If I =ω, (ω is the
ordinal of the natural numbers), then the result comes from the mentioned Fletcher-
Lindgren’s theorem. If, on the other hand, clτ2{x} and clτ1{x} are τ1 and τ2-open,
respectively, the space (X,τ1,τ2) admits quasi-pseudo-metrics d1 and d2 defined as
follows:

d1(x,y)=


0, if y ∈ clτ2{x},
1, otherwise,

d2(x,y)=


0, if y ∈ clτ1{x},
1, otherwise.

(2.2)

From [5, page 86], we deduce that x ∈ clτ2{y} implies y ∈ clτ1{x}, hence

d−11 (x,y)= d1(y,x)=


0, if x ∈ clτ2{y},
1, otherwise,

=


0, if y ∈ clτ1{x},
1, otherwise,

= d2(x,y).

(2.3)

So there remains the case card I > ω at least one of clτ2{x}, clτ1{x}, say the first, is
not τ1-open. We shall derive a contradiction: let {�αn |n∈ω} be a countable subcol-
lection of {�α |α∈ I} such that, for each n∈ω, �αn contains a τ1-neighborhood of
x and �an+1 contains a τ1-neighborhood of x which is strictly smaller than any neigh-
borhood of x in �an . Such an n exists, because any family �α (α ∈ I) is τ1-locally
finite. Let

N =
⋂{

A∈�an | x ∈A and n∈ω}, (2.4)

where N is the countable intersection of open sets and since card I >ω, N is an open
τ1-neighborhood of x. Next, we consider a family �β in the collection {�α | α ∈ I}
which contains a τ1-subneighborhood B of N . The set B does not belong to any �αn

and we may assume that �αn ⊂�β, for any n∈ω. Then, there is an A∈�an+1 \�an ,
where x ∈ A and A ∈ �β so that every τ1-neighborhood of x meets infinitely many
elements of �β, a contradiction.

3. The necessity of Theorem 2.5 assumptions. The theorem which is featured in
this section answers the question raised by E. P. Lane [9, page 248], whether there
are for a bitopological space sufficient and necessary conditions referring to special
coverings, at the end the space to be quasi-metric. We give a solution that slightly
changes the conditions of Theorem 2.5 into a more convenient expression.

Let (X,τ1,τ2) be again a bitopological space. We put for any x ∈ X and for any
ε > 0, B(x,ε)= {y ∈X | d(x,y) < ε}, B(x,ε)= {y ∈X | d(x,y)≤ ε}, and B−1(x,ε)=
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{y ∈ X | d−1(x,y) < ε}. We also note by int1A (respectively, int2A) the interior with
respect to d (respectively, to d−1) of any A⊆X. Finally, we recall that a precise refine-
ment (cf. [3, Section 5.4]) of a cover �= {Cα |α∈A} of X is a cover 
 = {Rα |α∈A}
provided that for each α∈A, Rα ⊆ Cα.

Before beginning the theorem, some remarks on a T0 non T1 totally ordered quasi-
pseudo-metrizable space are necessary. Let (X,d) be such a space. If d (x,y)= 0, then
x ∈ cl(y) and vice versa. Moreover, if d(x,y) = 0 and x ∈ B(α,ε), then y ∈ B(α,ε)
as well, because d(α,y) ≤ d(α,x)+d(x,y) < ε. The space is always ordered. If we
suppose the total ordering and consider the subbase of ]←,x], as x runs through X,
B(α,ε) is any sphere and x is larger than any point of B(α,ε), then any open subset of
the form B(x,ε′), ε′ > 0, contains B(α,ε), since it contains all y ∈]←,x]. This means
that in this case it is impossible to refine any open covering of X in an effective way,
which is a necessary presupposition for the demonstration of a Nagata-Smirnov’s-type
theorem.

Theorem 3.1. A T1 topological space (X,τ1,τ2) is quasi-pseudo-metrizable if and
only if there are two countable collections (�n)n∈ω and (�n)n∈ω of coverings of X
consisting of τ1 and τ2-open subsets, respectively, where �n = {Ani | i∈ I}, �n = {Bni |
i∈ I}, I being the same for all n, such that

(1) The family ∪�n (respectively, ∪�n) is a τ1-(respectively, τ2-)open base.
(2) For everyn,�n+1 (respectively,�n+1) is precise refinement of�n (respectively,�n).
(3) For any n and any J ⊂ I, ∩{Anj | j ∈ J} (respectively, ∩{Bnj | j ∈ J}) is a τ1-

(respectively, τ2-) neighborhood of ∩{A(n+1)j | j ∈ J} (respectively, ∩{B(n+1)j | j ∈ J}).
(4) Similarly, ∩{X \A(n+1)j | j ∈ J} (respectively, ∩{X \ B(n+1)j | j ∈ J}) is a τ2-

(respectively, τ1-) neighborhood of ∩{X \Anj | j ∈ J} (respectively, ∩{X \Bnj | j ∈ J}).
Proof. For the sufficiency of the statement we follow the demonstration of

Theorem 2.5: we construct an LQ� � such that τ(�) = τ1 (the construction of a
� such that τ(�)= τ2 is similar), and we arrive, just as in Theorem 2.5, at an LQ� �

such that τ(�)= τ1 and τ(�−1)= τ2, as desired. We only define �: for any x and for
any n ∈ω put �n

x = int1{∩Ani | x ∈ ∩A(n+1)i, i ∈ I}, Λnx = int2{∩(X \A(n+2)i) | x ∈
∩(X \A(n+1)i), i∈ I}.

Then the family � = {Un | n ∈ ω}, where Un = ∪{Λnx ×�n
x | x ∈ X} is a base for

an LQ� compatible with τ1. More precisely, we show that for any A ∈ ∪�n, there is
another member B of the family and a Um ∈ � such that Um[B] ⊆ A. In fact, given
A=Ami there are B∗ =A(m+1)i and B =A(m+2)i such that B ⊆ B∗ ⊆A. Then Um[B]=
∪{�m

x | Λmx ∩B �= ∅, x ∈ X}. So, if x ∈ B∗, �m
x ⊆ ∩{Ami | i ∈ I} ⊆ A. If x ∉ B∗, then

x ∈X \B∗, and since X \B ∈ {(X \A(m+2)i) | i∈ I}, we have Λmx = int2{∩(X \A(m+2)i) |
i∈ I} ⊆X \B, hence Λmx ∩B =∅. Thus Um[B]⊆A.

We prove the necessity for the family (�n)n∈ω. We suppose that there is a quasi-
pseudo-metric d such that τ(d)= τ1 and τ(d−1)= τ2.

Let 
(m) = {B(x,1/m) | x ∈X, m∈ω} be a covering ofX. Put Sn[B(x,1/m)]= {t ∈
X | B(t,1/n)⊆ B(x,1/m)} and En[B(x,1/m)]=∪{B(x,1/3m) | x ∈ Sn[B(x,1/m)]}.
Remark that if m>n, then En[B(x,1/m)]=∅. We suppose that n≥m.

We prove that a subfamily of the family {En[B(x,1/m)] |m∈ω, n∈ω}, covering
of X, fulfils the statements (2) and (3). (We have put B instead of clB.)
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There holds:

B
(
x,

1
m(m+1)

)
⊆ B

(
x,

1
m(m+1)

)
⊆ Sm+1

[
B
(
x,

1
m

)]
⊆ Em+1

[
B
(
x,

1
m

)]
. (3.1)

In fact, if t ∈ B(x,1/m(m+ 1)) and λ ∈ B(t,1/(m+ 1)), then d(x,λ) ≤ d(x,t)+
d(t,λ) < 1/m, hence B(t,1/(m+1)) ⊆ B(x,1/m) and t ∈ Sm+1[B(x,1/m)]. We also
have Em(m+1)+1[B(x,1/m(m+1))] ⊆ B(x,1/m(m+1)) ⊆ B(x,1/m(m+1)) ⊆ Em+1
[B(x,1/m)]. The latter means that the covering {Em(m+1)+1[B(x,1/m(m+1))] | x ∈
X} is a precise refinement of {Em+1[B(x,1/m)] | x ∈ X}. On the other hand, if t ∈
∩xEm(m+1)+1[B(x,1/m(m+ 1))], then t ∈ Sm+1[B(x,1/m)] and thus B(t,1/3(m+
1)) ⊆ Em+1[B(x,1/m)], or B(t,1/3(m+1)) ⊆ ∩xEm+1[B(x,1/m)] and (3) has been
proved.

We now consider t ∈ ∩x{X \Em+1[B(x,1/m)]}. If κ ∈ Sm+1[B(x,1/m)], d(κ,t) >
1/3(m+1) and since Em(m+1)+1[B(x,1/m(m+1))] ⊆ Sm+1[B(x,1/m)], for any λ ∈
Em(m+1)+1[B(x,1/m(m+1))], it follows that d(λ,t) > 1/m(m+1), hence

Em(m+1)+1
[
B
(
x,

1
m(m+1)

)]⋂
B−1

(
t,

1
3(m+1)

)
=∅. (3.2)

Thus B−1(t,1/3(m+1))⊆∩x{X\Em(m+1)+1[B(x,1/m(m+1))]} and the statement
(4) has been proved.

The required family (�n)n∈ω is defined as follows:


n+1 =
{
En+1

[
B
(
x,

1
n

)]∣∣∣x ∈X, n∈ω\{0}
}
. (3.3)

Define �2 = 
2 and if �n = 
n∗ ,n,n∗ in ω, then �n+1 = 
n∗(n∗+1) and the proof
is complete.

Remark 3.2. It is evident that for the above-mentioned pairs (�n,�n+1), �n+1
are τ1-cocushioned, τ2-cushioned of �n and for the pairs (�n,�n+1), �n+1 are τ2-
cocushioned, τ1-cushioned of �n as well.

In fact, it follows that (i) ∩(X\Ani)⊆ intτ2∩(X\A(n+1)i) or X\intτ2∩(X\A(n+1)i)⊆
X \∩(X \Ani)=∪Ani. On the other hand, (ii) clτ2∪(A(n+1)i)⊆X \ intτ2∩(X \A(n+1)i).

In fact, if t ∈ intτ2 ∩ (X \A(n+1)i), then there is a τ2-neighborhood Vτ2
t of t such

that Vτ2
t ⊆ X \A(n+1)i for any i or Vτ2

t ∩A(n+1)i = ∅. Thus Vτ2
t ∩ (∪A(n+1)i) = ∅ or

t ∉ clτ2(∪A(n+1)i) or t ∈ X \ clτ2(∪A(n+1)i). Thus clτ2(∪A(n+1)i) ⊆ Ani. Thus the as-
sumptions of Kopperman-Fox’s theorem [7, Theorem 1.1] are fulfilled and at the same
time give an answer to R. D. Kopperman’s question [7, page 106, Question c].

4. Some consequences of Theorem 2.5.

The pairwise paracompactness. Since a metrizable space is paracompact, it is
a reasonable requirement for a quasi-metrizable space to be pairwise paracompact
with respect to any definition of the pairwise paracompactness. Nevertheless, among
the relative definitions in M. C. Datta [1], P. Fletcher [2], C. Konstadilaki-Savopoulou
and I. L. Reilly [6], T. G. Raghavan [10], S. Romaguera and J. Marín [11] and M. Ganster
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and I. L. Reilly [4], only the last two satisfy this demand, although all of them coincide
with the “paracompactness” in the case where the bitopological spaces are reduced
to simple ones. Furthermore, J. Williams [12, Theorem 2.8] demonstrated that locally
uniform spaces with nested bases are paracompact. We show that, according to the
definitions introduced in [4, 11], the pairwise paracompactness is directly derived
from quasi-uniformities with a nested base. We will symbolize in the text: [11]- or
[4]-pairwise paracompactness, respectively.

For our convenience, we shortly refer to some definitions (cf. mainly in S. Romaguera
[11, page 236]).

Junnila’s definition of paracompactness. A regular space X is paracompact
if and only if, given a cover � of X, there is for any x a sequence {Un[x] : n∈ω} of
neighborhoods of x such that (i) y ∈ Un[x]� x ∈ Un[y], and (ii) if x ∈ X, there is
n∈ω and G ∈� such that U2

n[x]⊆G.
By a pair open cover of a bitopological space (X,	,
) we mean a family of pairs

{(Gα,Hα) | α ∈ I} such that Gα is 	-open, Hα 
-open, (ii) � = {Gα : α ∈ I} and � =
{Hα : α ∈ I} are covers of X and (iii) for each x ∈ X there is an α ∈ I such that
x ∈Gα∩Hα.

The [11]-pairwise paracompactness. A pairwise regular space (X,	,
) is pair-
wise paracompact if and only if given a pair cover (�,�), there is for every x a se-
quence {Un[x] : n ∈ N} of 	-neighborhoods and a sequence {Vn[x] : n ∈ N} of 
-
neighborhoods of x such that (i) y ∈ Un[x]� x ∈ Vn[y], (ii) for that x, there is an
n∈ω and a pair (Gα,Hα) in (�,�) such that U2

n[x]⊆Gα and V 2
n[x]⊆Hα.

The [4]-pairwise paracompactness. A pairwise regular space (X,	,
) is δ-
pairwise paracompact if every 	 or 
-open cover of X has a 	∨
 (the supremum
of 	 and 
) locally finite refinement.

We firstly give (Theorems 4.4, 4.5, and 4.6) conditions under whichwemay construct
on a space quasi-uniformities with nested bases.

Definition 4.1. A quasi-uniformity (X,�) enjoys the neighborhood property if for
any x ∈X and any U ∈�, there is a Vx ∈� such that V−1x [x]×Vx[x]⊆U .

Proposition 4.2. If in (X,�,�−1), � and �−1 are LQ�s, then �2 fulfils the neigh-
borhood property (�2 = { U ∈� | (∃V ∈�)[V 2 ⊂U]}).

Proof. Let x ∈ X and U ∈ �2. Then, there are W ∈ � such that W 2 ⊆ U and
V1x,V2x in � such that V 2

1x[x] ⊆ W[x] and V−22x [x] ⊆ W−1[x]. Put Vx = V1x ∩V2x ,
then V−2x [x]×V 2

x[x]⊆W−1(x)×W(x)⊆W 2 ⊆U and V 2
x ∈�2.

Proposition 4.3. If � is an LQ�, then �2 is also an LQ�, which generates the
same topology as �.

Proof. Given V ∈� and x ∈ X, there is a Wx ∈� such that W 2
x[x] ⊆ V[x], W 2

x ∈
�2, hence τ(�) ⊆ τ(�2). If, on the other hand, W ∈ �2 and x ∈ X, then there is a
V ∈� such that V 2 ⊆W , hence V[x] ⊆ V 2[x] ⊆W[x] and τ(�2) ⊆ τ(�). Moreover,
evidently, �2 is LQ�.
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Theorem 4.4. If � and �−1 are LQ�s on X with nested bases, then the set of the
diagonal neighborhoods generates a quasi-uniform topology equivalent to τ(�).

Proof. After Propositions 4.2 and 4.3, we may suppose that � is an LQ� with
a nested base � which has the neighborhood property. Let U be a neighborhood of
the diagonal and � = {U ∩V : V ∈ �}. � is a nested class of neighborhoods of the
diagonal which generates a GQ� finer than �. Hence, by Lemma 2.2, � is a base for
a quasi-uniformity �; furthermore, � fulfils the neighborhood property and induces
on X a topology equivalent to that induced by �.

Since U ∈�, it implies that for any x ∈ X there is a Vx ∈� such that V−1x [x]×
Vx[x] ⊆ U , and a W ∈ � such that W−3[x] ⊆ V−1x [x] and W 3[x] ⊆ Vx[x], hence
W−3
x [x]×W 3

x[x]⊆ V−1x ×Vx[x]⊆U .
Put

W =
⋃{

W−1
x [x]×Wx[x] | x ∈X

}
, (4.1)

where W is a neighborhood of the diagonal. We will show that W ◦W ⊆U .
Let (x,y) ∈W ◦W , there is z such that (x,z) ∈W , (z,y) ∈W , consequently there

areα,β inX such thatx ∈W−1
α [α], z ∈Wα[α] and z ∈W−1

β [β],y ∈Wβ[β]. IfWα ⊆Wβ,

then x ∈W−2
α ◦W−1

β [β]⊆W−3
β [β] and y ∈Wβ[β], hence (x,y)∈W−3

β [β]×Wβ[β]⊆U .

If Wβ ⊆ Wα, then y ∈ W 2
β ◦Wα[α] ⊆ W 3

α[α], hence (x,y) ∈ W−1
α [α]×W 3

α[α] ⊆ U , or
W ◦W ⊆U .

Theorem 4.5. If in a bitopological space (X,τ1,τ2), where both topologies induce
quasi-uniformities with nested bases which have the same cofinality ℵ, a family � of
τ2×τ1-neighborhoods of the diagonal has cardinality less than ℵ, then ∩� is a neigh-
borhood of the diagonal.

Proof. It is known (cf. [12, Theorem 2.4]) that in a uniform (as well as in a quasi-
uniform) space with a nested base of cofinality ℵ, any collection of open sets and of
cardinality less than ℵ, has as intersection an open set. If � is the collection and x ∈X,
then for any A∈�, there are KA[x] and ΛA[x], τ1 and τ2-neighborhoods of x, such
that ΛA[x]×KA[x] ⊆ A. If K = ∩{KA[x] : A ∈ �} and Λ = ∩{ΛA : A ∈ �}, then from
the above statement and the fact that K and Λ are τ1 and τ2-neighborhoods of x, it
implies that Λ×K ⊆∩�. Hence ∩� is a τ2×τ1-neighborhood of the diagonal.

Theorem 4.6. If � and �−1 are LQ�s with nested bases and are of the same cofi-
nality, then there is a quasi-uniformity with a nested base which generates the same,
as the �, topology and has the same cofinality.

Proof. If ℵ is the common cofinality of � and �−1, and Wλ (λ ∈ ℵ) is any neigh-
borhood of the diagonal, then by Theorem 4.4 there is a neighborhood Uλ+1 of the
diagonal such that Uλ+1◦Uλ+1 ⊆Uλ. If λ is a limit ordinal number less than ℵ and each
Uα, for α < λ, has been chosen, then put Uλ = ∩{Uα : α < α}, Uλ is by Theorem 4.5 a
neighborhood of the diagonal. The rest are trivial.

We come now to discuss the [4, 11]-pairwise paracompactness. As usual we denote
by �∗ the uniformity which is the supremum of the quasi-uniformities � and �−1

defined on X.



COVERING PROPERTIES FOR LQ�s WITH NESTED BASES 557

Theorem 4.7. If for a bitopological space (X,τ1,τ2) there are LQ�s � and �−1

with a nested base (both of them) and τ(�) = τ1, τ(�−1) = τ2, then the space is
δ-pairwise paracompact.

Proof. After Theorem 4.6, there is a quasi-uniformity � whose dual �−1 is also
quasi-uniformity, both of themhave nested bases, theymay be extended (Theorem 4.6)
until they reach the same cofinality ℵ and, finally, they generate topologies onX equiv-
alent to τ(�) and τ(�−1), respectively. We may also assume that the uniformity �∗

has a nested base with cofinality ℵ.
If ℵ = ω, the space (X,�) is quasi-metrizable, hence the bitopological space

(X,τ1,τ2) is δ-pairwise paracompact.
Let ℵ > ω. From a E. Zakon’s result [13, Theorem 2.1] we may consider that the

nested base of the uniformity �∗ consists of equivalent relations, which leads—after
[12, Theorem 2.7]—to the fact that every τ1 ∨τ2 = τ(�∗)-open cover � there is a
τ(�∗)-discrete refinement such that there is a partition, say {Sαx [x] | x ∈X}, of the
space, where {Sαx [x] | x ∈ X} refines �. Thus, the τ1∨τ2-opening covering � has a
locally finite refinement and the δ-pairwise paracompactness has been proved.

Theorem 4.8. If for a bitopological space (X,τ1,τ2) there are LQ�s � and �−1

with a nested base (both of them) and τ(�) = τ1, τ(�−1) = τ2, then the space is
[11]-pairwise paracompact.

Proof. Let (X,τ1,τ2), � and �−1 be as in Theorem 4.7. If the cofinality of the
base equals ω, the space is quasi-metrizable, hence [11]-pairwise paracompact.

Let the cofinality of ℵ be larger than ω and (�,�) be a (τ(�),τ(�−1))-open pair
cover of X, hence �∩�= {G∩H |G ∈ �, H ∈�} is a τ(�∗)-cover of X. That cover (as
we have referred in Theorem 4.7) has a discrete refinement, say {Sαx [x] | x ∈X}. Let
Sαx [x] be the only τ(�∗)-neighborhood of x with respect to this refinement. If {W∗

α |
ℵ ∈ I} and {Wℵ | ℵ ∈ I} are τ(�∗)- and τ(�)-bases, respectively, then for any x ∈ X
there is anα∈ I such thatW∗

α =Wα[x]∩W−1
α [x]⊆ Sαx [x]; furthermore ifx ∈Gα∩Fα,

whereGα ∈ � andHα ∈� and we preserve for our convenience the same α, then there
is an α∗ such that W 2

α∗[x] ⊆W−1
α∗ [x] ⊆ Gα and W−2

α∗ [x] ⊆W−1
α∗ [x] ⊆ Hα and we may

suppose that Wα∗[x]∩W−1
α∗ [x] ⊆ Sαx [x] ⊆ Gα∩Hα. On the other hand, we may put

Wα∗[x] = Vn[x] and W−1
α∗ [x] = Un[x] for every n ∈ω. These two sequences fulfill

the requirements of the S. Romaguera [11]-definition of pairwise paracompactness
and the proof is complete.

Remark 4.9. (1) After Theorems 4.7 and 4.8 it is evident that every bitopological
space which satisfies the assumptions of Theorem 2.5 is δ-pairwise paracompact as
well as [11]-pairwise paracompact.

(2) The quasi-metrizability is equivalent (according to S. Romaguera and J. Marín
[11, Theorem 1]) to the facts of being the space [11]-pairwise paracompact plus of
being pairwise developable. The latter property is evident under the assumptions of
Theorem 2.5. On the other hand, it is worth seeing that in [11] the authors are not
concerned with the case of the cofinality being larger thanω, that is, with the case of
the space not being quasi-metrizable. In fact, the pairwise development demands the
existence of a sequence of pair open covers of the space.
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